SECT. I.
De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur.
LEMMA I.
Quantitates, ut & quantitatum rationes, quæ ad æqualitatem dato tempore constanter tendunt & eo pacto propius ad invicem accedere possunt quam pro data quavis differentia; fiunt ultimo æquales.
Si negas, sit earum ultima differentia D. Ergo nequeunt propius ad æqualitatem accedere quam pro data differentia D: contra hypothesin.
Lemma II.
Si in figura quavis AacE rectis Aa, AE, & curva acE comprehensa, inscribantur parallelogramma quotcunq; Ab, Bc, Cd, &c. sub basibus AB, BC, CD, &c. æqualibus, & lateribus Bb, Cc, Dd, &c. figuræ lateri Aa parallelis contenta; & compleantur parallelogramma aKbl, bLcm, cMdn, &c. Dein horum parallelogrammorum latitudo minuatur, & numerus augeatur in infinitum: dico quod ultimæ rationes, quas habent ad se invicem figura inscripta AKbLcMdD, circumscripta AalbmcndoE, & curvilinea AabcdE, sunt rationes æqualitatis.
Nam figuræ inscriptæ & circumscriptæ differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob æquales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla. Sed hoc rectangulum, eo quod latitudo ejus AB in infinitum minuitur, sit minus quovis dato. Ergo, per Lemma I, figura inscripta & circumscripta & multo magis figura curvilinea intermedia fiunt ultimo æquales. Q. E. D.
Lemma III.
Eædem rationes ultimæ sunt etiam æqualitatis, ubi parallelogrammorum latitudines AB, BC, CD, &c. sunt inæquales, & omnes minuuntur in infinitum.
Sit enim AF æqualis latitudini maximæ & compleatur parallelogrammum FAaf. Hoc erit majus quam differentia figuræ inscriptæ & figuræ circumscripta, at latitudine sua AF in infinitum diminuta, minus fiet quam datum quodvis rectangulum.
Corol. 1. Hinc summa ultima parallelogrammorum evanescentium coincidit omni ex parte cum figura curvilinea.
Corol. 2. Et multo magis figura rectilinea, quæ chordis evanescentium arcuum ab, bc, cd, &c. comprehenditur, coincidit ultimo cum figura curvilinea.
Corol. 3. Ut & figura rectilinea quæ tangentibus eorundem arcuum circumscribitur.
Corol. 4. Et propterea hæ figuræ ultimæ (quoad perimetros acE,) non sunt rectilineæ, sed rectilinearum limites curvilinei.
Lemma IV.
Si in duabus figuris AacE, PprT, inscribantur (ut supra) duæ parallelogrammorum series, sitq; idem amborum numerus, & ubi latitudines in infinitum diminuitur, rationes ultimæ parallelogrammorum in una figura ad parallelogramma in altera, singulorum ad singula, sint eædem; dico quod figuræ duæ AacE, PprT, sunt ad invicem in eadem illa ratione.
Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit summa omnium ad summam omnium, & ita figura ad figuram; existente nimirum figura priore (per Lemma III.) ad summam priorem, & posteriore figura ad summam posteriorem in ratione æqualitatis.
Corol. Hinc si duæ cujuscunq; generis quantitates in eundem partium numerum utcunq; dividantur, & partes illæ, ubi numerus earum augetur & magnitudo diminuitur in infinitum, datam obtineant rationem ad invicem, prima ad primam, secunda ad secundam cæteræq; suo ordine ad cæteras; erunt tota ad invicem in eadem illa data ratione. Nam si in Lemmatis hujus figuris sumantur parallelogramma inter se ut partes, summæ partium semper erunt ut summæ parallelogrammorum; atq; adeo, ubi partium & parallelogrammorum numerus augetur & magnitudo diminuitur in infinitum, in ultima ratione parallelogrammi ad parallelogrammum, id est (per hypothesin) in ultima ratione partis ad partem.
Lemma V.
Similium figurarum latera omnia, quæ sibi mutuo respondent, sunt proportionalia, tam curvilinea quam rectilinea, & areæ sunt in duplicata ratione laterum.
Lemma VI.
Si arcus quilibet positione datus AB subtendatur chorda AB, & in puncto aliquo A, in medio curvaturæ continuæ, tangatur a recta utrinq; producta AD; dein puncta A, B ad invicem accendant & coeant; dico quod angulus BAD sub chorda & tangente contentus minuetur in infinitum & ultimo evanescet.
Nam producatur AB ad b & AD ad d, & punctis A, B coeuntibus, nullaq; adeo ipsius Ab parte AB jacente amplius intra curvam, manifestum esi quod hæc recta Ab, vel coincidet cum tangente Ad, vel ducetur inter tangentem & curvam. Sed casus posterior est contra naturam Curvaturæ, ergo prior obtinet. Q. E. D.
Lemma VII.
Iisdem positis, dico quod ultima ratio arcus, chordæ & tangentis ad invicem est ratio æqualitatis. Vide Fig. Lem. 6 & 8 vi.
Nam producantur AB & AD ad b & d secanti BD parallela agatur bd. Sitq; arcus Ab similis arcui AB. Et punctis A, B coeuntibus, angulus dAb, per Lemma superius, evanescet; adeoq; rectæ Ab, Ad arcus intermedius Ab coincident, & propterea æquales erunt. Unde & hisce semper proportionales rectæ AB, AD, & arcus intermedius AB rationem ultimam habebunt æqualitatis. Q. E. D.
Corol. 1. Unde si per B ducatur tangenti parallela BF rectam quamvis AF per A transeuntem perpetuo secans in F, hæc ultimo ad arcum evanescentem AB rationem habebit æqualitatis, eo quod completo parallelogrammo AFBD, rationem semper habet æqualitatis ad AD.
Corol. 2. Et si per B & A ducantur plures rectæ BE, BD, AF, AG, secantes tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD, AE, BF, BG, chordæq; & arcus AB ad invicem erit ratio æqualitatis.
Corol. 3. Et propterea hæ omnes lineæ in omni de rationibus ultimis argumentatione pro se invicem usurpari possunt.
Lemma VIII.
Si rectæ datæ AR, BR cum arcu AB, chorda AB & tangente AD, triangula tria ARB, ARB, ARD constituunt, dein puncta A, B accedunt ad invicem: dico quod ultima forma triangulorum evanescentium est similitudinis, & ultima ratio æqualitatis.
Nam producantur AB, AD, AR ad b, d & r. Ipsi RD agatur parallela rbd, & arcui AB similis ducatur arcus Ab. Coeuntibus punctis A, B, angulus bAd evanescet, & propterea triangula tria rAb, rAb, rAd coincident, suntq; eo nomine similia & æqualia. Unde & hisce semper similia & proportionalia RAB, RAB, RAD fient ultimo sibi invicem similia & æqualia. Q. E. D.
Corol. Et hinc triangula illa in omni de rationibus ultimis argumentatione pro se invicem usurpari possunt.
Lemma IX.
Si recta AE & Curva AC positione datæ se mutuo secent in angulo dato A, & ad rectam illam in alio dato angulo ordinatim applicentur BD, EC, curvæ occurrentes in B, C; dein puncta B, C accedant ad punctum A: dico quod areæ triangulorum ADB, AEC erunt ultimo ad invicem in duplicata ratione laterum.
Etenim in AD producta capiantur Ad, Ae ipsis AD, AE proportionales, & erigantur ordinatæ db, ec ordinatis DB, EC parallelæ & proportionales. Producatur AC ad c, ducatur curva Abc ipsi ABC similis, & recta Ag tangatur curva utraq; in A; & secantur ordinatim applicatæ in F, G, f, g. Tum coeant puncta B, C cum puncto A, & angulo cAg evanescente, coincident areæ curvilineæ Abd, Ace cum rectilineis Afd, Age, adeoq; per Lemma V, erunt in duplicata ratione laterum Ad, Ae: Sed his areis proportionales semper sunt areæ ABD, ACE, & his lateribus latera AD, AE. Ergo & areæ ABD, ACE sunt ultimo in duplicata ratione laterum AD, AE. Q. E. D.
Lemma X.
Spatia, quæ corpus urgente quacunq; vi regulari describit, sunt ipso motus initio in duplicata ratione temporum.
Exponantur tempora per lineas AD, AE, & velocitates genitæ per ordinatas DB, EC, & spatia his velocitatibus descripta erunt ut areæ ABD, ACE his ordinatis descriptæ, hoc est ipso motus initio (per Lemma IX) in duplicata ratione temporum AD, AE. Q. E. D.
Corol. 1. Et hinc facile colligitur, quod corporum similes similium figurarum partes temporibus proportionalibus describentium errores, qui viribus æqualibus in partibus istis ad corpora similiter applicatis generantur, & mensurantur a locis figurarum, ad quæ corpora temporibus ijsdem proportionalibus absq; viribus istis pervenirent, sunt ut quadrata temporum in quibus generantur quam proxime.
Corol. 2. Errores autem qui viribus proportionalibus similiter applicatis generantur, sunt ut vires & quadrata temporum conjunctim.
Lemma XI.
Subtensa evanescens anguli contactus est ultimo in ratione duplicata subtensæ arcus contermini.
Cas. 1. Sit arcus ille AB, tangens ejus AD, subtensa anguli contactus ad tangentem perpendicularis BD, subtensa arcus AB. Huic subtensæ AB & tangenti AD perpendiculares erigantur AG, BG, concurrentes in G; dein accedant puncta D, B, G, ad puncta d, b, g, sitq; J intersectio linearum BG, AG ultimo facta ubi puncta D, B accedunt usq; ad A. Manifestum est quod distantia GJ minor esse potest quam assignata quævis. Est autem (ex natura circulorum per puncta ABG, Abg transeuntium) AB quad. æquale AG × BD & Ab quad. æquale Ag × bd, adeoq; ratio AB quad. ad Ab quad. componitur ex rationibus AG ad Ag & BD ad bd. Sed quoniam JG assumi potest minor longitudine quavis assignata, fieri potest ut ratio AG ad Ag minus differat a ratione æqualitatis quam pro differentia quavis assignata, adeoq; ut ratio AB quad. ad Ab quad. minus differat a ratione BD ad bd quam pro differentia quavis assignata. Est ergo, per Lemma I, ratio ultima AB quad. ad Ab quad. æqualis rationi ultimæ BD ad bd. Q. E. D.
Cas. 2. Inclinetur jam BD ad AD in angulo quovis dato, & eadem semper erit ratio ultima BD ad bd quæ prius, adeoq; eadem ac AB quad. ad Ab quad. Q. E. D.
Cas. 3. Et quamvis angulus D non detur, tamen anguli D, d ad æqualitatem semper vergent & propius accedent ad invicem quam pro differentia quavis assignata, adeoq; ultimo æquales erunt, per Lem. I. & propterea lineæ BD, bd in eadem ratione ad invicem ac prius. Q. E. D.
Corol. 1. Unde cum tangentes AD, Ad, arcus AB, Ab & eorum sinus BC, bc fiant ultimo chordis AB, Ab æquales; erunt etiam illorum quadrata ultimo ut subtensæ BD, bd.
Corol. 2. Triangula rectilinea ADB, Adb sunt ultimo in triplicata ratione laterum AD, Ad, inq; sesquiplicata laterum DB, db: Utpote in composita ratione laterum AD & DB, Ad & db existentia. Sic & triangula ABC, Abc sunt ultimo in triplicata ratione laterum BC, bc.
Corol. 3. Et quoniam DB, db sunt ultimo parallelæ & in duplicata ratione ipsarum AD, Ad; erunt areæ ultimæ curvilineæ ADB, Adb (ex natura Parabolæ) duæ tertiæ partes triangulorum rectilineorum ADB, Adb, & segmenta AB, Ab partes tertiæ eorundem triangulorum. Et inde hæ areæ & hæc segmenta erunt in triplicata ratione tum tangentium AD, Ad; tum chordarum & arcuum AB, Ab.
Scholium.
Cæterum in his omnibus supponimus angulum contactus nec infinite majorem esse angulis contactuum, quos circuli continent cum tangentibus suis, nec iisdem infinite minorem; hoc est curvaturam ad punctum A, nec infinite parvam esse nec infinite magnam, seu intervallum AJ finitæ esse magnitudinis. Capi enim potest DB ut AD: quo in casu circulus nullus per punctum A inter tangentem AD & curvam AB duci potest, proindeq; angulus contactus erit infinite minor circularibus. Et simili argumento si fiat DB successive ut AD, AD, AD, AD, &c. habebitur series angulorum contactus pergens in infinitum, quorum quilibet posterior est infinite minor priore. Et si fiat DB successive ut AD, AD/2, AD/3, AD/4, AD/5, AD/6, &c. habebitur alia series infinita angulorum contactus, quorum primus est ejusdem generis cum circularibus, secundus infinite major, & quilibet posterior infinite major priore. Sed & inter duos quosvis ex his angulis potest series utrinq; in infinitum pergens angulorum intermediorum inseri, quorum quilibet posterior erit infinite major priore. Ut si inter terminos AD & AD inseratur series AD/6, AD/5, AD/4, AD/3, AD/2, AD/3, AD/4, AD/5, AD/6, &c. Et rursus inter binos quosvis angulos hujus seriei inseri potest series nova angulorum intermediorum ab invicem infinitis intervallis differentium. Neq; novit natura limitem.
Quæ de curvis lineis deq; superficiebus comprehensis demonstrata sunt, facile applicantur ad solidorum superficies curvas & contenta. Præmisi vero hæc Lemmata ut effugerem tædium deducendi perplexas demonstrationes, more veterum Geometrarum, ad absurdum. Contractiores enim redduntur demonstrationes per methodum indivisibilium. Sed quoniam durior est indivisibilium Hypothesis; & propterea Methodus illa minus Geometrica censetur, malui demonstrationes rerum sequentium ad ultimas quantitatum evanescentium summas & rationes, primasq; nascentium, id est, ad limites summarum & rationum deducere, & propterea limitum illorum demonstrationes qua potui breuitate præmittere. His enim idem præstatur quod per methodum indivisibilium, & principiis demonstratis jam tutius utemur. Proinde in sequentibus, siquando quantitates tanquam ex particulis constantes consideravero, vel si pro rectis usurpavero lineolas curvas, nolim indivisibilia sed evanescentia divisibilia, non summas & rationes partium determinatarum, sed summarum & rationum limites semper intelligi, vimq; talium demonstrationum ad methodum præcedentium Lemmatum semper revocari.
Objectio est, quod quantitatum evanescentium nulla sit ultima proportio; quippe quæ, antequam evanuerunt, non est ultima, ubi evanuerunt, nulla est. Sed & eodem argumento æque contendi posset nullam esse corporis ad certum locum pergentis velocitatem ultimam. Hanc enim, antequam corpus attingit locum, non esse ultimam, ubi attigit, nullam esse. Et responsio facilis est. Per velocitatem ultimam intelligi eam, qua corpus movetur neq; antequam attingit locum ultimum & motus cessat, neq; postea, sed tunc cum attingit, id est illam ipsam velocitatem quacum corpus attingit locum ultimum & quacum motus cessat. Et similiter per ultimam rationem quantitatum evanescentium intelligendam esse rationem quantitatum non antequam evanescunt, non postea, sed quacum evanescunt. Pariter & ratio prima nascentium est ratio quacum nascuntur. Et summa prima & ultima est quacum esse (vel augeri & minui) incipiunt & cessant. Extat limes quem velocitas in fine motus attingere potest, non autem transgredi. Hæc est velocitas ultima. Et par est ratio limitis quantitatum & proportionum omnium incipientium & cessantium. Cumq; hic limes sit certus & definitus, Problema est vere Geometricum eundem determinare. Geometrica vero omnia in aliis Geometricis determinandis ac demonstrandis legitime usurpantur.
Contendi etiam potest, quod si dentur ultimæ quantitatum evanescentium rationes, dabuntur & ultimæ magnitudines; & sic quantitas omnis constabit ex indivisibilibus, contra quam Euclides de incommensurabilibus, in libro decimo Elementorum, demonstravit. Verum hæc Objectio falsæ innititur hypothesi. Ultimæ rationes illæ quibuscum quantitates evanescunt, revera non sunt rationes quantitatum ultimarum, sed limites ad quos quantitatum sine limite decrescentium rationes semper appropinquant, & quas propius assequi possunt quam pro data quavis differentia, nunquam vero transgredi, neq; prius attingere quam quantitates diminuuntur in infinitum. Res clarius intelligetur in infinite magnis. Si quantitates duæ quarum data est differentia augeantur in infinitum, dabitur harum ultima ratio, nimirum ratio æqualitatis, nec tamen ideo dabuntur quantitates ultimæ seu maximæ quarum ista est ratio. Igitur in sequentibus, siquando facili rerum imaginationi consulens, dixero quantitates quam minimas, vel evanescentes vel ultimas, cave intelligas quantitates magnitudine determinatas, sed cogita semper diminuendas sine limite.
SECT. II.
De Inventione Virium Centripetarum.
Prop. I. Theorema. I.
Areas quas corpora in gyros acta radiis ad immobile centrum virium ductis describunt, & in planis immobilibus consistere, & esse temporibus proportionales.
Dividatur tempus in partes æquales, & prima temporis parte describat corpus vi insita rectam AB. Idem secunda temporis parte, si nil impediret, recta pergeret ad c, (per Leg. I) describens lineam Bc æqualem ipsi AB, adeo ut radiis AS, BS, cS ad centrum actis, consectæ forent æquales areæ ASB, BSc. Verum ubi corpus venit ad B, agat vis centripeta impulsu unico sed magno, faciatq; corpus a recta Bc deflectere & pergere in recta BC. Ipsi BS parallela agatur cC occurrens BC in C, & completa secunda temporis parte, corpus (per Legum Corol. I) reperietur in C, in eodem plano cum triangulo ASB. Junge SC, & triangulum SBC, ob parallelas SB, Cc, æquale erit triangulo SBc, atq; adeo etiam triangulo SAB. Simili argumento si vis centripeta successive agat in C, D, E, &c. faciens ut corpus singulis temporis particulis singulas describat rectas CD, DE, EF, &c. jacebunt hæ in eodem plano, & triangulum SCD triangulo SBC & SDE ipsi SCD & SEF ipsi SDE æquale erit. Æqualibus igitur temporibus æquales areæ in plano immoto describuntur: & componendo, sunt arearum summæ quævis SADS, SAFS inter se, ut sunt tempora descriptionum. Augeatur jam numerus & minuatur latitudo triangulorum in infinitum, & eorum ultima perimeter ADF, (per Corollarium quartum Lemmatis tertii) erit linea curva; adeoq; vis centripeta qua corpus de tangente hujus curvæ perpetuo retrahitur, aget indesinenter; areæ vero quævis descriptæ SADS, SAFS temporibus descriptionum semper proportionales, erunt iisdem temporibus in hoc casu proportionales. Q. E. D.
Corol. 1. In mediis non resistentibus, si areæ non sunt temporibus proportionales, vires non tendunt ad concursum radiorum.
Corol. 2. In mediis omnibus, si arearum descriptio acceleratur, vires non tendunt ad concursum radiorum, sed inde declinant in consequentia.
Pro. II. Theor. II.
Corpus omne quod, cum movetur in linea aliqua curva, & radio ducto ad punctum vel immobile, vel motu rectilineo uniformiter progrediens, describit areas circa punctum illud temporibus proportionales, urgetur a vi centripeta tendente ad idem punctum.
Cas. 1. Nam corpus omne quod movetur in linea curva, detorquetur de cursu rectilineo per vim aliquam in ipsum agentem. (per Leg. I.) Et vis illa qua corpus de cursu rectilineo detorquetur & cogitur triangula quam minima SAB, SBC, SCD &c. circa punctum immobile S, temporibus æqualibus æqualia describere, agit in loco B secundum lineam parallelam ipsi cC (per Pro Lib. I Elem. & Leg. II.) hoc est secundum lineam BS & in loco C secundum lineam ipsi dD parallelam, hoc est secundum lineam CS, &c. Agit ergo semper secundum lineas tendentes ad punctum illud immobile S. Q. E. D.
Cas. 2. Et, per Legum Corollarium quintum, perinde est sive quiescat superficies in qua corpus describit figuram curvilineam, sive moveatur eadem una cum corpore, figura descripta & puncto suo S uniformiter in directum.
Scholium.
Urgeri potest corpus a vi centripeta composita ex pluribus viribus. In hoc casu sensus Propositionis est, quod vis illa quæ ex omnibus componitur, tendit ad punctum S. Porro si vis aliqua agat secundum lineam superficiei descriptæ perpendicularem, hæc faciet corpus deflectere a plano sui motus, sed quantitatem superficiei descriptæ nec augebit nec minuet, & propterea in compositione virium negligenda est.
Prop. III. Theor. III.
Corpus omne quod, radio ad centrum corporis alterius utcunq; moti ducto, describit areas circa centrum illud temporibus proportionales, urgetur vi composita ex vi centripeta tendente ad corpus alterum & ex vi omni acceleratrice, qua corpus alterum urgetur.
Nam (per Legum Corol. 6.) si vi nova, quæ æqualis & contraria sit illi qua corpus alterum urgetur, urgeatur corpus utrumq; secundum lineas parallelas, perget corpus primum describere circa corpus alterum areas easdem ac prius: vis autem qua corpus alterum urgebatur, jam destruetur per vim sibi æqualem & contrariam, & propterea (per Leg. 1.) corpus illud alterum vel quiescet vel movebitur uniformiter in directum, & corpus primum, urgente differentia virium, perget areas temporibus proportionales circa corpus alterum describere. Tendit igitur (per Theor. 2.) differentia virium ad corpus illud alterum ut centrum. Q. E. D.
Corol. 1. Hinc si corpus unum radio ad alterum ducto describit areas temporibus proportionales, atq; de vi tota (sive simplici, sive ex viribus pluribus, juxta Legum Corollarium secundum, composita,) qua corpus prius urgetur, subducatur (per idem Legum Corollarium) vis tota acceleratrix qua corpus alterum urgetur; vis omnis reliqua qua corpus prius urgetur tendet ad corpus alterum ut centrum.
Corol. 2. Et si areæ illæ sunt temporibus quamproxime proportionales, vis reliqua tendet ad corpus alterum quamproxime.
Corol. 3. Et vice versa, si vis reliqua tendit quamproxime ad corpus alterum, erunt areæ illæ temporibus quamproxime proportionales.
Corol. 4. Si corpus radio ad alterum corpus ducto describit areas quæ, cum temporibus collatæ, sunt valde inæquales, & corpus illud alterum vel quiescit vel movetur uniformiter in directum; actio vis centripetæ ad corpus illud alterum tendentis, vel nulla est, vel miscetur & componitur cum actionibus admodum potentibus aliarum virium: Visq; tota ex omnibus, si plures sunt vires, composita, ad aliud (sive immobile sive mobile) centrum dirigitur, circum quod æquabilis est arearum descriptio. Idem obtinet ubi corpus alterum motu quocunq; movetur, si modo vis centripeta sumatur, quæ restat post subductionem vis totius agentis in corpus illud alterum.
Scholium
Quoniam æquabilis arearum descriptio Index est centri quod vis illa respicit qua corpus maxime afficitur, corpus autem vi ad hoc centrum tendente retinetur in orbita sua, & motus omnis circularis recte dicitur circa centrum illud fieri, cujus vi corpus retrahitur de motu rectilineo & retinetur in Orbita: quidni usurpemus in sequentibus æquabilem arearum descriptionem ut Indicem centri circum quod motus omnis circularis in spatiis liberis peragitur?
Prop. IV. Theor. IV.
Corporum quæ diversos circulos æquabili motu describunt, vires centripetas ad centra eorundem circulorum tendere, & esse inter se ut arcuum simul descriptorum quadrata applicata ad circulorum radios.
Corpora B, b in circumferentiis circulorum BD, bd gyrantia, simul describant arcus BD, bd. Quoniam sola vi insita describerent tangentes BC, bc his arcubus æquales, manifestum est quod vires centripetæ sunt quæ perpetuo retrahunt corpora de tangentibus ad circumferentias circulorum, atq; adeo hæ sunt ad invicem in ratione prima spatiorum nascentium CD, cd: tendunt vero ad centra circulorum per Theor. II, propterea quod areæ radiis descriptæ ponuntur temporibus proportionales. Fiat figura tkb figuræ DCB similis, & per Lemma V, lineola CD erit ad lineolam kt ut arcus BD ad arcum bt: nec non, per Lemma XI, lineola nascens tk ad lineolam nascentem dc ut bt quad. ad bd quad. & ex æquo lineola nascens DC ad lineolam nascentem dc ut BD × bt ad bd quad. seu quod perinde est, ut BD × bt ÷ Sb ad bd quad. ÷ Sb, adeoq; (ob æquales rationes bt ÷ Sb & BD ÷ SB) ut BD quad. ÷ SB ad bd quad. ÷ Sb Q. E. D.
Corol. 1. Hinc vires centripetæ sunt ut velocitatum quadrata applicata ad radios circulorum.
Corol. 2. Et reciproce ut quadrata temporum periodicorum applicata ad radios ita sunt hæ vires inter se. Id est (ut cum Geometris loquar) hæ vires sunt in ratione composita ex duplicata ratione velocitatum directe & ratione simplici radiorum inverse: necnon in ratione composita ex ratione simplici radiorum directe & ratione duplicata temporum periodicorum inverse.
Corol. 3. Unde si tempora periodica æquantur, erunt tum vires centripetæ tum velocitates ut radii, & vice versa.
Corol. 4. Si quadrata temporum periodicorum sunt ut radii, vires centripetæ sunt æquales, & velocitates in dimidiata ratione radiorum: Et vice versa.
Corol. 5. Si quadrata temporum periodicorum sunt ut quadrata radiorum, vires centripetæ sunt reciproce ut radii, & velocitates æquales; Et vice versa.
Corol. 6. Si quadrata temporum periodicorum sunt ut cubi radiorum, vires centripeta: sunt reciproce ut quadrata radiorum; velocitates autem in radiorum dimidiata ratione: Et vice versa.
Corol. 7. Eadem omnia de temporibus, velocitatibus & viribus, quibus corpora similes figurarum quarumcunq; similium, centraq; similiter posita habentium, partes describunt, consequuntur ex Demonstratione præcedentium ad hosce casus applicata.
Scholium.
Casus Corollarii sexti obtinet in corporibus cælestibus (ut seorsum colligerunt etiam nostrates Wrennus, Hookius & Halleus) & propterea quæ spectant ad vim centripetam decrescentem in duplicata ratione distantiarum a centris decrevi fusius in sequentibus exponere.
Porro præcedentis demonstrationis beneficio colligitur etiam proportio vis centripetæ ad vim quamlibet notam, qualis est ea gravitatis. Nam cum vis illa, quo tempore corpus percurrit arcum BC, impellat ipsum per spatium CD, quod ipso motus initio æquale est quadrato arcus illius BD ad circuli diametrum applicato; & corpus omne vi eadem in eandem semper plagam continuata, describat spatia in duplicata ratione temporum: Vis illa, quo tempore corpus revolvens arcum quemvis datum describit, efficiet ut corpus idem recta progrediens describat spatium quadrato arcus illius ad circuli diametrum applicato æquale; adeoq; est ad vim gravitatis ut spatium illud ad spatium quod grave cadendo eodem tempore describit. Et hujusmodi Propositionibus Hugenius, in eximio suo Tractatu de Horologio oscillatorio, vim gravitatis cum revolventium viribus centrifugis contulit.
Demonstrari etiam possunt præcedentia in hunc modum. In circulo quovis describi intelligatur Polygonum laterum quotcunq; Et si corpus in Polygoni lateribus data cum velocitate movendo, ad ejus angulos singulos a circulo reflectatur; vis qua singulis reflexionibus impingit in circulum erit ut ejus velocitas, adeoq; summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium; adeoq; si Polygonum lateribus infinite diminutis coincidat cum circulo, ut quadratum arcus dato tempore descripti applicatum ad radium. Hæc est vis qua corpus urget circulum, & huic æqualis est vis contraria qua circulus continuo repellit corpus centrum versus.
Prop. V. Prob. I.
Data quibuscunq; in locis velocitate, qua corpus figuram datam viribus ad commune aliquod centrum tendentibus describit, centrum illud invenire.
Figuram descriptam tangant rectæ tres PT, TQV, VR in punctis totidem P, Q, R, concurrentes in T & V. Ad tangentes erigantur perpendicula PA, QB, RC, velocitatibus corporis in punctis illis P, Q, R a quibus eriguntur reciproce proportionalia; id est ita ut sit PA ad QB ut velocitas in Q ad velocitatem in P, & QB ad RC ut velocitas in R ad velocitatem in Q. Per perpendiculorum terminos A, B, C ad angulos rectos ducantur AD, DBE, EC concurrentia in D & E: Et actæ TD, VE concurrent in centro quæsito S.
Nam cum corpus in P & Q radiis ad centrum ductis areas describat temporibus proportionales, sintq; areæ illæ simul descriptæ ut velocitates in P & Q ductæ respective in perpendicula a centro in tangentes PT, QT demissa: Erunt perpendicula illa ut velocitates reciproce, adeoq; ut perpendicula AP, BQ directe, id est ut perpendicula a puncto D in tangentes demissa. Unde facile colligitur quod puncta S, D, T sunt in una recta. Et simili argumento puncta S, E, V sunt etiam in una recta; & propterea centrum S in concursu rectarum TD, VE versatur. Q. E. D.
Pro. VI. Theor. V.
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvæ Q agatur QR distantiæ SP parallela, ac demittatur QT perpendicularis ad distantiam SP: Dico quod vis centripeta sit reciproce ut solidum SP quad. × QT quad. ÷ QR, si modo solidi illius ea semper sumatur quantitas quæ ultimo fit ubi coeunt puncta P & Q.
Namq; in figura indefinite parva QRPT lineola nascens QR, dato tempore, est ut vis centripeta (per Leg. II.) & data vi, ut quadratum temporis (per Lem. X.) atq; adeo, neutro dato, ut vis centripeta & quadratum temporis conjunctim, adeoq; vis centripeta ut lineola QR directe & quadratum temporis inverse. Est autem tempus ut area SPQ, ejus dupla SP × QT, id est ut SP & QT conjunctim, adeoq; vis centripeta ut QR directe atq; SP quad. in QT quad. inverse, id est ut SP quad. × QT quad. ÷ QR inverse. Q. E. D.
Corol. Hinc si detur figura quævis, & in ea punctum ad quod vis centripeta dirigitur; inveniri potest lex vis centripetæ quæ corpus in figuræ illius perimetro gyrari faciet. Nimirum computandum est solidum SP quad. × QT quad. ÷ QR huic vi reciproce proportionale. Ejus rei dabimus exempla in problematis sequentibus.
Prop. VII. Prob. II.
Gyretur corpus in circumferentia circuli, requiritur lex vis centripetæ tendentis ad punctum aliquod in circumferentia datum.
Esto circuli circumferentia SQPA, centrum vis centripetæ S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad. (hoc est QRL) ad QT quad. ut SA quad. ad SP quad. Ergo QRL × SP quad. ÷ SA quad. æquatur QT quad. Ducantur hæc æqualia in SP quad. ÷ QR, & punctis P & Q coeuntibus, scribatur SP pro RL. Sic fiet SP qc. ÷ SAq. æquale QTq. × SPq. ÷ QR. Ergo (per Corol. Theor. V.) vis centripeta reciproce est ut SP qc. ÷ SAq., id est (ob datum SA quad.) ut quadrato-cubus distantiæ SP. Quod erat inveniendum.
Prop. VIII. Prob. III.
Moveatur corpus in circulo PQA: ad hunc effectum requiritur lex vis centripetæ tendentis ad punctum adeo longinquum, ut lineæ omnes PS, RS ad id ductæ, pro parallelis haberi possint.
A circuli centro C agatur semidiameter CA parallelas istas perpendiculariter secans in M & N, & jungantur CP. Ob similia triangula CPM, & TPZ, vel (per Lem. VIII.) TPQ, est CPq. ad PMq. ut PQq. vel (per Lem. VII.) PRq. ad QTq. & ex natura circuli rectangulum QR × RN + QN æquale est PR quadrato. Coeuntibus autem punctis P, Q fit RN + QN æqualis 2PM. Ergo est CP quad. ad PM quad. ut QR × 2PM ad QT quad. adeoq; QT quad. ÷ QR æquale 2PM cub. ÷ CP quad., & QT quad. × SP quad. ÷ QR æquale 2PM cub. × SP quad. ÷ CP quad. Est ergo (per Corol. Theor. V.) vis centripeta reciproce ut 2PM cub. × SP quad. ÷ CP quad. hoc est (neglecta ratione determinata 2SP quad. ÷ CP quad.) reciproce ut PM cub. Q. E. I.
Scholium.
Et simili argumento corpus movebitur in Ellipsi vel etiam in Hyperbola vel Parabola, vi centripeta quæ sit reciproce ut cubus ordinatim applicatæ ad centrum virium maxime longinquum tendentis.
Prop. IX. Prob. IV.
Gyretur corpus in spiral PQS secante radios omnes SP, SQ, &c. in angulo dato: Requiritur lex vis centripetæ tendentis ad centrum spiralis.
Detur angulus indefinite parvus PSQ, & ob datos omnes angulos dabitur specie figura SPQRT. Ergo datur ratio QT ÷ RQ estq; QT quad. ÷ QR ut QT, hoc est ut SP. Mutetur jam utcunq; angulus PSQ, & recta QR angulum contactus QPR subtendens mutabitur (per Lemma XI.) in duplicata ratione ipsius PR vel QT. Ergo manebit QT quad. ÷ QR eadem quæ prius, hoc est ut SP. Quare QTq. × SPq. ÷ QR est ut SP cub. id est (per Corol. Theor. V.) vis centripeta ut cubus distantiæ SP. Q. E. I.
Lemma XII.
Parallelogramma omnia circa datam Ellipsin descripta esse inter se æqualia. Idem intellige de Parallelogrammis in Hyperbola circum diametros ejus descriptis.
Prop. X. Prob. V.
Gyretur corpus in Ellipsi: requiritur lex vis centripetæ tendentis ad centrum Ellipseos.
Sunto CA, CB semiaxes Ellipseos; GP, DK diametri conjugatæ; PF, Qt, perpendicula ad diametros; Qv ordinatim applicata ad diametrum GP; & si compleatur parallelogrammum QvRP, erit (ex Conicis) PvG ad Qv quad. ut PC quad. ad CD quad. & (ob similia triangula Qvt, PCF) Qv quad. est ad Qt quad. ut PC quad. ad PF quad. & conjunctis rationibus, PvG ad Qt quad. ut PC quad. ad CD quad. & PC quad. ad PF quad. id est vG ad Qt quad. ÷ Pv ut PC quad. ad CDq. × PFq. ÷ PCq.. Scribe QR pro Pv, & (per Lemma xii.) BC × CA pro CD × PF, nec non (punctis P & Q coeuntibus) 2PC pro vG, & ductis extremis & medijs in se mutuo, fiet QTq. × PCq. ÷ QR æquale 2BCq. × CAq. ÷ PC. Est ergo (per Corol. Theor. V.) vis centripeta reciproce ut 2BCq. × CAq. ÷ PC, id est (ob datum 2BCq. × CAq.) ut 1 ÷ PC, hoc est, directe ut distantia PC. Q. E. I.
Corol. 1. Unde vicissim si vis sit ut distantia, movebitur corpus in Ellipsi centrum habente in centro virium, aut forte in circulo, in quem Ellipsis migrare potest.
Corol. 2. Et æqualia erunt revolutionum in Figuris universis circa centrum idem factarum periodica tempora. Nam tempora illa in Ellipsibus similibus æqualia sunt per Corol. 3 & 7 Prop. IV: In Ellipsibus autem communem habentibus axem majorem, sunt ad invicem ut Ellipseon areæ totæ directe & arearum particulæ simul descriptæ inverse; id est ut axes minores directe & corporum velocitates in verticibus principalibus inverse, hoc est ut axes illi directe & ordinatim applicatæ ad axes alteros inverse, & propterea (ob æqualitatem rationum directarum & inversarum) in ratione æqualitatis.
Scholium.
Si Ellipsis, centro in infinitum abeunte, vertatur in Parabolam, corpus movebitur in hac Parabola, & vis ad centrum infinite distans jam tendens, evadet æquabilis. Hoc est Theorema Galilei. Et si Conisectio Parabolica, inclinatione plani ad conum sectum mutata, vertatur in Hyperbolam, movebitur corpus in hujus perimetro, vi centripeta in centrifugam versa.
SECT. III.
De motu Corporum in Conicis Sectionibus excentricis.
Prop. XI. Prob. VI.
Revolvatur corpus in Ellipsi: Requiritur lex vis centripetæ tendentis ad umbilicum Ellipseos.
Esto Ellipseos superioris umbilicus S. Agatur SP secans Ellipseos tum diametrum DK in E, tum ordinatim applicatam Qv in x, & compleatur parallelogrammum QxPR. Patet EP æqualem esse semiaxi majori AC, eo quod acta ab altero Ellipseos umbilico H linea HI ipsi EC parallela, (ob æquales CS, CH) æquentur ES, EI, adeo ut EP semisumma sit ipsarum PS, PI, id est (ob parallelas HI, PR & angulos æquales IPR, HPZ) ipsorum PS, PH, quæ conjunctim axem totum 2AC adæquant. Ad SP demittatur perpendicularis QT, & Ellipseos latere recto principali (seu 2BC quad. ÷ AC) dicto L, erit L × QR ad L × Pv ut QR ad Pv; id est ut PE (seu AC) ad PC; & L × Pv ad GvP ut L ad Gv; & GvP ad Qv quad. ut CP quad. ad CD quad.; & (per Lem. VIII.) Qv quad. ad Qx quad. punctis Q & P coeuntibus, est ratio æqualitatis, & Qx quad. seu Qv quad. est ad QT quad. ut EP quad. ad PF quad., id est ut CA quad. ad PF quad. sive (per Lem. XII.) ut CD quad. ad CB quad. Et conjunctis his omnibus rationibus, L × QR fit ad QT quad. ut AC ad PC + L ad Gv + CPq. ad CDq. + CDq. ad CBq. id est ut AC × L (seu 2CBq.) × CPq. ad PC × Gv × CBq. sive ut 2PC ad Gv. Sed punctis Q & P coeuntibus, æquantur 2PC & Gv. Ergo & his proportionalia L × QR & QT quad. æquantur. Ducantur hæc aqualia in SPq. ÷ QR & fiet L × SPq. æquale SPq. × QTq. ÷ QR. Ergo (per Corol. Theor. V.) vis centripeta reciproce est ut L × SPq. id est reciproce in ratione duplicata distantiæ SP. Q. E. I.
Eadem brevitate qua traduximus Problema quintum ad Parabolam, & Hyperbolam, liceret idem hic facere: verum ob dignitatem Problematis & usum ejus in sequentibus, non pigebit casus cæteros demonstratione confirmare.
Prop. XII. Prob. VII.
Moveatur corpus in Hyperbola: requiritur lex vis centripetæ tendentis ad umbilicum figuræ.
Sunto CA, CB semi-axes Hyperbolæ; PG, KD diametri conjugatæ; PF, Qt perpendicula ad diametros; & Qv ordinatim applicata ad diametrum GP. Agatur SP secans tum diametrum DK in E, tum ordinatim applicatam Qv in x, & compleatur parallelogrammum QRPx. Patet EP æqualem esse semi-axi transverso AC, eo quod, acta ab altero Hyperbolæ umbilico H linea HI ipsi EC parallela, ob æquales CS, CH, æquentur ES, EI; adeo ut EP semidifferentia sit ipsarum PS, PI, id est (ob parallelas HI, PR & angulos æquales IPR, HPZ) ipsarum PI, PH, quarum differentia axem totum 2AC adæquat. Ad SP demittatur perpendicularis QT. Et Hyperbolæ latere recto principali (seu 2BCq. ÷ AC) dicto L, erit L × QR ad L × Pv ut QR ad Pv, id est, ut PE (seu AC) ad PC; Et L × Pv ad GvP ut L ad Gv; & GvP ad Qvq. ut CPq. ad CDq.; & (per Lem. VIII.) Qvq. ad Qxq., punctis Q & P coeuntibus fit ratio æqualitatis; & Qxq. seu Qvq. est ad QTq. ut EPq. ad PFq., id est ut CAq. ad PFq., sive (per Lem. XII.) ut CDq. ad CBq.: & conjunctis his omnibus rationibus L × QR fit ad QTq. ut AC ad PC + L ad Gv + CPq. ad CDq. + CDq. ad CBq.: id est ut AC × L (seu 2BCq.) × PCq. ad PC × Gv × CB quad. sive ut 2PC ad Gv, sed punctis Q & P coeuntibus æquantur 2PC & Gv. Ergo & his proportionalia L × QR & QTq. æquantur. Ducantur hæc æqualia in SPq. ÷ QR & fiet L × SPq. æquale SPq. × QTq. ÷ QR. Ergo (per Corol. Theor. V.) vis centripeta reciproce est ut L × SPq. id est in ratione duplicata distantiæ SP. Q. E. I.
Eodem modo demonstratur quod corpus, hac vi centripeta in centrifugam versa, movebitur in Hyperbola conjugata.
Lemma XIII.
Latus rectum Parabolæ ad verticem quemvis pertinens, est quadruplum distantiæ verticis illius ab umbilico figuræ. Patet ex Conicis.
Lemma XIV.
Perpendiculum quod ab umbilico Parabolæ ad tangentem ejus demittitur, medium est proportionale inter distantias umbilici a puncto contactus & a vertice principali figuræ.
Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem. Jungatur AN, & ob æquales MS & SP, MN & NP, MA & AO, parallelæ erunt rectæ AN & OP, & inde triangulum SAN rectangulum erit ad A & simile triangulis æqualibus SMN, SPN. Ergo PS est ad SN ut SN ad SA. Q. E. D.
Corol. 1. PSq. est ad SNq. ut PS ad SA.
Corol. 2. Et ob datam SA, est SNq. ut PS.
Corol. 3. Et concursus tangentis cujusvis PM cum recta SN quæ ab umbilico in ipsam perpendicularis est, incidit in rectam AN, quæ Parabolam tangit in vertice principali.
Prop. XIII. Prob. VIII.
Moveatur corpus in perimetro Parabolæ: requiritur Lex vis centripetæ tendentis ad umbilicum hujus figuræ.
Maneat constructio Lemmatis, sitq; P corpus in perimetro Parabolæ, & a loco Q in quem corpus proxime movetur, age ipsi SP Parallelam QR & perpendicularem QT, necnon Qv tangentiparallelam & occurrentem tum diametro YPG in v, tum distantiæ SP in x. Jam ob similia triangula Pxv, MSP & æqualia unius latera SM, SP, æqualia sunt alterius latera Px seu QR & Pv. Sed, ex Conicis, quadratum ordinatæ Qv æquale est rectangulo sub latere recto & segmento diametri Pv, id est (per Lem. XIII.) rectangulo 4PS × Pv seu 4PS × QR; & punctis P & Q coeuntibus, ratio Qv ad Qx (per Lem. 8.) fit æqualitatis. Ergo Qxq. eo in casu, æquale est rectangulo 4PS × QR. Est autem (ob æquales angulos QxT, MPS, PMO) Qxq. ad QTq. ut PSq. ad SNq. hoc est (per Corol. I. Lem. XIV.) ut PS ad AS, id est ut 4PS × QR ad 4AS × QR, & inde (per Pro. Lib. V. Elem.) QTq. & 4AS × QR æquantur. Ducantur hæc æqualia in SPq. ÷ QR, & fiet SPq. × QTq. ÷ QR æquale SPq. × 4AS: & propterea (per Corol. Theor. V.) vis centripeta est reciproce ut SPq. × 4AS, id est, ob datam 4AS, reciproce in duplicata ratione distantiæ SP. Q. E. I.
Corol. I. Ex tribus novissimis Proportionibus consequens est, quod si corpus quodvis P, secundum lineam quamvis rectam PR, quacunq; cum velocitate exeat de loco P, & vi centripeta quæ sit reciproce proportionalis quadrato distantiæ a centro, simul agitetur; movebitur hoc corpus in aliqua sectionum Conicarum umbilicum habente in centro virium; & contra.
Corol. II. Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua lineola PR in minima aliqua temporis particula describi possit, & vis centripeta potis sit eodem tempore corpus idem movere per spatium QR: movebitur hoc corpus in Conica aliqua sectione cujus latus rectum est quantitas illa QTq. ÷ QR quæ ultimo fit ubi lineolæ PR, QR in infinitum diminuuntur. Circulum in his Corollariis refero ad Ellipsin, & casum excipio ubi corpus recta descendit ad centrum.
Prop. XIV. Theor. VI.
Si corpora plura revolvantur circa centrum commune, & vis centripeta decrescat in duplicata ratione distantiarum a centro; dico quod Orbium Latera recta sunt in duplicata ratione arearum quas corpora, radiis ad centrum ductis, eodem tempore describunt.
Nam per Corol. II. Prob. VIII. Latus rectum L æquale est quantitati QTq. ÷ QR quæ ultimo fit ubi coeunt puncta P & Q. Sed linea minima QR, dato tempore, est ut vis centripeta generans, hoc est (per Hypothesin) reciproce ut SPq. Ergo QTq. ÷ QR est ut QTq. × SPq. hoc est, latus rectum L in duplicata ratione areæ QT × SP. Q. E. D.
Corol. Hinc Ellipseos area tota, eiq; proportionale rectangulum sub axibus, est in ratione composita ex dimidiata ratione lateris recti & integra ratione temporis periodici.
Prop. XV. Theor. VII.
Iisdem positis, dico quod tempora periodica in Ellipsibus sunt in ratione sesquiplicata transversorum axium.
Namq; axis minor est medius proportionalis inter axem majorem (quem transversum appello) & latus rectum, atq; adeo rectangulum sub axibus est in ratione composita ex dimidiata ratione lateris recti & sesquiplicata ratione axis transversi. Sed hoc rectangulum, per Corollarium Theorematis Sexti, est in ratione composita ex dimidiata ratione lateris recti & integra ratione periodici temporis. Dematur utrobiq; dimidiata ratio lateris recti & manebit sesquiplicata ratio axis transversi æqualis rationi periodici temporis. Q. E. D.
Corol. Sunt igitur tempora periodica in Ellipsibus eadem ac in circulis, quorum diametri æquantur majoribus axibus Ellipseon.
Prop. XVI. Theor. VIII.
Iisdem positis, & actis ad corpora lineis rectis, quæ ibidem tangant orbitas, demissisq; ab umbilico communi ad has tangentes perpendicularibus: dico quod velocitates corporum sunt in ratione composita ex ratione perpendiculorum inverse & dimidiata ratione laterum rectorum directe. Vide Fig. Prop. X. &. XI.
Ab umbilico S ad tangentem PR demitte perpendiculum SY & velocitas corporis P erit reciproce in dimidiata ratione quantitatis SYq. ÷ L. Nam velocitas illa est ut arcus quam minimus PQ in data temporis particula descriptus, hoc est (per Lem. VII.) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq; SP × QT ut area dato tempore descripta, id est, per Theor. VI. in dimidiata ratione lateris recti Q. E. D.
Corol. 1. Latera recta sunt in ratione composita ex duplicata ratione perpendiculorum & duplicata ratione velocitatum.
Corol. 2. Velocitates corporum in maximis & minimis ab umbilico communi distantiis, sunt in ratione composita ex ratione distantiarum inverse & dimidiata ratione laterum rectorum directe. Nam perpendicula jam sunt ipsæ distantiæ.
Corol. 3. Ideoq; velocitas in Conica sectione, in minima ab umbilico distantia, est ad velocitatem in circulo in eadem a centro distantia, in dimidiata ratione lateris recti ad distantiam illam duplicatam.
Corol. 4. Corporum in Ellipsibus gyrantium velocitates in mediocribus distantiis ab umbilico communi sunt eædem quæ corporum gyrantium in circulis ad easdem distantias, hoc est (per Corol. VI. Theor. IV.) reciproce in dimidiata ratione distantiarum. Nam perpendicula jam sunt semi-axes minores, & hi sunt ut mediæ proportionales inter distantias & latera recta. Componatur hæc ratio inverse cum dimidiata ratione laterum rectorum directe, & fiet ratio dimidiata distantiarum inverse.
Corol. 5. In eadem vel æqualibus figuris, vel etiam in figuris inæqualibus, quarum latera recta sunt æqualia, velocitas corporis est reciproce ut perpendiculum demissum ab umbilico ad tangentem.
Corol. 6. In Parabola, velocitas est reciproce in dimidiata ratione distantiæ corporis ab umbilico figuræ, in Ellipsi minor est, in Hyperbola major quam in hac ratione. Nam (per Corol. 2 Lem. XIV.) perpendiculum demissum ab umbilico ad tangentem Parabolæ est in dimidiata ratione distantiæ.
Corol. 7. In Parabola, velocitas ubiq; est ad velocitatem corporis revolventis in circulo ad eandem distantiam, in dimidiata ratione numeri binarii ad unitatem; in Ellipsi minor est, in Hyperbola major quam in hac ratione. Nam per hujus Corollarium secundum, velocitas in vertice Parabolæ est in hac ratione, & per Corollaria sexta hujus & Theorematis quarti, servatur eadem proportio in omnibus distantiis. Hinc etiam in Parabola velocitas ubiq; æqualis est velocitati corporis revolventis in circulo ad dimidiam distantiam, in Ellipsi minor est, in Hyperbola major.
Corol. 8. Velocitas gyrantis in Sectione quavis Conica est ad velocitatem gyrantis in circulo in distantia dimidii lateris recti Sectionis, ut distantia illa ad perpendiculum ab umbilico in tangentem Sectionis demissum. Patet per Corollarium quintum.
Corol. 9. Unde cum (per Corol. 6. Theor. IV.) velocitas gyrantis in hoc circulo sit ad velocitatem gyrantis in circulo quovis alio, reciproce in dimidiata ratione distantiarum; fiet ex æquo velocitas gyrantis in Conica sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media proportionalis inter distantiam illam communem & semissem lateris recti sectionis, ad perpendiculum ab umbilico communi in tangentem sectionis demissum.
Prop. XVII. Prob. IX.
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiæ a centro, & quod vis illius quantitas absoluta sit cognita; requiritur linea quam corpus describit, de loco dato cum data velocitate secundum datam rectam egrediens.
Vis centripeta tendens ad punctum S ea sit quæ corpus p in orbita quavis data pq gyrare faciat, & cognoscatur hujus velocitas in loco p. De loco P secundum lineam PR exeat corpus P cum data velocitate, & mox inde, cogente vi centripeta, deflectat illud in Conisectionem PQ. Hanc igitur recta PR tanget in P. Tangat itidem recta aliqua pr orbitam pq in p, & si ab S ad eas tangentes demitti intelligantur perpendicula, erit (per Corol. 1. Theor. VIII.) latus rectum Conisectionis ad latus rectum orbitæ datæ, in ratione composita ex duplicata ratione perpendiculorum & duplicata ratione velocitatum, atq; adeo datur. Sit istud L. Datur præterea Conisectionis umbilicus S. Anguli RPS complementum ad duos rectos fiat angulus RPH, & dabitur positione linea PH, in qua umbilicus alter H locatur. Demisso ad PH perpendiculo SK, & erecto semiaxe conjugato BC, est SPq. - 2KPH + PHq. (per Pro. Lib. II. Elem.) = SHq. = 4CHq. = 4BHq. - 4BCq. = SP + PH quad. - L × SP + PH = SPq. + 2SPH + PHq. - L × SP + PH. Addantur utrobiq; 2KPH + L × SP + PH - SPq. - PHq. & fiet L × SP + PH = 2SPH + 2KPH, seu SP + PH ad PH ut 2SP + 2KP ad L. Unde datur PH tam longitudine quam positione. Nimirum si ea sit corporis in P velocitas, ut latus rectum L minus fuerit quam 2SP + 2KP, jacebit PH ad eandem partem tangentis PR cum linea PS, adeoq; figura erit Ellipsis, & ex datis umbilicis S, H, & axe principali SP + PH, dabitur: Sin tanta sit corporis velocitas ut latus rectum L æquale fuerit 2SP + 2KP, longitudo PH infinita erit, & propterea figura erit Parabola axem habens SH parallelum lineæ PK, & inde dabitur. Quod si corpus majori adhuc cum velocitate de loco suo P exeat, capienda erit longitudo PH ad alteram partem tangentis, adeoq; tangente inter umbilicos pergente, figura erit Hyperbola axem habens principalem æqualem differentiæ linearum SP & PH, & inde dabitur. Q. E. I.
Corol. 1. Hinc in omni Conisectione ex dato vertice principali D, latere recto L, & umbilico S, datur umbilicus alter H capiendo DH ad DS ut est latus rectum ad differentiam inter latus rectum & 4DS. Nam proportio SP + PH ad PH ut 2SP ad L, in casu hujus Corollarii, fit DS + DH ad DH ut 4DS ad L, & divisim DS ad DH ut 4DS - L ad L.
Corol. 2. Unde si datur corporis velocitas in vertice principali D, invenietur Orbita expedite, capiendo scilicet latus rectum ejus, ad duplam distantiam DS, in duplicata ratione velocitatis hujus datæ ad velocitatem corporis in circulo ad distantiam DS gyrantis: (Per Corol. 3. Theor. VIII.) dein DH ad DS ut latus rectum ad differentiam inter latus rectum & 4DS.
Corol. 3. Hinc etiam si corpus moveatur in Sectione quacunq; Conica, & ex orbe suo impulsu quocunq; exturbetur; cognosci potest orbis in quo postea cursum suum peraget. Nam componendo proprium corporis motum cum motu illo quem impulsus solus generaret, habebitur motus quocum corpus de dato impulsus loco, secundum rectam positione datam, exibit.
Corol. 4. Et si corpus illud vi aliqua extrinsecus impressa continuo perturbetur, innotescet cursus quam proxime, colligendo mutationes quas vis illa in punctis quibusdam inducit, & ex seriei analogia, mutationes continuas in locis intermediis æstimando.
SECT. IV.
De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato.
Lemma XV.
Si ab Ellipseos vel Hyperbolæ cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectæ duæ SV, HV, quarum una HV æqualis sit axi transverso figuræ, altera SV a perpendiculo TR in se demisso bisecetur in T; perpendiculum illud TR sectionem Conicam alicubi tangit: & contra, si tangit, erit VH æqualis axi figuræ.
Secet enim VH sectionem conicam in R, & jungatur SR. Ob æquales rectas TS, TV, æquales erunt anguli TRS, TRV. Bisecat ergo RT angulum VRS & propterea figuram tangit: & contra. Q. E. D.
Prop. XVIII. Prob. X.
Datis umbilico & axibus transversis describere Trajectorias Ellipticas & Hyperbolicas, quæ transibunt per puncta data, & rectas positione datas contingent.
Sit S communis umbilicus figuraram; AB longitudo axis transversi Trajectoriæ cujusvis; P punctum per quod Trajectoria debet transire; & TR recta quam debet tangere. Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG. Ad tangentem TR demittatur perpendiculum ST, & producatur ea ad V ut sit TV æqualis ST; centroq; V & intervallo AB describatur circulus FH. Hac methodo sive dentur duo puncta P, p, sive duæ tangentes TR, tr, sive punctum P & tangens TR, describendi sunt circuli duo. Sit H eorum intersectio communis, & umbilicis S, H, axe illo dato describatur Trajectoria. Dico factum. Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola æquatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR. Et eodem argumento vel transibit eadem per puncta duo P, p, vel tanget rectas duas TR, tr. Q. E. F.
Prop. XIX. Prob. XI.
Circa datum umbilicum Trajectoriam Parabolicam describere, quæ transibit per puncta data, & rectas positione datas continget.
Sit S umbilicus, P punctum & TR tangens trajectoriæ describendæ. Centro P, intervallo PS describe circulum FG. Ab umbilico ad tangentem demitte perpendicularem ST, & produc eam ad V, ut sit TV æqualis ST. Eodem modo describendus est alter circulus fg, si datur alterum punctum p; vel inveniendum alterum punctum v, si datur altera tangens tr; dein ducenda recta IF quæ tangat duos circulos FG, fg si dantur duo puncta P, p; vel transeat per duo puncta V, v, si dantur duæ tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR. Ad FI demitte perpendicularem SI, eamq; biseca in K, & axe SK, vertice principali K describatur Parabola. Dico factum. Nam Parabola ob æquales SK & IK, SP & FP transibit per punctum P; & (per Lemmatis XIV. Corol. 3.) ob æquales ST & TV & angulum rectum STR, tanget rectam TR. Q. E. F.
Prop. XX. Prob. XII.
Circa datum umbilicum Trajectoriam quamvis specie datam describere, quæ per data puncta transibit & rectas tanget positione datas.
Cas. 1. Dato umbilico S, describenda sit Trajectoria ABC per puncta duo B, C. Quoniam Trajectoria datur specie, dabitur ratio axis transversi ad distantiam umbilicorum. In ea ratione cape KB ad BS, & LC ad CS. Centris B, C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quæ tangat eosdem in K & L, demitte perpendiculum SG, idemq; seca in A & a, ita ut sit SA ad AG & Sa ad aG, ut est SB ad BK, & axe Aa, verticibus A, a, describatur Trajectoria. Dico factum. Sit enim H umbilicus alter figuræ descriptæ, & cum sit SA ad AG ut Sa ad aG, erit divisim Sa - SA seu SH ad aG - AG seu Aa in eadem ratione, adeoq; in ratione quam habet axis transversus figuræ describendæ ad distantiam umbilicorum ejus; & propterea figura descripta est ejusdem speciei cum describenda. Cumq; sint KB ad BS & LC ad CS in eadem ratione, transibit hæc Figura per puncta B, C, ut ex Conicis manifestum est.
Cas. 2. Dato umbilico S, describenda sit Trajectoria quæ rectas duas TR, tr alicubi contingat. Ab umbilico in tangentes demitte perpendicula ST, St & produc eadem ad V, v, ut sint TV, tv æquales TS, ts. Biseca Vv in O, & erige perpendiculum infinite OH, rectamq; VS infinite productam seca in K & k ita, ut sit VK ad KS & Vk ad kS ut est Trajectoriæ describendæ axis transversus ad umbilicorum distantiam. Super diametro Kk describatur circulus secans rectam OH in H; & umbilicis S, H, axe transverso ipsam VH æquante, describatur Trajectoria. Dico factum. Nam biseca Kk in X, & junge HX, HS, HV, Hv. Quoniam est VK ad KS ut Vk ad kS; & composite ut VK + Vk ad KS + kS; divisimq; ut Vk - VK ad kS - KS id est ut 2VX ad 2KX & 2KX ad 2SX, adeoq; ut VX ad HX & HX ad SX, similia erunt triangula VXH, HXS, & propterea VH erit ad SH ut VX ad XH, adeoq; ut VK ad KS. Habet igitur Trajectoria; descriptæ axis transversus VH eam rationem ad ipsius umbilicorum distantiam SH, quam habet Trajectoriæ describendæ axis transversus ad ipsius umbilicorum distantiam, & propterea ejusdem est speciei. Insuper cum VH, vH æquentur axi transverso, & VS, vS a rectis TR, tr perpendiculariter bisecentur, liquet, ex Lemmate XV, rectas illas Trajectoriam descriptam tangere. Q. E. F.
Cas. 3. Dato umbilico S describenda sit Trajectoria quæ rectam TR tanget in puncto dato R. In rectam TR demitte perpendicularem ST, & produc eandem ad V, ut sit TV æqualis ST. Junge VR, & rectam VS infinite productam seca in K & k, ita ut sit VK ad SK & Vk ad Sk ut Ellipseos describendæ axis transversus ad distantiam umbilicorum; circuloq; super diametro Kk descripto, secetur producta recta VR in H, & umbilicis S, H, axe transverso rectam HV æquante, describatur Trajectoria. Dico factum. Namq; VH esse ad SH ut VK ad SK, atq; adeo ut axis transversus Trajectoriæ describendæ ad distantiam umbilicorum ejus, patet ex demonstratis in Casu secundo, & propterea Trajectoriam descriptam ejusdem esse speciei cum describenda: rectam vero TR qua angulus VRS bisecatur, tangere Trajectoriam in puncto R, patet ex Conicis. Q. E. F.
Cas. 4. Circa umbilicum S describenda jam sit Trajectoria APB, quæ tangat rectam TR, transeatq; per punctum quodvis P extra tangentem datum, quæq; similis sit figuræ apb, axe transverso ab & umbilicis s, h descriptæ. In tangentem TR demitte perpendiculum ST, & produc idem ad V, ut sit TV æqualis ST. Angulis autem VSP, SVP fac angulos hsq, shq æquales; centroq; q intervallo quod sit ad ab ut SP ad VS describe circulum secantem figuram apb in p. Junge sp & age SH quæ sit ad sh ut est SP ad sp quæq; angulum PSH angulo psh & angulum VSH angulo psq æquales constituat. Deniq; umbilicis S, H, axe distantiam VH æquante, describatur sectio conica.
Dico factum. Nam si agatur sv quæ sit ad sp ut est sh ad sq, quæq; constituat angulum vsp angulo hsq & angulum vsh angulo psq æquales, triangula svh, spq erunt similia, & propterea vh erit ad pq ut est sh ad sq, id est (ob similia triangula VSP, hsq) ut est VS ad SP seu ab ad pq. Æquantur ergo vh & ab. Porro ob similia triangula VSH, vsh est VH ad SH ut vh ad sh, id est, axis Conicæ actionis jam descripta: ad illius umbilicorum intervallum, ut axis ab ad umbilicorum intervallum sh, & propterea figura jam descripta similis est figuræ apb. Transit autem hæc figura per punctum P, eo quod triangulum PSH simile sit triangulo psh; & quia VH æquatur ipsius axi & VS bisecatur perpendiculariter a recta TR tangit eadem rectam TR. Q. E. F.
Lemma XVI.
A datis tribus punctis ad quartum non datum inflectere tres rectas quarum differentiæ vel dantur vel nullæ sunt.
Cas. 1. Sunto puncta illa data A, B, C & punctum quartum Z, quod invenire oportet: Ob datam differentiam linearum AZ, BZ, locabitur punctum Z in Hyperbola cujus umbilici sunt A & B, & axis transversus differentia illa data. Sit axis ille MN. Cape PM ad MA ut est MN ad AB, & erecto PR perpendiculari ad AB, demissoq; ZR perpendiculari ad PR, erit ex natura hujus Hyperbolæ ZR ad AZ ut est MN ad AB. Simili discursu punctum Z locabitur in alia Hyperbola, cujus umbilici sunt A, C & axis transversus differentia inter AZ & CZ, duciq; potest QS ipsi AC perpendicularis, ad quam si ab Hyperbolæ hujus puncto quovis Z demittatur normalis ZS, hæc fuerit ad AZ ut est differentia inter AZ & CZ ad AC. Dantur ergo rationes ipsarum ZR & ZS ad AZ, & idcirco datur earundem ZR & ZS ratio ad invicem; adeoq; rectis RP, SQ concurrentibus in T, locabitur punctum Z in recta TZ positione data. Eadem Methodo per Hyperbolam tertiam, cujus umbilici sunt B & C & axis transversus differentia rectarum BZ, CZ, inveniri potest alia recta in qua punctum Z locatur. Habitis autem duobus locis rectilineis, habetur punctum quæsitum Z in earum intersectione, Q. E. I.
Cas. 2. Si duæ ex tribus lineis, puta AZ & BZ æquantur, punctum Z locabitur in perpendiculo bisecante distantiam AB, & locus alius rectilineus invenietur ut supra. Q. E. I.
Cas. 3. Si omnes tres æquantur, locabitur punctum Z in centro circuli per puncta A, B, C transeuntis. Q. E. I.
Solvitur etiam hoc Lemma problematicum per Librum. Tactionum Apollonii a Vieta restitutum.
Prop. XXI. Prob. XIII.
Trajectoriam circa datum umbilicum describere, quæ transibit per puncta data & rectas positione datas continget.
Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY æqualis ST, & erit YH æqualis axi transverso. Junge SP, HP & erit SP differentia inter HP & axem transversum. Hoc modo si dentur plures tangentes TR, vel plura puncta P, devenietur semper ad lineas totidem YH, vel PH, a dictis punctis Y vel P ad umbilicum H ductas, quæ vel æquantur axibus, vel datis longitudinibus SP differunt ab iisdem, atq; adeo quæ vel æquantur sibi invicem, vel datas habent differentias; & inde, per Lemma superius, datur umbilicus ille alter H. Habitis autem umbilicis una cum axis longitudine (quæ vel est YH, vel si Trajectoria Ellipsis est, PH + SP; sin Hyperbola PH - SP) habetur Trajectoria. Q. E. I.
Scholium.
Casus ubi dantur tria puncta sic solvitur expeditius. Dentur puncta B, C, D. Junctas BC, CD produc ad E, F, ut sit EB ad EC ut SB ad SC, & FC ad FD ut SC ad SD. Ad EF ductam & productam demitte normales SG, BH, inq; GS infinite producta cape GA ad AS & Ga ad aS ut est HB ad BS; & erit A vertex, & Aa axis transversus Trajectoriæ: quæ, perinde ut GA minor, æqualis vel major fuerit quam AS, erit Ellipsis, Parabola vel Hyperbola; puncto a in primo casu cadente ad eandem partem lineæ GK cum puncto A; in secundo casu abeunte in infinitum; in tertio cadente ad contrariam partem lineæ GK. Nam si demittantur ad GF perpendicula CI, DK, erit IC ad HB ut EC ad EB, hoc est ut SC ad SB; & vicissim IC ad SC ut HB ad SB, seu GA ad SA. Et simili argumento probabitur esse KD ad SD in eadem ratione. Jacent ergo puncta B, C, D in Conisectione circa umbilicum S ita descripta, ut rectæ omnes ab umbilico S ad singula Sectionis puncta ductæ, sint ad perpendicula a punctis iisdem ad rectam GK demissa in data illa ratione.
Methodo haud multum dissimili hujus problematis solutionem tradit Clarissimus Geometra De la Hire, Conicorum suorum Lib. VIII. Prop. XXV.
SECT. V.
Inventio orbium ubi umbilicus neuter datur.
Lemma XVII.
Si a datæ conicæ sectionis puncto quovis P, ad Trapezii alicujus ABCD, in Conica illa sectione inscripti, latera quatuor infinite producta AB, CD, AC, DB, totidem rectæ PQ, PR, PS, PT in datis angulis ducantur, singulæ ad singula: rectangulum ductarum ad opposita duo latera PQ × PR, erit ad rectangulum ductarum ad alia duo latera opposita PS × PT in data ratione.
Cas. 1. Ponamus imprimis lineas ad opposita latera ductas parallelas esse alterutri reliquorum laterum, puta PQ & PR lateri AC, & PS ac PT lateri AB. Sintq; insuper latera duo ex oppositis, puta AC & BD, parallela. Et recta quæ bisecat parallela illa latera erit una ex diametris Conicæ sectionis, & bisecabit etiam RQ. Sit O punctum in quo RQ bisecatur, & erit PO ordinatim applicata ad diametrum illam. Produc PO ad K ut sit OK æqualis PO, & erit OK ordinatim applicata ad contrarias partes diametri. Cum igitur puncta A, B, P & K sint ad Conicam sectionem, & PR secet AB in dato angulo, erit (per Pro & 18 Lib. III Apollonii) rectangulum PQK ad rectangulum AQB in data ratione. Sed QK & PR æquales sunt, utpote æqualium OK, OP, & OQ, OR differentiæ, & inde etiam rectangula PQK & PQ × PR æqualia sunt; atq; adeo rectangulum PQ × PR est ad rectangulum AQB, hoc est ad rectangulum PS × PT in data ratione. Q. E. D.
Cas. 2. Ponamus jam Trapezii latera opposita AC & BD non esse parallela. Age Bd parallelam AC & occurrentem tum rectæ ST in t, tum Conicæ sectioni in d. Junge Cd secantem PQ in r, & ipsi PQ parallelam age DM secantem Cd in M & AB in N. Jam ob similia triangula BTt, DBN, est Bt seu PQ ad Tt ut DN ad NB. Sic & Rr est ad AQ seu PS ut DM ad AN. Ergo ducendo antecedentes in antecedentes & consequentes in consequentes, ut rectangulum PQ in Rr est ad rectangulum Tt in PS, ita rectangulum NDM est ad rectangulum ANB, & (per Cas. 1) ita rectangulum QPr est ad rectangulum SPt, ac divisim ita rectangulum QPR est ad rectangulum PS × PT. Q. E. D.
Cas. 3. Ponamus deniq; lineas quatuor PQ, PR, PS, PT non esse parallelas lateribus AC, AB, sed ad ea utcunq; inclinatas. Earum vice age Pq, Pr parallelas ipsi AC; & Ps, Pt parallelas ipsi AB; & propter datos angulos triangulorum PQq, PRr, PSs, PTt, dabuntur rationes PQ ad Pq, PR ad Pr, PS ad Ps & PT ad Pt, atq; adeo rationes compositæ PQ in PR ad Pq in Pr, & PS in PT ad Ps in Pt. Sed per superius demonstrata, ratio Pq in Pr ad Ps in Pt data est: Ergo & ratio PQ in PR ad PS in PT. Q. E. D.
Lemma XVIII.
Iisdem positis, si rectangulum ductarum ad opposita duo latera Trapezii PQ × PR sit ad rectangulum ductarum ad reliqua duo latera PS × PT in data ratione; punctum P, a quo lineæ ducuntur, tanget Conicam sectionem circa Trapezium descriptam.
Per puncta A, B, C, D & aliquod infinitorum punctorum P, puta p, concipe Conicam sectionem describi: dico punctum P hanc semper tangere. Si negas, junge AP secantem hanc Conicam sectionem alibi quam in P si fieri potest, puta in b. Ergo si ab his punctis p & b ducantur in datis angulis ad latera Trapezii rectæ pq, pr, ps, pt & bk, br, bſ, bd; erit ut bk × br ad bd × bſ ita (per Lemma XVII) pq × pr ad ps × pt & ita (per hypoth.) PQ × PR ad PS × PT. Est & propter similitudinem Trapeziorum bkAſ, PQAS, ut bk ad bſ ita PQ ad PS. Quare applicando terminos prioris propositionis ad terminos correspondentes hujus, erit br ad bd ut PR ad PT. Ergo Trapezia æquiangula Drbd, DRPT similia sunt, & eorum diagonales Db, DP propterea coincidunt. Incidit itaq; b in intersectionem rectarum AP, DP adeoq; coincidit cum puncto P. Quare punctum P, ubicunq; sumatur, incidit in assignatam Conicam sectionem. Q. E. D.
Corol. Hinc si rectæ tres PQ, PR, PS a puncto communi P ad alias totidem positione datas rectas AB, CD, AC, singulæ ad singulas, in datis angulis ducantur, sitq; rectangulum sub duabus ductis PQ × PR ad quadratum tertii, PS quad. in data ratione: punctum P, a quibus rectæ ducuntur, locabitur in sectione Conica quæ tangit lineas AB, CD in A & C & contra. Nam coeat linea BD cum linea AC manente positione trium AB, CD, AC; dein coeat etiam linea PT cum linea PS: & rectangulum PS × PT evadet PS quad. rectæq; AB, CD quæ curvam in punctis A & B, C & D secabant, jam Curvam in punctis illis coeuntibus non amplius secare possunt sed tantum tangent.
Scholium.
Nomen Conicæ sectionis in hoc Lemmate late sumitur, ita ut sectio tam rectilinea per verticem Coni transiens, quam circularis basi parallela includatur. Nam si punctum p incidit in rectam, qua quævis ex punctis quatuor A, B, C, D junguntur, Conica sectio vertetur in geminas rectas, quarum una est recta illa in quam punctum p incidit, & altera recta qua alia duo ex punctis quatuor junguntur. Si trapezii anguli duo oppositi simul sumpti æquentur duobus rectis, & lineæ quatuor PQ, PR, PS, PT ducantur ad latera ejus vel perpendiculariter vel in angulis quibusvis æqualibus, sitq; rectangulum sub duabus ductis PS × PR æquale rectangulo sub duabus aliis PS × PT, Sectio conica evadet Circulus. Idem fiet si lineæ quatuor ducantur in angulis quibusvis & rectangulum sub duabus ductis PQ × PR sit ad rectangulum sub aliis duabus PS × PT ut rectangulum sub sinubus angulorum S, T, in quibus duæ ultimæ PS, PT ducuntur, ad rectangulum sub sinubus angulorum Q, R, in quibus duæ primæ PQ, PR ducuntur. Cæteris in casibus Locus puncti P erit aliqua trium figurarum quæ vulgo nominantur Sectiones Conicæ. Vice autem Trapezii ABCD substitui potest quadrilaterum cujus latera duo opposita se mutuo instar diagonalium decussant. Sed & e punctis quatuor A, B, C, D possunt unum vel duo abire in infinitum, eoq; pacto latera figuræ quæ ad puncta illa convergunt, evadere parallela: quo in casu sectio conica transibit per cætera puncta, & in plagas parallelarum abibit in infinitum.
Lemma XIX.
Invenire punctum P, a quo si rectæ quatuor PQ, PR, PS, PT ad alias totidem positione datas rectas AB, CD, AC, BD singulæ ad singulas in datis angulis ducantur, rectangulum sub duabus ductis, PQ × PR, sit ad rectangulum sub aliis duabus, PS × PT, in data ratione.
Lineæ AB, CD, ad quas rectæ duæ PQ, PR, unum rectangulorum continentes ducuntur, conveniant cum aliis duabus positione datis lineis in punctis A, B, C, D. Ab eorum aliquo A age rectam quamlibet AH, in qua velis punctum P reperiri. Secet ea lineas oppositas BD, CD, nimirum BD in H & CD in I, & ob datos omnes angulos figuræ, dabuntur rationes PQ ad PA & PA ad PS, adeoq; ratio PQ ad PS. Auferendo hanc a data ratione PQ × PR ad PS × PT, dabitur ratio PR ad PT, & addendo datas rationes PI ad PR, & PT ad PH dabitur ratio PI ad PH atq; adeo punctum P. Q. E. I.
Corol. 1. Hinc etiam ad Loci punctorum infinitorum P punctum quodvis D tangens duci potest. Nam chorda PD ubi puncta P ac D conveniunt, hoc est, ubi AH ducitur per punctum D, tangens evadit. Quo in casu, ultima ratio evanescentium IP & PH invenietur ut supra. Ipsi igitur AD duc parallelam CF, occurrentem BD in F, & in ea ultima ratione sectam in E, & DE tangens erit, propterea quod CF & evanescens IH parallelæ sunt, & in E & P similiter sectæ.
Corol. 2. Hinc etiam Locus punctorum omnium P definiri potest. Per quodvis punctorum A, B, C, D, puta A, duc Loci tangentem AE, & per aliud quodvis punctum B duc tangenti parallelam BF occurrentem Loco in F. Invenietur autem punctum F per Lemma superius. Biseca BF in G, & acta AG diameter erit ad quam BG & FG ordinatim applicantur. Hæc AG occurrat Loco in H, & erit AH latus transversum, ad quod latus rectum est ut BGq. ad AGH. Si AG nullibi occurrit Loco, linea AH existente infinita, Locus erit Parabola & latus rectum ejus BGq. ÷ AG. Sin ea alicubi occurrit, Locus Hyperbola erit ubi puncta A & H sita sunt ad easdem partes ipsius G: & Ellipsis, ubi G intermedium est, nisi forte angulus AGB rectus sit & insuper BG quad. æquale rectangulo AGH, quo in casu circulus habebitur.
Atq; ita Problematis veterum de quatuor lineis ab Euclide incæpti & ab Apollonio continuati non calculus, sed compositio Geometrica, qualem Veteres quærebant, in hoc Corollario exhibetur.
Lemma XX.
Si parallelogrammum quodvis ASPQ angulis duobus oppositis A & P tangit sectionem quamvis Conicam in punctis A & P, & lateribus unius angulorum illorum infinite productis AQ, AS occurrit eidem sectioni Conicæ in B & C; a punctis autem occursuum B & C ad quintum quodvis sectionis Conicæ punctum D agantur rectæ duæ BD, CD occurrentes alteris duobus infinite productis parallelogrammi lateribus PS, PQ in T & R: erunt semper abscissæ laterum partes PR & PT ad invicem in data ratione. Et contra, si partes illæ abscissæ sunt ad invicem in data ratione, punctum D tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem.
Cas. 1. Jungantur BP, CP & a puncto D agantur rectæ duæ DG, DE, quarum prior DG ipsi AB parallela sit & occurrat PB, PQ, CA in H, I, G; altera DE parallela sit ipsi AC & occurrat PC, PS, AB in F, K, E: & erit (per Lemma XVII.) rectangulum DE × DF ad rectangulum DG × DH in ratione data. Sed est PQ ad DE seu IQ, ut PB ad HB, adeoq; ut PT ad DH; & vicissim PQ ad PT ut DE ad DH. Est & PR ad DF ut RC ad DC, adeoq; ut IG vel PS ad DG, & vicissim PR ad PS ut DF ad DG; & conjunctis rationibus fit rectangulum PQ × PR ad rectangulum PS × PT ut rectangulum DE × DF ad rectangulum DG × DH, atq; adeo in data ratione. Sed dantur PQ & PS & propterea ratio PR ad PT datur. Q. E. D.
Cas. 2. Quod si PR & PT ponantur in data ratione ad invicem, tunc simili ratiocinio regrediendo, sequetur esse rectangulum DE × DF ad rectangulum DG × DH in ratione data, adeoq; punctum D (per Lemma XVIII.) contingere Conicam sectionem transeuntem per puncta A, B, P, C. Q. E. D.
Corol. 1. Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicæ sectionis ad punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD evanescente, BT Tangens evadet; & CD ac BT coincident cum CB & Bt.
Corol. 2. Et vice versa si Bt sit Tangens, & ad quodvis Conicæ sectionis punctum D conveniant BD, CD erit PR ad PT ut Pr ad Pt. Et contra, si sit PR ad PT ut Pr ad Pt, convenient BD, CD ad Conicæ sectionis punctum aliquod D.
Corol. 3. Conica sectio non secat Conicam sectionem in punctis pluribus quam quatuor. Nam, si fieri potest, transeant duæ Conicæ sectiones per quinq; puncta A, B, C, D, P, easq; secet recta BD in punctis D, d, & ipsam PQ secet recta Cd in r. Ergo PR est ad PT ut Pr ad PT, hoc est, PR & Pr sibi invicem æquantur, contra Hypothesin.
Lemma XXI.
Si recta duæ mobiles & infinitæ BM, CM per data puncta B, C, ceu polos ductæ, concursu suo M describant tertiam positione datam rectam MN; & aliæ duæ infinitæ rectæ BD, CD cum prioribus duabus ad puncta illa data B, C, datos angulos MBD, MCD efficientes ducantur; dico quod hæ duæ BD, CD concursu suo D describent sectionem Conicam. Et vice versa, si rectæ BD, CD concursu suo D describant Sectionem Conicam per puncta B, C, A transeuntem, & harum concursus tunc incidit in ejus punctum aliquod A, cum alteræ duæ BM, CM coincidunt cum linea BC, punctum M continget rectam positione datam.
Nam in recta MN detur punctum N, & ubi punctum mobile M incidit in immotum N, incidat punctum mobile D in immotum P. Junge CN, BN, CP, BP, & a puncto P age rectas PT, PR occurrentes ipsis BD, CD in T & R, & facientes angulum BPT æqualem angulo BNM & angulum CPR æqualem angulo CNM. Cum ergo (ex Hypothesi) æquales sint anguli MBD, NBP, ut & anguli MCD, NCP: aufer communes NBD & MCP, & restabunt æquales NBM & PBT, NCM & PCR: adeoq; triangula NBM, PBT similia sunt, ut & triangula NCM, PCR. Quare PT est ad NM ut PB ad NB, & PR ad NM ut PC ad NC. Ergo PT & PR datam habent rationem ad NM, proindeq; datam rationem inter se, atq; adeo, per Lemma XX, punctum P (perpetuus rectarum mobilum BT & CR concursus) contingit sectionem Conicam. Q. E. D.
Et contra, si punctum D contingit sectionem Conicam transeuntem per puncta B, C, A, & ubi rectæ BM, CM coincidunt cum recta BC, punctum illud D incidit in aliquod sectionis punctum A; ubi vero punctum D incidit successive in alia duo quævis sectionis puncta p, P, punctum mobile M incidit successive in puncta immobilia n, N: per eadem n, N agatur recta nN, & hæc erit Locus perpetuus puncti illius mobilis M. Nam, si fieri potest, versetur punctum M in linea aliqua curva. Tanget ergo punctum D sectionem Conicam per puncta quinq; C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam curvam. Sed & ex jam demonstratis tanget etiam punctum D sectionem Conicam per eadem quinq; puncta C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam rectam. Ergo duæ sectiones Conicæ transibunt per eadem quinq; puncta, contra Corol. 3. Lem. XX. Igitur punctum M versari in linea curva absurdum est. Q. E. D.
Prop. XXII. Prob. XIV.
Trajectoriam per data quinq; puncta describere.
Dentur puncta quinq; A, B, C, D, P. Ab eorum aliquo A ad alia duo quævis B, C, quæ poli nominentur, age rectas AB, AC hisq; parallelas TPS, PRQ per punctum quartum P. Deinde a polis duobus B, C age per punctum quintum D infinitas duas BDT, CRD, novissime ductis TPS, PRQ (priorem priori & posteriorem posteriori) occurrentes in T & R. Deniq; de rectis PT, PR, acta recta tr ipsi TR parallela, abscinde quasvis Pt, Pr ipsis PT, PR proportionales, & si per earum terminos t, r & polos B, C actæ Bt, Cr concurrant in d, locabitur punctum illud d in Trajectoria quæsita. Nam punctum illud d (per Lem. XX) versatur in Conica Sectione per puncta quatuor A, B, P, C transeunte; & lineis Rr, Tt evanescentibus, coit punctum d cum puncto D. Transit ergo sectio Conica per puncta quinq; A, B, C, D, P. Q. E. D.
Idem aliter.
E punctis datis junge tria quævis A, B, C, & circum duo eorum B, C ceu polos, rotando angulos magnitudine datos ABC, ACB, applicentur crura BA, CA primo ad punctum D deinde ad punctum P, & notentur puncta M, N in quibus altera crura BL, CL casu utroq; se decussant. Agatur recta infinita MN, & rotentur anguli illi mobiles circum polos suos B, C, ea lege ut crurum BL, CL vel BM, CM intersectio, quæ jam sit m, incidat semper in rectam illam infinitam MN, & crurum BA, CA, vel BD, CD intersectio, quæ jam sit d, Trajectoriam quæsitam PADdB delineabit. Nam punctum d per Lem. XXI continget sectionem Conicam per puncta B, C transeuntem & ubi punctum m accedit ad puncta L, M, N, punctum d (per constructionem) accedet ad puncta A, D, P. Describetur itaq; sectio Conica transiens per puncta quinq; A, B, C, D, P. Q. E. F.
Corol. 1. Hinc rectæ expedite duci possunt quæ trajectoriam in punctis quibusvis datis B, C tangent. In casu utrovis accedat punctum d ad punctum C & recta Cd evadet tangens quæsita.
Corol. 2. Unde etiam Trajectoriarum centra, diametri & latera recta inveniri possunt, ut in Corollario secundo Lemmatis XIX.
Schol.
Constructio in casu priore evadet paulo simplicior jungendo BP, & in ea si opus est producta, capiendo Bp ad BP ut est PR ad PT, & per p agendo rectam infinitam pD ipsi SPT parallelam, inq; ea capiendo semper pD æqualem Pr, & agendo rectas BD, Cr concurrentes in d. Nam cum sint Pr ad Pt, PR ad PT, pB ad PB, pD ad Pt in eadem ratione, erunt pD & Pr semper æquales. Hac methodo puncta Trajectoriæ inveniuntur expeditissime, nisi mavis Curvam, ut in casu secundo, describere Mechanice.
Prop. XXIII. Prob. XV.
Trajectoriam describere quæ per data quatuor puncta transibit, & rectam continget positione datam.
Cas. 1. Dentur tangens HB, punctum contactus B, & alia tria puncta C, D, P. Junge BC, & agendo PS parallelam BH, & PQ parallelam BC, comple parallelogrammum BSPQ. Age BD secantem SP in T, & CD secantem PQ in R. Deniq; agendo quamvis tr ipsi TR parallelam, de PQ, PS abscinde Pr, Pt ipsis PR, PT proportionales respective; & actarum Cr, Bt concursus d (per Corol. 2. Lem. XX) incidet semper in Trajectoriam describendam.
Idem aliter.
Revolvatur tum angulus magnitudine datus CBH circa polum B, tum radius quilibet rectilineus & utrinq; productus DC circa polum C. Notentur puncta M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris alterius BH concursus cum radio delineabit Trajectoriam quæsitam.
Nam si in constructionibus Problematis superioris accedat punctum A ad punctum B, lineæ CA & CB coincident, & linea AB in ultimo suo situ fiet tangens BH, atq; adeo constructiones ibi positæ evadent eædem cum constructionibus hic descriptis. Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B. Q. E. F.
Cas. 2. Dentur puncta quatuor B, C, D, P extra tangentem HI sita. Junge bina BD, CP concurrentia in G, tangentiq; occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus. Nam si rectæ PI parallela HX trajectoriam secet in punctis quibusvis X & Y: erit (ex Conicis) HA quad. ad AI quad. ut rectangulum XHY ad rectangulum BHD (seu rectangulum CGP ad rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim. Invento autem contactus puncto A, describetur Trajectoria ut in casu primo. Q. E. F. Capi autem potest punctum A vel inter puncta H & I, vel extra; & perinde Trajectoria dupliciter describi.
Prop. XXIV. Prob. XVI.
Trajectoriam describere quæ transibit per data tria puncta & rectas duas positione datas continget.
Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca in R & S, ut sit HR ad KR ut est media proportionalis inter BH & HD ad mediam proportionalem inter BK & KD; & IS ad LS ut est media proportionalis inter CI & ID ad mediam proportionalem inter CL & LD. Age RS secantem tangentes in A & P, & erunt A & P puncta contactus. Nam si A & P sint Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L quodvis I agatur recta IY tangenti KL parallela & occurrens curvæ in X & Y, & in ea sumatur IZ media proportionalis inter IX & IY: erit, ex Conicis, rectangulum XIY (seu IZ quad.) ad LP quad. ut rectangulum CID ad rectangulum CLD; id est (per constructionem) ut SI quad. ad SL quad. atq; adeo IZ ad LP ut SI ad SL. Jacent ergo puncta S, P, Z in una recta. Porro tangentibus concurrentibus in G, erit (ex Conicis) rectangulum XIY (seu IZ quad.) ad IA quad. ut GP quad. ad GA quad., adeoq; IZ ad IA ut GP ad GA. Jacent ergo puncta P, Z & A in una recta, adeoq; puncta S, P & A sunt in una recta. Et eodem argumento probabitur quod puncta R, P & A sunt in una recta. Jacent igitur puncta contactus A & P in recta SR. Hisce autem inventis, Trajectoria describetur ut in casu primo Problematis superioris. Q. E. F.
Lemma XXII.
Figuras in alias ejusdem generis figuras mutare.
Transmutanda sit figura quævis HGI. Ducantur pro lubitu rectæ duæ parallelæ AO, BL tertiam quamvis positione datam AB secantes in A & B, & a figuræ puncto quovis G, ad rectam AB ducatur GD, ipsi OA parallela. Deinde a puncto aliquo O in linea OA dato ad punctum D ducatur recta OD, ipsi BL occurrens in d; & a puncto occursus erigatur recta gd, datum quemvis angulum cum recta BL continens, atq; eam habens rationem ad Od quam habet GD ad OD; & erit g punctum in figura nova hgi puncto G respondens. Eadem ratione puncta singula figuræ primæ dabunt puncta totidem figuræ novæ. Concipe igitur punctum G motu continuo percurrere puncta omnia figuræ primæ, & punctum g motu itidem continuo percurret puncta omnia figuræ novæ & eandem describet. Distinctionis gratia nominemus DG ordinatam primam, dg ordinatam novam; BD abscissam primam, Bd abscissam novam; O polum, OD radium abscindentem, OA radium ordinatum primum & Oa (quo parallelogrammum OABa completur) radium ordinatum novum.
Dico jam quod si punctum G tangit rectam lineam positione datam, punctum g tanget etiam lineam rectam positione datam. Si punctum G tangit Conicam sectionem, punctum g tanget etiam conicam sectionem. Conicis sectionibus hic circulum annumero. Porro si punctum G tangit lineam tertii ordinis Analytici, punctum g tanget lineam tertii itidem ordinis; & sic de curvis lineis superiorum ordinum: Lineæ duæ erunt ejusdem semper ordinis Analytici quas puncta G, g tangunt. Etenim ut est ad ad OA ita sunt Od ad OD, dg ad DG, & AB ad AD; adeoq; AD æqualis est OA × AB ÷ ad & DG æqualis est OA × dg ÷ ad. Jam si punctum D tangit rectam lineam, atq; adeo in æquatione quavis, qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatæ illæ AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac æquatione OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur æquatio nova, in qua abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent, atq; adeo quæ designat lineam rectam. Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in æquatione prima, ascendent itidem ad & dg ad duas in æquatione secunda. Et sic de tribus vel pluribus dimensionibus. Indeterminatæ ad, dg in æquatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineæ, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.
Dico præterea quod si recta aliqua tangat lineam curvam in figura prima; hæc recta translata tanget lineam curvam in figura nova: & contra. Nam si Curvæ puncta quævis duo accedunt ad invicem & coeunt in figura prima, puncta eadem translata coibunt in figura nova, atq; adeo rectæ, quibus hæc puncta junguntur simul, evadent curvarum tangentes in figura utraq;. Componi possent harum assertionum Demonstrationes more magis Geometrico. Sed brevitati consulo.
Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum intersectiones transferre, & per easdem in figura nova lineas rectas ducere. Sin curvilineam transmutare oportet, transferenda sunt puncta, tangentes & aliæ rectæ quarum ope Curva linea definitur. Inservit autem hoc Lemma solutioni difficiliorum Problematum, transmutando figuras propositas in simpliciores. Nam rectæ quævis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quæ per concursum convergentium transit; id adeo quia concursus ille hoc pacto abit in infinitum, lineæ autem parallelæ sunt quæ ad punctum infinite distans tendunt. Postquam autem Problema solvitur in figura nova, si per inversas operationes transmutetur hæc figura in figuram primam, habebitur Solutio quæsita.
Utile est etiam hoc Lemma in solutione Solidorum problematum. Nam quoties duæ sectiones conicæ obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum. Recta item & sectio Conica in constructione planorum problematum vertuntur in rectam & circulum.
Prop. XXV. Prob. XVII.
Trajectoriam describere quæ per data duo puncta transibit & rectas tres continget positione datas.
Per concursum tangentium quarumvis duarum cum se invicem, & concursum tangentis tertiæ cum recta illa, quæ per puncta duo data transit, age rectam infinitam; eaq; adhibita pro radio ordinato primo, transmutetur figura, per Lemma superius, in figuram novam. In hac figura tangentes illæ duæ evadent parallelæ, & tangens tertia fiet parallela rectæ per puncta duo transeunti. Sunto hi, kl tangentes duæ parallelæ, ik tangens tertia, & hl recta huic parallela transiens per puncta illa a, b, per quæ Conica sectio in hac figura nova transire debet, & parallelogrammum hikl complens. Secentur rectæ hi, ik, kl in c, d & e, ita ut sit hc ad latus quadratum rectanguli ahb, ic ad id, & ke ad kd ut est summa rectarum hi & kl ad summam trium linearum quarum prima est recta ik, & alteræ duæ sunt latera quadrata rectangulorum ahb & alb: Et erunt c, d, e puncta contactus. Etenim, ex Conicis, sunt hc quadratum ad rectangulum ahb, & ic quadratum ad id quadratum, & ke quadratum ad kd quadratum, & el quadratum ad alb rectangulum in eadem ratione, & propterea hc ad latus quadratum ipsius ahb, ic ad id, ke ad kd & el ad latus quadratum ipsius alb sunt in dimidiata illa ratione, & composite, in data ratione omnium antecedentium hi & kl ad omnes consequentes, quæ sunt latus quadratum rectanguli ahb & recta ik & latus quadratum rectanguli alb. Habentur igitur ex data illa ratione puncta contactus c, d, e, in figura nova. Per inversas operationes Lemmatis novissimi transferantur hæc puncta in figuram primam & ibi, per casum primum Problematis XIV, describetur Trajectoria. Q. E. F. Cæterum perinde ut puncta a, b jacent vel inter puncta h, l, vel extra, debent puncta c, d, e vel inter puncta h, i, k, l capi, vel extra. Si punctorum a, b alterutrum cadit inter puncta h, l, & alterum extra, Problema impossibile est.
Prop. XXVI. Prob. XVIII.
Trajectoriam describere quæ transibit per punctum datum & rectas quatuor positione datas continget.
Ab intersectione communi duarum quarumlibet tangentium ad intersectionem communem reliquarum duarum agatur recta infinita, & eadem pro radio ordinato primo adhibita, transmutetur figura (per Lem. XXII) in figuram novam, & Tangentes binæ, quæ ad radium ordinatum concurrebant, jam evadent parallelæ. Sunto illæ hi & kl, ik & hl continentes parallelogrammum hikl. Sitq; p punctum in hac nova figura, puncto in figura prima dato respondens. Per figuræ centrum O agatur pq, & existente Oq æquali Op erit q punctum alterum per quod sectio Conica in hac figura nova transire debet. Per Lemmatis XXII operationem inversam transferatur hoc punctum in figuram primam, & ibi habebuntur puncta duo per quæ Trajectoria describenda est. Per eadem vero describi potest Trajectoria illa per Prob. XVII. Q. E. F.
Lemma XXIII.
Si rectæ duæ positione datæ AC, BD ad data puncta A, B terminentur, datamq; habeant rationem ad invicem, & recta CD, qua puncta indeterminata C, D junguntur secetur in ratione data in K: dico quod punctum K locabitur in recta positione data.
Concurrant enim rectæ AC, BD in E, & in BE capiatur BG ad AE ut est BD ad AC, sitq; FD æqualis EG, & erit EC ad GD, hoc est ad EF ut AC ad BD, adeoq; in ratione data, & propterea dabitur specie triangulum EFC. Secetur CF in L in ratione CK ad CD, & dabitur etiam specie triangulum EFL, proindeq; punctum L locabitur in recta EL positione data. Junge LK, & ob datam FD & datam rationem LK ad FD, dabitur LK. Huic æqualis capiatur EH, & erit ELKH parallelogrammum. Locatur igitur punctum K in parallelogrammi latere positione dato HK. Q. E. D.
Lemma XXIV.
Si rectæ tres tangant quamcunq; conisectionem, quarum duæ parallelæ sint ac dentur positione; dico quod sectionis semidiameter hisce duabus parallela, sit media proportionalis inter harum segmenta, punctis contactum & tangenti tertiæ interjecta.
Sunto AF, GB parallelæ duæ Conisectionem ADB tangentes in A & B; EF recta tertia Conisectionem tangens in I, & occurrens prioribus tangentibus in F & G; sitq; CD semidiameter Figuræ tangentibus parallela: Dico quod AF, CD, BG sunt continue proportionales.
Nam si diametri conjugatæ AB, DM tangenti FG occurrant in E & H, seq; mutuo secent in C, & compleatur parallelogrammum IKCL; erit ex natura sectionum Conicarum, ut EC ad CA ita CA ad LC, & ita divisim EC - CA ad CA - CL seu EA ad AL, & composite EA ad EA + AL seu EL ut EC ad EC + CA seu EB; adeoq; (ob similitudinem triangulorum EAF, ELI, ECH, EBG) AF ad LI ut CH ad BG. Est itidem ex natura sectionum Conicarum LI seu CK ad CD ut CD ad CH atq; adeo ex æquo perturbate AF ad CD ut CD ad BG. Q. E. D.
Corol. 1. Hinc si tangentes duæ FG, PQ tangentibus parallelis AF, BG occurrant in F & G, P & Q, seq; mutuo secent in O, erit (ex æquo perturbate) AF ad BQ ut AP ad BG, & divisim ut FP ad GQ, atq; adeo ut FO ad OG.
Corol. 2. Unde etiam rectæ duæ PG, FQ per puncta P & G, F & Q ductæ, concurrent ad rectam ACB per centrum figuræ & puncta contactuum A, B transeuntem.
Lemma XXV.
Si parallelogrammi latera quattuor infinite producta tangant sectionem quamcunq; Conicam & abscindantur ad tangentem quamvis quintam; sumantur autem abscisse terminate ad angulos oppositos parallelogrammi: dico quod abscissa unius lateris ad latus illud, ut pars lateris contermini inter punctum contactus & latus tertium, ad abscissam lateris hujus contermini.
Tangant parallelogrammi MIKL latera quatuor ML, IK, KL, MI sectionem Conicam in A, B, C, D, & secet tangens quinta FQ hæc latera in F, Q, H & E: dico quod sit ME ad MI ut BK ad KQ & KH ad KL ut AM ad MF. Nam per Corollarium Lemmatis superioris, est ME ad EI ut AM seu BK ad BQ, & componendo ME ad MI ut BK ad KQ. Q. E. D. Item KH ad HL ut BK seu AM ad AF, & dividendo KH ad KL ut AM ad MF. Q. E. D.
Corol. 1. Hinc si parallelogrammum IKLM datur, dabitur rectangulum KQ × ME, ut & huic æquale rectangulum KH × MF. Æquantur enim rectangula illa ob similitudinem triangulorum KQH, MFE.
Corol. 2. Et si sexta ducatur tangens eq tangentibus KI, MI occurrens in e & q, rectangulum KQ × ME æquabitur rectangulo Kq × Me, eritq; KQ ad Me ut Kq ad ME, & divisim ut Qq ad Ee.
Corol. 3. Unde etiam si Eq, eQ jungantur & bisecentur, & recta per puncta bisectionum agatur, transibit hæc per centrum Sectionis Conicæ. Nam cum sit Qq ad Ee ut KQ ad Me, transibit eadem recta per medium omnium Eq, eQ, MK; (per Lemma XXIII) & medium rectæ MK est centrum Sectionis.
Prop. XXVII. Prob. XIX.
Trajectoriam describere quæ rectas quinq; positione datas continget.
Dentur positione tangentes ABG, BCF, GCD, FDE, EA. Figuræ quadrilateræ sub quatuor quibusvis contentæ ABFE diagonales AF, BE biseca, & (per Cor. 3. Lem. XXV) recta per puncta bisectionum acta transibit per centrum Trajectoriæ. Rursus figuræ quadrilateræ BGDF, sub alijs quibusvis quatuor tangentibus contentæ, diagonales (ut ita dicam) BD, GF biseca, & recta per puncta bisectionum acta transibit per centrum sectionis. Dabitur ergo centrum in concursu bisecantium. Sit illud O. Tangenti cuivis BC parallelam age KL, ad eam distantiam ut centrum O in medio inter parallelas locetur, & acta KL tanget trajectoriam describendam. Secet hæc tangentes alias quasvis duas CD, FDE in L & K. Per tangentium non parallelarum CL, FK cum parallelis CF, KL concursus C & K, F & L age CK, FL concurrentes in R, & recta OR ducta & producta secabit tangentes parallelas CF, KL in punctis contactuum. Patet hoc per Corol. 2. Lem. XXIV. Eadem methodo invenire licet alia contactuum puncta, & tum demum per Casum 1. Prob. XIV. Trajectoriam describere. Q. E. F.
Schol.
Problemata, ubi dantur Trajectoriarum vel centra vel Asymptoti includuntur in præcedentibus. Nam datis punctis & tangentibus una cum centro, dantur alia totidem puncta aliæq; tangentes a centro ex altera ejus parte æqualiter distantes. Asymptotos autem pro tangente habenda est, & ejus terminus infinite distans (si ita loqui fas sit) pro puncto contactus. Concipe tangentis cujusvis punctum contactus abire in infinitum, & tangens vertetur in Asymptoton, atq; constructiones Problematis XV & Casus primi Problematis XIV vertentur in constructiones Problematum ubi Asymptoti dantur.
Postquam Trajectoria descripta est, invenire licet axes & umbilicos ejus hac methodo. In constructione & Figura Lemmatis XXI, fac ut angulorum mobilium PBN, PCN crura BP, CP quorum concursu Trajectoria describebatur sint sibi invicem parallela, eumq; servantia situm revolvantur circa polos suos B, C in figura illa. Interea vero describant altera angulorum illorum crura CN, BN concursu suo K vel k, circulum IBKGC. Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulæ proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori; & contrarium eveniet si crura eadem concurrunt ad punctum remotius L. Unde si detur Trajectoriæ centrum, dabuntur axes. Hisce autem datis, umbilici sunt in promptu.
Axium vero quadrata sunt ad invicem ut KH ad LH, & inde facile est Trajectoriam specie datam per data quatuor puncta describere. Nam si duo ex punctis datis constituantur poli C, B, tertium dabit angulos mobiles PCK, PBK. Tum ob datam specie Trajectoriam, dabitur ratio OH ad OK, centroq; O & intervallo OH describendo circulum, & per punctum quartum agendo rectam quæ circulum illum tangat, dabitur regula MN cujus ope Trajectoria describatur. Unde etiam vicissim Trapezium specie datum (si casus quidam impossibiles excipiantur) in data quavis sectione Conica inscribi potest.
Sunt & alia Lemmata quorum ope Trajectoriæ specie datæ, datis punctis & tangentibus, describi possunt. Ejus generis est quod, si recta linea per punctum quodvis positione datum ducatur, quæ datam Conisectionem in punctis duobus intersecet, & intersectionum intervallum bisecetur, punctum bisectionis tanget aliam Conisectionem ejusdem speciei cum priore, atq; axes habentem prioris axibus parallelos. Sed propero ad magis utilia.
Lemma XXVI.
Trianguli specie & magnitudine dati tres angulos ad rectas totidem positione datas, quæ non sunt omnes parallelæ, singulos ad singulas ponere.
Dantur positione tres rectæ infinitæ AB, AC, BC, & oportet triangulum DEF ita locare, ut angulus ejus D lineam AB, angulus E lineam AC, & angulus F lineam BC tangat. Super DE, DF & EF describe tria circulorum segmenta DRE, DGF, EMF, quæ capiant angulos angulis BAC, ABC, ACB æquales respective. Describantur autem hæc segmenta ad eas partes linearum DE, DF, EF ut literæ DRED eodem ordine cum literis BACB, literæ DGFD eodem cum literis ABCA, & literæ EMFE eodem cum literis ACBA in orbem redeant: deinde compleantur hæc segmenta in circulos. Secent circuli duo priores se mutuo in G, sintq; centra eorum P & Q. Junctis GP, PQ, cape Ga ad AB ut est GP ad PQ, & centro G, intervallo Ga describe circulum, qui secet circulum primum DGE in a. Jungatur tum aD secans circulum secundum DFG in b, tum aE secans circulum tertium GEc in c. Et compleatur figura ABCdef similis & æqualis figuræ abcDEF. Dico factum.
Agatur enim Fc ipsi aD occurrens in n. Jungantur aG, bG, PD, QD & producatur PQ ad R. Ex constructione est angulus EaD æqualis angulo CAB, & angulus EcF æqualis angulo ACB, adeoq; triangulum anc triangulo ABC æquiangulum. Ergo angulus anc seu FnD angulo ABC, adeoq; angulo FbD æqualis est, & propterea punctum n incidit in punctum b. Porro angulus GPQ, qui dimidius est anguli ad centrum GPD, æqualis est angulo ad circumferentiam GaD; & angulus GQR, qui dimidius est complementi anguli ad centrum GQD, æqualis est angulo ad circumferentiam GbD, adeoq; eorum complementa PQG, abG æquantur, suntq; ideo triangula GPQ, Gab similia, & Ga est ad ab ut GP ad PQ; id est (ex constructione) ut Ga ad AB. Æquantur itaq; ab & AB, & propterea triangula abc, ABC, quæ modo similia esse probavimus, sunt etiam æqualia. Unde cum tangant insuper trianguli DEF anguli D, E, F trianguli abc latera ab, ac, bc respective, compleri potest figura ABCdef figuræ abcDEF similis & æqualis, atq; eam complendo solvetur Problema. Q. E. F.
Corol. Hinc recta duci potest cujus partes longitudine datæ rectis tribus positione datis interjacebunt. Concipe Triangulum DEF, puncto D ad latus EF accedente, & lateribus DE, DF in directum positis, mutari in lineam rectam, cujus pars data DE, rectis positione datis AB, AC, & pars data DF rectis positione datis AB, BC interponi debet; & applicando constructionem præcedentem ad hunc casum solvetur Problema.
Prop. XXVIII. Prob. XX.
Trajectoriam specie & magnitudine datam describere, cujus partes datæ rectis tribus positione datis interjacebunt.
Describenda sit Trajectoria quæ sit similis & æqualis lineæ curvæ DEF, quæq; a rectis tribus AB, AC, BC positione datis, in partes datis hujus partibus DE & EF similes & æquales secabitur.
Age rectas DE, EF, DF, & trianguli hujus DEF pone angulos D, E, F ad rectas illas positione datas: (per Lem. XXVI) Dein circa triangulum describe Trajectoriam curvæ DEF similem & æqualem. Q. E. F.
Lemma XXVII.
Trapezium specie datum describere cujus anguli ad rectas quatuor positione datas (quæ neq; omnes parallelæ sunt, neq; ad commune punctum convergunt) singuli ad singulas consistent.
Dentur positione rectæ quatuor ABC, AD, BD, CE, quarum prima secet secundam in A, tertiam in B, & quartam in C: & describendum sit Trapezium fghi quod sit Trapezio FGHI simile, & cujus angulus f, angulo dato F æqualis, tangat rectam ABC cæteriq; anguli g, h, i cæteris angulis datis G, H, I æquales tangant cæteras lineas AD, BD, CE respective. Jungatur FH, & super FG, FH, FI describantur totidem circulorum segmenta FSG, FTH, FVI; quorum primum FSG capiat angulum æqualem angulo BAD, secundum FTH capiat angulum æqualem angulo CBE; ac tertium FVI capiat angulum æqualem angulo ACE. Describi autem debent segmenta ad eas partes linearum FG, FH, FI, ut literarum FSGF idem sit ordo circularis qui literarum BADB, utq; literæ FTHF eodem ordine cum literis CBEC, & literæ FVIF eodem cum literis ACEA in orbem redeant. Compleantur segmenta in circulos, sitq; P centrum circuli primi FSG, & Q centrum secundi FTH. Jungatur & utrinq; producatur PQ, & in ea capiatur QR in ea ratione ad PQ quam habet BC ad AB. Capiatur autem QR ad eas partes puncti Q ut literarum P, Q, R idem sit ordo circularis atq; literarum A, B, C: centroq; R & intervallo RF describatur circulus quartus FNc secans circulum tertium FVI in c. Jungatur Fc secans circulum primum in a & secundum in b. Agantur aG, bH, cI, & figuræ abcFGHI similis constituatur figura ABCfghi: Eritq; Trapezium fghi illud ipsum quod constituere oportuit.
Secent enim circuli duo primi FSG, FTH se mutuo in K. Jungantur PK, QK, RK, aK, bK, cK & producatur QP ad L. Anguli ad circumferentias FaK, FbK, FcK, sunt semisses angulorum FPK, FQK, FRK ad centra, adeoq; angulorum illorum dimidiis LPK, LQK, LRK æquales. Est ergo figura PQRK figuræ abcK æquiangula & similis, & propterea ab est ad bc ut PQ ad QR, id est ut AB ad BC. Angulis insuper FaG, FbH, FcI æquantur fAg, fBh, fCi per constructionem. Ergo figuræ abcFGHI figura similis ABCfghi compleri potest. Quo facto Trapezium fghi constituetur simile Trapezio FGHI & angulis suis f, g, h, i tanget rectas AB, AD, BD, CE. Q. E. F.
Corol. Hinc recta duci potest cujus partes, rectis quatuor positione datis dato ordine interjectæ, datam habebunt proportionem ad invicem. Augeantur anguli FGH, GHI usq; eo, ut rectæ FG, GH, HI in directum jaceant, & in hoc casu construendo Problema, ducetur recta fghi cujus partes fg, gh, hi, rectis quatuor positione datis AB & AD, AD & BD, BD & CE interjectæ, erunt ad invicem ut lineæ FG, GH, HI, eundemq; servabunt ordinem inter se. Idem vero sic fit expeditius.
Producantur AB ad K, & BD ad L, ut sit BK ad AB ut HI ad GH; & DL ad BD ut GI ad FG; & jungatur KL occurrens rectæ CE in i. Producatur iL ad M, ut sit LM ad iL ut GH ad HI, & agatur tum MQ ipsi LB parallela rectæq; AD occurrens in g, tum gi secans AB, BD in f, h. Dico factum.
Secet enim Mg rectam AB in Q, & AD rectam KL in S, & agatur AP, quæ sit ipsi BD parallela & occurrat iL in P, & erunt Mg ad Lh (Mi ad Li, gi ad hi, AK ad BK) & AP ad BL in eadem ratione. Secetur DL in R ut sit DL ad RL in eadem illa ratione, & ob proportionales gS ad gM, AS ad AP & DS ad DL, erit ex æquo ut gS ad Lh ita AS ad BL & DS ad RL; & mixtim, BL - RL ad Lh - BL ut AS - DS ad gS - AS. Id est BR ad Bh ut AD ad Ag, adeoq; ut BD ad gQ. Et vicissim BR ad BD ut Bh ad gQ seu fh ad fg. Sed ex constructione est BR ad BD ut FH ad FG. Ergo fh est ad fg ut FH ad FG. Cum igitur sit etiam ig ad ih ut Mi ad Li, id est, ut IG ad IH, patet lineas FI, fi in g & h, G & H similiter sectas esse. Q. E. F.
In constructione Corollarii hujus postquam ducitur LK secans CE in i, producere licet iE ad V, ut sit EV ad iE ut FH ad HI, & agere Vf parallelam ipsi BD. Eodem recidit si centro i, intervallo IH describatur circulus secans BD in X, producatur iX ad Y, ut sit iY æqualis IF, & agatur Yf ipsi BD parallela.
Prop. XXIX. Prob. XIX.
Trajectoriam specie datam describere, quæ a rectis quatuor positione datis in partes secabitur, ordine, specie & proportione datas.
Describenda sit Trajectoria fghi, quæ similis sit lineæ curvæ FGHI, & cujus partes fg, gh, hi illius partibus FG, GH, HI similes & proportionales, rectis AB & AD, AD & BD, BD & EC positione datis, prima primis, secunda secundis, tertia tertiis interjaceant. Actis rectis FG, GH, HI, FI, describatur Trapezium fghi quod sit Trapezio FGHI simile & cujus anguli f, g, h, i tangant rectas illas positione datas AB, AD, BD, CE singuli singulas dicto ordine. Dein (per Lem. XXVII) circa hoc Trapezium describatur Trajectoria curvæ lineæ FGHI consimilis.
Scholium.
Construi etiam potest hoc Problema ut sequitur. Junctis FG, GH, HI, FI produc GF ad V, jungeq; FH, IG, & angulis FGH, VFH fac angulos CAK, DAL æquales. Concurrant AK, AL cum recta BD in K & L, & inde aguntur KM, LN, quarum KM constituat angulum AKM æqualem angulo GHI, sitq; ad AK ut est HI ad GH; & LN constituat angulum ALN æqualem angulo FHI, sitq; ad AL ut HI ad FH. Ducantur autem AK, KM, AL, LN ad eas partes linearum AD, AK, AL, ut literæ CAKMC, ALK, DALND eodem ordine cum literis FGHIF in orbem redeant, & acta MN occurrat rectæ CE in i. Fac angulum iEP æqualem angulo IGF, sitq; PE ad Ei ut FG ad GI; & per P agatur QPf, quæ cum recta AED contineat angulum PQE æqualem angulo FIG, rectæq; AB occurrat in f, & jungatur fi. Agantur autem PE & PQ ad eas partes linearum CE, PE, ut literarum PEiP & PEQP idem sit ordo circularis qui literarum FGHIF, & si super linea fi eodem quoq; literarum ordine constituatur Trapezium fghi Trapezio FGHI simile, & circumscribatur Trajectoria specie data, solvetur Problema.
Hactenus de orbibus inveniendis. Superest ut motus corporum orbibus inventis determinemus.
SECT. VI.
De inventione motuum in Orbibus datis.
Prop. XXX. Prob. XXII.
Corporis in data Trajectoria Parabolica moventis, invenire locum ad tempus assignatum.
Sit S umbilicus & A vertex principalis Parabolæ, sitq; 4AS × M area Parabolica APS, quæ radio SP, vel post excessum corporis de vertice descripta fuit, vel ante appulsum ejus ad verticem describenda est. Innotescit area illa ex tempore ipsi proportionali. Biseca AS in G, erigeq; perpendiculum GH æquale 3M, & circulus centro H, intervallo HS descriptus secabit Parabolam in loco quæsito P. Nam demissa ad axem perpendiculari PO, est HGq. + GSq. (= HSq. = HPq. = GOq. + PO - HGq.) = GOq. + HGq. - 2HG × PO + POq. Et deleto utrinq; HGq. fiet GSq. = GOq. - 2HG × PO + POq. seu 2HG × PO (= GOq. + POq. - GSq. = AOq. - 2GAO + POq.) = AOq. + ¾POq. Pro AOq. scribe AO × POq. ÷ 4AS, & applicatis terminis omnibus ad 3PO, ductisq; in 2AS, fiet /3GH × AS (= /6AO × PO + ½AS × PO = {AO + 3AS} ÷ 6 × PO = {4AO - 3SO} ÷ 6 × PO = areæ APO - SPO) = areæ APS. Sed GH erat 3M, & inde /3HG × AS est 4AS × M. Ergo area APS æqualis est 4AS × M. Q. E. D.
Corol. 1. Hinc GH est ad AS, ut tempus quo corpus descripsit arcum AP ad tempus quo corpus descripsit arcum inter verticem A & perpendiculum ad axem ab umbilico S erectum.
Corol. 2. Et circulo ASP per corpus movens perpetuo transeunte, velocitas puncti H est ad velocitatem quam corpus habuit in vertice A, ut 3 ad 8; adeoq; in ea etiam ratione est linea GH ad lineam rectam quam corpus tempore motus sui ab A ad P, ea cum velocitate quam habuit in vertice A, describere posset.
Corol. 3. Hinc etiam viceversa inveniri potest tempus quo corpus descripsit arcum quemvis assignatum AP. Junge AP & ad medium ejus punctum erige perpendiculum rectæ GH occurrens in H.
Lemma XXVIII.
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per æquationes numero terminorum ac dimensionum finitas generaliter inveniri.
Intra Ovalem detur punctum quodvis, circa quod ceu polum revolvatur perpetuo linea recta, & interea in recta illa exeat punctum mobile de polo, pergatq; semper ea cum velocitate, quæ sit ut rectæ illius intra Ovalem longitudo. Hoc motu punctum illud describet Spiralem gyris infinitis. Jam si area Oualis per finitam æquationem inveniri potest, invenietur etiam per eandem æquationem distantia puncti a polo; quæ huic areæ proportionalis est, adeoq; omnia Spiralis puncta per æquationem finitam inveniri possunt: & propterea rectæ cujusvis positione datæ intersectio cum spirali inveniri etiam potest per æquationem finitam. Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & æquatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq; ascendit ad tot dimensiones quot sunt intersectiones. Quoniam circuli duo se mutuo secant in punctis duobus, intersectio una non invenitur nisi per æquationem duarum dimensionum, qua intersectio altera etiam inveniatur. Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per æquationem quatuor dimensionum, qua omnes simul inveniantur. Nam si intersectiones illæ seorsim quærantur, quoniam eadem est omnium lex & conditio, idem erit calculus in casu unoquoq; & propterea eadem semper conclusio, quæ igitur debet omnes intersectiones simul complecti & indifferenter exhibere. Unde etiam intersectiones Sectionum Conicarum & curvarum tertiæ potestatis, eo quod sex esse possunt, simul prodeunt per æquationes sex dimensionum, & intersectiones duarum curvarum tertiæ potestatis, quia novem esse possunt, simul prodeunt per æquationes dimensionum novem. Id nisi necessario fieret, reducere liceret Problemata omnia Solida ad Plana, & plusquam solida ad solida. Eadem de causa intersectiones binæ rectarum & sectionum Conicarum prodeunt semper per æquationes duarum dimensionum; ternæ rectarum & curvarum tertiæ potestatis per æquationes trium, quaternæ rectarum & curvarum quartæ potestatis per æquationes dimensionum quatuor, & sic in infinitum. Ergo intersectiones numero infinitæ rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt æquationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi. Si a polo in rectam illam secantem demittatur perpendiculum, & perpendiculum una cum secante revolvatur circa polum, intersectiones spiralis transibunt in se mutuo, quæq; prima erat seu proxima, post unam revolutionem secunda erit, post duas tertia, & sic deinceps: nec interea mutabitur æquatio nisi pro mutata magnitudine quantitatum per quas positio secantis determinatur. Unde cum quantitates illæ post singulas revolutiones redeunt ad magnitudines primas, æquatio redibit ad formam primam, adeoq; una eademq; exhibebit intersectiones omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi possunt. Nequit ergo intersectio rectæ & spiralis per æquationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem æquationem generaliter exhiberi.
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissæ proportionale, probari potest quod longitudo perimetri nequit per finitam æquationem generaliter exhiberi.
Corollarium.
Hinc area Ellipseos, quæ radio ab umbilico ad corpus mobile ducto describitur, non prodit ex dato tempore, per æquationem finitam; & propterea per descriptionem Curuarum Geometrice rationalium determinari nequit. Curvas Geometrice rationales appello quarum puncta omnia per longitudines æquationibus definitas, id est, per longitudinum rationes complicatas, determinari possunt; cæterasq; (ut Spirales, Quadratrices, Trochoides) Geometrice irrationales. Nam longitudines quæ sunt vel non sunt ut numerus ad numerum (quemadmodum in decimo Elementorum) sunt Arithmetice rationales vel irrationales. Aream igitur Ellipseos tempori proportionalem abscindo per Curvam Geometrice irrationalem ut sequitur.
Prop. XXXI. Prob. XXIII.
Corporis in data Trajectoria Elliptica moventis invenire locum ad tempus assignatum.
Ellipseos APB sit A vertex principalis, S umbilicus, O centrum, sitq; P corporis locus inveniendus. Produc OA ad G ut sit OG ad OA ut OA ad OS. Erige perpendiculum GH, centroq; O & intervallo OG describe circulum EFG, & super regula GH, ceu fundo, progrediatur rota GEF revolvendo circa axem suum, & interea puncto suo A describendo Trochoidem ALI. Quo facto, cape GK in ratione ad rotæ perimetrum GEFG, ut est tempus quo corpus progrediendo ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi. Erigatur perpendiculum KL occurrens Trochoidi in L, & acta LP ipsi KG parallela occurret Ellipsi in corporis loco quæsito P.
Nam centro O intervallo OA describatur semicirculus AQB, & arcui AQ occurrat LP producta in Q, junganturq; SQ, OQ. Arcui EFG occurrat OQ in F, & in eandem OQ demittatur perpendiculum SR. Area APS est ut area AQS, id est, ut differentia inter sectorem OQA & triangulum OQS, sive ut differentia rectangulorum ½Q × AQ & ½OQ × SR, hoc est, ob datam ½OQ, ut differentia inter arcum AQ & rectam SR, adeoq; (ob æqualitatem rationum SR ad sinum arcus AQ, OS ad OA, OA ad OG, AQ ad GF, & divisim AQ - SR ad GF - sin. arc. AQ) ut GK differentia inter arcum GF & sinum arcus AQ. Q. E. D.
Scholium.
Cæterum ob difficultatem describendi hanc curvam præstat constructiones vero proximas in praxi Mechanica adhibere. Ellipseos cujusvis APB sit AB axis major, O centrum, S umbilicus, OD semiaxis minor, & AK dimidium lateris recti. Secetur AS in G, ut sit AG ad AS ut BO ad BS; & quæratur longitudo L, quæ sit ad ½GK ut est AO quad. ad rectangulum AS × OD. Bisecetur OG in C, centroq; C & intervallo CG describatur semicirculus GFO. Deniq; capiatur angulus GCF in ea ratione ad angulos quatuor rectos, quam habet tempus datum, quo corpus descripsit arcum quæsitum AP, ad tempus periodicum seu revolutionis unius in Ellipsi: Ad AO demittatur normalis FE, & producatur eadem versus F ad usq; N, ut sit EN ad longitudinem L, ut anguli illius sinus EF ad radium CF; centroq; N & intervallo AN descriptus circulus secabit Ellipsin in corporis loco quæsito P quam proxime.
Nam completo dimidio temporis periodici, corpus P semper reperietur in Apside summa B, & completo altero temporis dimidio, redibit ad Apsidem imam, ut oportet. Ubi vero proxime abest ab Apsidibus, ratio prima nascentium sectorum ASP, GCF, & ratio ultima evanescentium BSP & OCF, eadem est rationi Ellipseos totius ad circulum totum. Nam punctis P, F & N incidentibus in loca p, f & n axi AB quam proximis; ob æquales An, pn, recta nq, quæ ad arcum Ap perpendicularis est, adeoq; concurrit cum axe in puncto K, bisecat arcum Ap. Proinde est ½Ap ad Gn ut AK ad GK, & Ap ad Gn ut 2AK ad GK. Est & Gn ad Gf ut EN ad EF, seu L ad CF, id est, ut {GK × AOq.} ÷ {2AS × OD} ad CF, seu GK × AOq. ad 2AS × OD × CF, & ex æquo Ap ad Gf ut 2AK ad GK + GK × AOq. ad 2AS × OD × CF, id est, ut AK × AOq. ad AS × OD × CF, hoc est, ob æqualia AK × AO × ODq. ut AO × OD ad AS × CF. Proinde Ap × ½AS est ad Gf × ½GC ut AO × OD × AS ad AS × CF × GC, seu AO × OD ad CGq. id est, sector nascens ASp ad sectorem nascentem GCf ut AO × OD ad CGq. & propterea ut area Ellipseos totius ad aream circuli totius. Q. E. D. Argumento prolixiore probari potest analogia ultima in Sectoribus evanescentibus BSP, OCF: ideoq; locus puncti P prope Apsides satis accurate inventus est. In quadraturis error quasi quingentesimæ partis areæ Ellipseos totius vel paulo major obvenire solet: qui tamen propemodum evanescet per ulteriorem Constructionem sequentem.
Per puncta G, O, duc arcum circularem GTO justæ magnitudinis; dein produc EF hinc inde ad T & N ut sit EN ad FT ut ½L ad CF; centroq; N & intervallo AN describe circulum qui secet Ellipsin in P, ut supra. Arcus autem GTO determinabitur quærendo ejus punctum aliquod T; quod constructionem in illo casu accuratam reddet.
Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus corporis prope verticem Ellipseos desideretur, (qui casus in Theoria Cometarum incidit,) educere licet e puncto G rectam GI axi AB perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum AK × AS; dein centro I & intervallo AI circulum describere. Hic enim secabit Ellipsim in corporis loco quæsito P quamproxime. Et eadem constructione (mutatis mutandis) conficitur Problema in Hyperbola. Hæ autem constructiones demonstrantur ut supra, & si Figura (vertice ulteriore B in infinitum abeunte) vertatur in Parabolam, migrant in accuratam illam constructionem Problematis XXII.
Si quando locus ille P accuratius determinandus sit, inveniatur tum angulus quidam B, qui sit ad angulum graduum 57,29578 quem arcus radio æqualis subtendit, ut est umbilicorum distantia SH ad Ellipseos diametrum AB; tum etiam longitudo quædam L, quæ sit ad radium in eadem ratione inverse. Quibus semel inventis, Problema deinceps confit per sequentem Analysin. Per constructionem superiorem (vel utcunq; conjecturam faciendo) cognoscatur corporis locus P quam proxime. Demissaq; ad axem Ellipseos ordinatim applicata PR, ex proportione diametrorum Ellipseos, dabitur circuli circumscripti AQB ordinatim applicata RQ, quæ sinus est anguli ACQ existente AC radio. Sufficit angulum illum rudi calculo in numeris proximis invenire. Cognoscatur etiam angulus tempori proportionalis, id est, qui sit ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus revolutionis unius in Ellipsi. Sit angulus iste N. Tum capiatur & angulus D ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi major. Postea capiatur tum angulus F ad angulum B, ut est sinus anguli ACQ + E ad radium, tum angulus G ad angulum N - ACQ - E + F ut est longitudo L ad Longitudinem eandem cosinu anguli ACQ + E + ½F diminutam ubi angulus iste recto minor est, auctam ubi major. Tertia vice capiatur angulus H ad angulum B, ut est sinus anguli ACQ + E + G ad radium; & angulus I ad angulum N - ACQ - E - G + H, ut est longitudo L ad eandem longitudinem cosinu anguli ACQ + E + G + ½H diminutam, ubi angulus iste recto minor est, auctam ubi major. Et sic pergere licet in infinitum. Deniq; capiatur angulus ACq æqualis angulo ACQ + E + G + I &c. & ex cosinu ejus Cr & ordinata pr, quæ est ab sinum qr ut Ellipseos axis minor ad axem majorem, habebitur corporis locus correctus p. Siquando angulus N - ACQ + D negativus est, debet signum + ipsius E ubiq; mutari in -, & signum - in +. Idem intelligendum est de signis ipsorum G & I, ubi anguli N - ACQ - E + F, & N - ACQ - E - G + H negative prodeunt. Convergit autem series infinita ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra progredi quam ad terminum secundum E. Et fundatur calculus in hoc Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab umbilico S in Radium CQ perpendiculariter demissam.
Non dissimili calculo conficitur Problema in Hyperbola. Sit ejus centrum C, Vertex A, Umbilicus S & Asymptotos CK. Cognoscatur quantitas areæ APS tempori proportionalis. Sit ea A, & fiat conjectura de positione rectæ SP, quæ aream illam abscindat quamproxime. Jungatur CP, & ab A & P ad Asymptoton agantur AI, PK Asymptoto alteri parallelæ, & per Tabulam Logarithmorum dabitur Area AIKP, eiq; æqualis area CPA, quæ subducta de triangulo CPS relinquet aream APS. Applicando arearum A & APS semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quæ ab umbilico S in tangentem PT perpendicularis est, orietur longitudo PQ. Capiatur autem PQ inter A & P, si area APS major sit area A, secus ad puncti P contrarias partes: & punctum Q erit locus corporis accuratius. Et computatione repetita invenietur idem accuratius in perpetuum.
Atq; his calculis Problema generaliter confit Analytice. Verum usibus Astronomicis accommodatior est calculus particularis qui sequitur. Existentibus AO, OB, OD semiaxibus Ellipseos, (Vide fig. pag. 109. 110.) & L ipsius latere recto, quære tum angulum Y, cujus Tangens sit ad Radium ut est semiaxium differentia AO - OD ad eorum summam AO + OD; tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti. His angulis semel inventis, locus corporis sic deinceps determinabitur. Sume angulum T proportionalem tempori quo arcus BP descriptus est, seu motui medio (ut loquuntur) æqualem; & angulum V (primam medii motus æquationem) ad angulum Y (æquationem maximam primam) ut est sinus anguli T duplicati ad radium; atq; angulum X (æquationem secundam) ad angulum Z (æquationem maximam secundam) ut est sinus versus anguli T duplicati ad radium duplicatum, vel (quod eodem recidit) ut est quadratum sinus anguli T ad quadratum Radii. Angulorum T, V, X vel summæ T + X + V, si angulus T recto minor est, vel differentiæ T + X - V, si is recto major est rectisq; duobus minor, æqualem cape angulum BHP (motum medium æquatum;) & si HP occurrat Ellipsi in P, acta SP abscindet aream BSP tempori proportionalem quamproxime. Hæc Praxis satis expedita videtur, propterea quod angulorum perexiguorum V & X (in minutis secundis, si placet, positorum) figuras duas tresve primas invenire sufficit. Invento autem angulo motus medii æquati BHP, angulus veri motus HSP & distantia SP in promptu sunt per methodum notissimam Dris. Sethi Wardi Episcopi Salisburiensis mihi plurimum colendi.
Hactenus de motu corporum in lineis curvis. Fieri autem potest ut mobile recta descendat vel recta ascendat, & quæ ad istiusmodi motus spectant, pergo jam exponere.
SECT. VII.
De Corporum Ascensu & Descensu Rectilineo.
Prop. XXXII. Prob. XXIV.
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiæ locorum a centro, spatia definire quæ corpus recta cadendo datis temporibus describit.
Cas. 1. Si corpus non cadit perpendiculariter describet id sectionem aliquam Conicam cujus umbilicus inferior congruit cum centro. Id ex Propositionibus XI, XII, XIII & earum Corollariis constat. Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem; actisq; DS, PS erit area ASD areæ ASP atq; adeo etiam tempori proportionalis. Manente axe AB minuatur perpetuo latitudo Ellipseos, & semper manebit area ASD tempori proportionalis. Minuatur latitudo illa in infinitum, & orbe APB jam coincidente cum axe AB & umbilico S cum axis termino B, descendet corpus in recta AC, & area ABD evadet tempori proportionalis. Dabitur itaq; spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC. Q. E. I.
Cas. 2. Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD: & quoniam areæ CSP, CBfP, SPfB sunt ad areas CSD, CBED, SDEB, singulæ ad singulas, in data ratione altitudinum CP, CD; & area SPfB proportionalis est tempori quo corpus P movebitur per arcum PB, erit etiam area SDEB eidem tempori proportionalis. Minuatur latus rectum Hyperbolæ RPB in infinitum manente latere transverso, & coibit arcus PB cum recta CB, & umbilicus S cum vertice B & recta SD cum recta BD. Proinde area BDEB proportionalis erit tempori quo corpus C recto descensu describit lineam CB. Q. E. I.
Cas. 3. Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quæ semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B. Q. E. I.
Prop. XXXIII. Theor. IX.
Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolæ vertice ulteriore A, habet ad figuræ semidiametrum principalem ½AB.
Namq; ob proportionales CD, CP, linea AB communis est utriusq; figuræ RPB, DEB diameter. Bisecetur eadem in O, & agatur recta PT quæ tangat figuram RPB in P, atq; etiam secet communem illam diametrum AB (si opus est productam) in T; sitq; SY ad hanc rectam & BQ ad hanc diametrum perpendicularis, atq; figuræ RPB latus rectum ponatur L. Constat per Cor. 9. Theor. VIII. quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum. Est autem ex Conicis ACB ad CPq. ut 2AO ad L, adeoq; 2CPq. × AO ÷ ACB æquale L. Ergo velocitates illæ sunt ad invicem in dimidiata ratione CPq. × AO × SP ÷ ACB ad SY quad. Porro ex Conicis est CO ad BO ut BO ad TO, & composite vel divisim ut CB ad BT. Unde dividendo vel componendo fit BO - uel + CO ad BO ut CT ad BT, id est AC ad AO ut CP ad BQ; indeq; CPq. × AO × SP ÷ ACB æquale est BQq. × AC × SP ÷ {AO × BC}. Minuatur jam in infinitum figuræ RPB latitudo CP, sic ut punctum P coeat cum puncto C, punctumq; S cum puncto B, & linea SP cum linea BC, lineaq; SY cum linea BQ; & corporis jam recta descendentis in linea CB velocitas fiet ad velocitatem corporis centro B interuallo BC circulum describentis, in dimidiata ratione ipsius BQq. × AC × SP ÷ {AO × BC} ad SYq. hoc est (neglectis æqualitatis rationibus SP ad BC & BQq. ad SYq.) in dimidiata ratione AC ad AO. Q. E. D.
Corol. Punctis B & S coeuntibus, fit TC ad ST ut AC ad AO.
Prop. XXXIV. Theor. X.
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C æqualis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco quovis S (per Corol. 7. Theor. VIII) æqualis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis. Minuatur Parabolæ latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP coincidat, & constabit Propositio. Q. E. D.
Prop. XXXV. Theor. XI.
Iisdem positis, dico quod area figuræ DES, radio indefinito SD descripta, æqualis sit areæ quam corpus, radio dimidium lateris recti figuræ DES æquante, circa centrum S uniformiter gyrando, eodem tempore describere potest.
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere. Erigantur perpendicula CD, cd occurrentia figuræ DES in D, d. Jungantur SD, SK, Sk & ducatur Dd axi AS occurrens in T, & ad eam demittatur perpendiculum SY.