Bibliography

  1. Abarbanel, H.D.I., Rabinovich, M.I., and Sushchik, M.M. (1993) Introduction to Nonlinear Dynamics for Physicists, World Scientific, Singapore.
  2. Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions, 10th edn, US Govt. Printing Office, Washington.
  3. Addison, P.S. (2002) The Illustrated Wavelet Transform Handbook, Institute of Physics Publishing, Bristol and Philadelphia.
  4. Allan, M.P. and Tildesley, J.P. (1987) Computer Simulations of Liquids, Oxford Science Publications, Oxford.
  5. Amdahl, G. (1967) Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capabilities, Proc. AFIPS, p. 483.
  6. Ancona, M.G. (2002) Computational Methods for Applied Science and Engineering, Rinton Press, Princeton.
  7. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. (2013) LAPACK Users’ Guide, 3rd edn, SIAM, Philadelphia, www.netlib.org (accessed 22 March 2015).
  8. Anderson, J.A., Lorenz, C.D., and Travesset, A. (2008) HOOMD-blue, general purpose molecular dynamics simulations. J. Comput. Phys., 227 (10), 5342, codeblue.umich.edu/hoomd-blue (accessed 22 March 2015).
  9. Arfken, G.B. and Weber, H.J. (2001) Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego.
  10. Argyris, J., Haase, M., and Heinrich, J.C. (1991) Comput. Methods Appl. Mech. Eng, 86, 1.
  11. Armin, B. and Shlomo, H. (eds) (1991) Fractals and Disordered Systems, Springer, Berlin.
  12. Askar, A. and Cakmak, A.S. (1977) J. Chem. Phys., 68, 2794.
  13. Banacloche, J.G. (1999) A quantum bouncing ball. Am. J. Phys., 67, 776.
  14. Barnsley, M.F. and Hurd, L.P. (1992) Fractal Image Compression, A.K. Peters, Wellesley.
  15. Beazley, D.M. (2009) Python Essential Reference, 4th edn, Addison-Wesley, Reading, MA, USA.
  16. Becker, R.A. (1954) Introduction to Theoretical Mechanics, McGraw-Hill, New York.
  17. Bevington, P.R. and Robinson, D.K. (2002) Data Reduction and Error Analysis for the Physical Sciences, 3rd edn, McGraw-Hill, New York.
  18. Bleher, S., Grebogi, C., and Ott, E. (1990) Bifurcations in chaotic scattering. Physica D, 46, 87.
  19. Briggs, W.L. and Henson, V.E. (1995) The DFT, An Owner’s Manual, SIAM, Philadelphia.
  20. Bunde, A. and Havlin, S. (eds) (1991) Fractals and Disordered Systems, Springer, Berlin.
  21. Burgers, J.M. (1974) The Non-Linear Diffusion Equation; Asymptotic Solutions and Stattistical Problems, Reidel, Boston.
  22. Car, R. and Parrinello, M. (1985) Phys. Rev. Lett., 55, 2471.
  23. Cencini, M., Ceconni, F. and Vulpiani, A. (2010) Chaos From Simple Models To Complex Systems, World Scientific, Singapore.
  24. Christiansen, P.L. and Lomdahl, P.S. (1981) Physica D, 2, 482.
  25. Christiansen, P.L. and Olsen, O.H. (1978) Phys. Lett. A, 68, 185; Christiansen, P.L. and Olsen, O.H. (1979) Phys. Scr., 20, 531.
  26. Clark University (2011) Statistical and Thermal Physics Curriculum Development Project, stp.clarku.edu/ (accessed 22 March 2015); Density of States of the 2D Ising Model.
  27. CPUG, Computational Physics degree program for Undergraduates (2009), physics.oregonstate.edu/CPUG (accessed 22 March 2015).
  28. Crank, J. and Nicolson, P. (1946) Proc. Cambridge Philos. Soc., 43, 50.
  29. Cooley, J.W. and Tukey, J.W. (1965) Math. Comput., 19, 297.
  30. Courant, R., Friedrichs, K., and Lewy, H. (1928) Math. Ann., 100, 32.
  31. Critchley, S. (2014) The Dangers of Certainty: A Lesson from Auschwitz, New York Times, New York.
  32. Danielson, G.C. and Lanczos, C. (1942)J.Franklin Inst., 233, 365.
  33. Daubechies, I. (1995) Wavelets and other phase domain localization methods, Proc. Int. Congr. Math., 1, 2, Basel, 56, Birkhäuser, Basel.
  34. DeJong, M.L. (1992) Chaos and the simple pendulum. Phys. Teach., 30, 115.
  35. Dongarra, J. (2011) On the Future of High Performance Computing: How to Think for Peta and Exascale Computing, Conference on Computational Physics 2011, Gatlinburg; Emerging Technologies for High Performance Computing, GPU Club presentation, University of Manchester, www.netlib.org/utk/people/JackDongarra/SLIDES/gpu-0711.pdf (accessed 22 March 2015).
  36. Dongarra, J., Sterling, T., Simon, H., and Strohmaier, E. (2005) High-performance computing. Comput. Sci. Eng., 7, 51.
  37. Dongarra, J., Hittinger, J., Bell, J., Chacson, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., and Wild, S. (2014) Applied Mathematics Research for Exascale Computing, US Department of Energy Report, http://www.osti.gov/bridge (accessed 22 March 2015).
  38. Donnelly, D. and Rust, B. (2005) The fast Fourier transform for experimentalists. Comput. Sci. Eng., 7, 71.
  39. Eclipse an open development platform (2014) www.eclipse.org (accessed 22 March 2015).
  40. Ercolessi, F. (1997) A molecular dynamics primer, www.ud.infn.it/~ercolessi/md/ (accessed 22 March 2015).
  41. Faber, R. (2010) CUDA, Supercomputing for the Masses: Part 15, www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 (accessed 22 March 2015).
  42. Falkovich, G. and Sreenivasan, K.R. (2006) Lesson from hydrodynamic turbulence. Phys. Today, 59, 43.
  43. Family, F. and Vicsek, T. (1985) J. Phys. A, 18, L75.
  44. Feigenbaum, M.J. (1979) J. Stat. Phys., 21, 669.
  45. Fetter, A.L. and Walecka, J.D. (1980) Theoretical Mechanics of Particles and Continua, McGraw-Hill, New York.
  46. Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals, McGraw-Hill, New York.
  47. Fitzgerald, R. (2004) New experiments set the scale for the onset of turbulence in pipe flow. Phys. Today, 57, 21.
  48. Fosdick L.D., Jessup, E.R. Schauble, C.J.C., and Domik, G. (1996) An Introduction to High Performance Scientific Computing, MIT Press, Cambridge.
  49. Fox, G. (1994) Parallel Computing Works!. Morgan Kaufmann, San Diego.
  50. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.-T., Coteus, P., Giampapa, M.E., Haring, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht, M., Steinmacher-Burow, B.D., Takken, T., and Vranas, P. (2005) Overview of the Blue Gene/L system architecure. IBM J. Res Dev., 49, 195; Feldman, M., IBM Specs Out Blue Gene/Q Chip, (2011) HPC Wire, August 22 2011.
  51. Garcia, A.L. (2000) Numerical Methods for Physics, 2nd edn, Prentice-Hall, Upper Saddle River, NJ, USA.
  52. Gibbs, R.L. (1975) The quantum bouncer. Am. J. Phys., 43, 25.
  53. Gnuplot (2014) gnuplot homepage www.gnuplot.info (accessed 22 March 2015).
  54. Goldberg, A., Schey, H.M., and Schwartz, J.L. (1967) Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. Am. J. Phys., 35, 177–186.
  55. Goodings, D.A. and Szeredi, T. (1992) The quantum bouncer by the path integral method. Am.j.Phys., 59, 924.
  56. Goswani, J.C. and Chan, A.K. (1999) Fundamentals of Wavelets, John Wiley & Sons, New York.
  57. Gottfried, K. (1966) Quantum Mechanics, Benjamin, New York.
  58. Gould, H., Tobochnik, J., and Christian, W. (2006) An Introduction to Computer Simulations Methods, 3rd edn, Addison-Wesley, Reading, USA.
  59. Graps, A. (1995) An introduction to wavelets. Comput. Sci. Eng., 2, 50.
  60. Gurney, W.S.C. and Nisbet, R.M. (1998) Ecological Dynamics, Oxford University Press, Oxford.
  61. Haftel, M.I. and Tabakin, F. (1970) Nucl. Phys., 158, 1.
  62. Hardwich, J. (1996) Rules for Optimization, www.cs.cmu.edu/~jch/java (accessed 22 March 2015).
  63. Hartmann, W.M. (1998) Signals, Sound, and Sensation, AIP Press, Springer, New York.
  64. Higgins, R.J. (1976) Fast Fourier transform: An introduction with some minicomputer experiments. Am. J. Phys., 44, 766.
  65. Hildebrand, F.B. (1956) Introduction to Numerical Analysis, McGraw-Hill, New York.
  66. Hinsen, K. (2013) Software development for reproducible research. Comput. Sci. Eng, 4 (15), 60–63, www.computer.org/portal/web/cise/home (accessed 22 March 2015).
  67. History of Python (2009) The History of Python python-history.blogspot.com/2009/01/brief-timeline-of-python.html (accessed 22 March 2015).
  68. Hockney, R.W. and J.W Eastwood (1988) Computer Simulation Using Particles, Adam Hilger, Bristol.
  69. Hubble, E. (1929) A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA, 15 (3), 168.
  70. Hunag, K. (1987) Statistical Mechanics, John Wiley & Sons, New York.
  71. Jackson, J.D. (1988) Classical Electrodynamics, 3rd edn, John Wiley & Sons, New York.
  72. Jackson, J.E. (1988) A User’s Guide to Principal Components, John Wiley & Sons, New York.
  73. Jolliffe, IY. (2001) Principal Component Analysis, 2nd edn, Springer, New York.
  74. José, J.V. and Salatan, E.J. (1988) Classical Dynamics, Cambridge University Press, Cambridge.
  75. Kennedy, R. (2006) The case of Pollock’s Fractals Focuses on Physics, New York Times, 2, 5 December 2006.
  76. Kirk, D. and Wen-Mei, WH. (2013) Programming Massively Parallel Processors, 2nd edn, Morgan Kauffman, Waltham.
  77. Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, John Wiley & Sons, Inc., Hoboken.
  78. Klöckner, A. (2014) PyCUDA, mathema.tician.de/software/pycuda (accessed 22 March 2015).
  79. Koonin, S.E. (1986) Computational Physics, Benjamin, Menlo Park, CA.
  80. Korteweg, D.J. and deVries, G. (1895) Philos. Mag, 39, 4.
  81. Kreyszig, E. (1998) Advanced Engineering Mathematics, 8th edn, John Wiley Sons, New York.
  82. Lamb, H. (1993) Hydrodynamics, 6th edn, Cambridge University Press, Cambridge.
  83. Landau, D.P. and Wang, F. (2001) Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E, 64, 056101; Landau, D.P., Tsai, S.-H., and Exler, M. (2004) A new approach to Monte Carlo simulations in statistical physics: Wang–Landau sampling.Am. J. Phys., 72, 1294.
  84. Landau, L.D. and Lifshitz, E.M. (1987) Fluid Mechanics, 2nd edn, Butterworth-Heinemann, Oxford.
  85. Landau, L.D. and Lifshitz, E.M. (1976) Quantum Mechanics, Pergamon, Oxford.
  86. Landau, L.D. and Lifshitz, E.M. (1976) Mechanics, 3rd edn, Butterworth-Heinemann, Oxford.
  87. Landau, R.H. (2008) Resource letter CP-2: Computational physics. Am. J. Phys., 76, 296.
  88. Landau, R.H. (2005) A First Course in Scientific Computing, Princeton University Press, Princeton.
  89. Landau, R.H. (1996) Quantum Mechanics II, A Second Course in Quantum Theory, 2nd edn, John Wiley & Sons, New York.
  90. Lang, W.C. and Forinash, K. (1998) Time-frequency analysis with the continuous wavelet transform. Am. J. Phys., 66, 794.
  91. Langtangen, H.P. (2008) Python Scripting for Computational Science, Springer, Heidelberg.
  92. Langtangen, H.P. (2009) A Primer on Scientific Programming with Python, Springer, Heidelberg.
  93. Li, Z. (2014) Numerical Methods for Partial Differential Equations – Finite Element Method, www4.ncsu.edu/~zhilin/ (accessed 22 March 2015).
  94. Lorenz, E.N. (1963) Deterministic non-periodic flow./. Atmos. Sci., 20, 130.
  95. Lotka, A.J. (1925) Elements of Physical Biology, Williams and Wilkins, Baltimore.
  96. MacKeown, P.K. (1985) Am. J. Phys., 53, 880.
  97. MacKeown, P.K. and Newman, D.J. (1987) Computational Techniques in Physics, Adam Hilger, Bristol.
  98. Maestri, J.J.V., Landau, R.H., and Páez, M.J. (2000) Two-particle Schrödinger equation animations of wave packet-wave packet scattering. Am. J. Phys., 68, 1113; http://physics.oregonstate.edu/~rubin/nacphy/ComPhys/PACKETS/.
  99. Mallat, P.G. (1982) A theory for multireso-lution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11 (7), 674.
  100. Mandelbrot, B. (1967) How long is the coast of Britain? Science, 156, 638.
  101. Mandelbrot, B. (1982) The Fractal Geometry of Nature, Freeman, San Francisco.
  102. Manneville, P. (1990) Dissipative Structures and Weak Turbulence, Academic Press, San Diego.
  103. Mannheim, P.D. (1983) The physics behind path integrals in quantum mechanics. Am. J. Phys., 51, 328.
  104. Marion, J.B. and Thornton, S.T. (2003) Classical Dynamics of Particles and Systems, 5th edn, Harcourt Brace Jovanovich, Orlando.
  105. Mathews, J. (2002) Numerical Methods for Mathematics, Science and Engineering, Prentice-Hall, Upper Saddle River.
  106. Metropolis, M., Rosenbluth, A.W., Rosen-bluth, M.N., Teller, A.H., and Teller, E. (1953) J. Chem. Phys., 21, 1087.
  107. Moon, F.C. and Li, G.-X. (1985) Phys. Rev. Lett., 55, 1439.
  108. Morse, P.M. and Feshbach, H. (1953) Methods of Theoretical Physics, McGraw-Hill, New York.
  109. Motter, A. and Campbell, D. (2013) Chaos at fifty. Phys. Today, 66 (5), 27.
  110. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R.D., and Schulten, K. (1996) NAMD – Scalable Molecular Dynamics. J. Supercomput. Apps. High Perform. Comput., 10, 251–268, www.ks.uiuc.edu/Research/namd (accessed 22 March 2015).
  111. Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., Abele, H., Baessler, S., Ruess, F.J., Stoferle, T., Westphal, A., Gagarski, A.M., Petrov, G.A., and Strelkov, A.V. (2002) Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297.
  112. NIST Digital Library of Mathematical Functions (2014) dlmf.nist.gov/ (accessed 22 March 2015).
  113. Numerical Python (2013) NumPy numpy.scipy.org (accessed 22 March 2015).
  114. NumPy Tutorial, Tentative (2015) Tentative NumPy Tutorial wiki.scipy.org/Tentative_NumPy_Tutorial (accessed 22 March 2015).
  115. Oliphant, T.E. (2006) Guide to NumPy, csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf (accessed 22 March 2015).
  116. Ott, E. (2002) Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
  117. Otto A. (2011) Numerical Simulations of Fluids and Plasmas, how.gi.alaska.edu/ao/sim (accessed 22 March 2015).
  118. Pancake, C.M. (1996) Is parallelism for you?, Comput. Sci. Eng., 3, 18.
  119. Peitgen, H.-O., Jürgens, H., and Saupe, D. (1992) Chaos and Fractals, Springer, New York.
  120. Penna, T.J.P. (1994) Comput. Phys., 9, 341.
  121. Perez, F., Granger, B.E. and Hunter, J.D. (2010) Python: An Ecosystem for Scientifc Computing. Comput. Sci. Eng., 13 (2), www.computer.org/web/computingnow/cise (accessed 22 March 2015).
  122. Perlin, K. (1985) An Image Synthesizer, Computer Graphics (Proceedings of ACM SIG-GRAPH 85) 24, 3.
  123. Phatak, S.C. and Rao, S.S. (1995) Logistic map: A possible random-number generator. Phys. Rev. E, 51, 3670.
  124. Plischke, M. and Bergersen, B. (1994) Equilibrium Statistical Physics, 2nd edn, World Scientific, Singapore.
  125. Polikar, R. (2001) The Wavelet Tutorial, users.rowan.edu/~polikar/WAVELETS/WTtutorial.html (accessed 22 March 2015).
  126. Polycarpou, A.C. (2006) Introduction to the Finite Element Method in Electromagnetics, Morgan and Claypool, San Rafael.
  127. Potvin, J. (1993) Comput. Phys., 7, 149. (2013) Pov-Ray, Persistence of Vision Ray-tracer, www.povray.org (accessed 22 March 2015).
  128. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1994) Numerical Recipes, Cambridge University Press, Cambridge.
  129. Python (2014) Python for Programmers, https://wiki.python.org/moin/BeginnersGuide/Programmers (accessed 22 March 2015).
  130. LearnPython.org (2014) Interactive Python Tutorial, http://www.learnpython.org/ (accessed 22 March 2015).
  131. (2014)The Python Tutorial, docs.python.org/2/tutorial/ (accessed 22 March 2015).
  132. (2014) Python Index of Packages, pypi.python.org/pypi (accessed 22 March 2015).
  133. (2014) Python Documentation, www.python.org/doc (accessed 22 March 2015).
  134. Quinn, M.J. (2004) Parallel Programming in C with MPI and OpenMP, McGraw-Hill, New York.
  135. Ramasubramanian, K. and Sriram, M.S. (2000) A comparative study of computation of Lyapunov spectra with different algorithms. Physica D, 139, 72.
  136. Rapaport, D.C. (1995) The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge.
  137. Rasband, S.N. (1990) Chaotic Dynamics of Nonlinear Systems, John Wiley & Sons, New York.
  138. Rawitscher, G., Koltracht, I., Dai, H., and Ribetti, C. (1996) Comput. Phys., 10, 335.
  139. Reddy, J.N. (1993) An Introduction to the Finite Element Method, 2nd edn, McGraw-Hill, New York.
  140. Refson, K. (2000) Moldy, A General-Purpose Molecular Dynamics Simulation Program, cc-ipcp.icp.ac.ru/Moldy_2_16.html (accessed 22 March 2015).
  141. Reynolds, O. (1883) Proc. R. Soc. Lond., 35, 84.
  142. Richardson. L.F. (1961) Problem of contiguity: an appendix of statistics of deadly quarrels. General Syst. Yearbook, 6, 139.
  143. Rowe, A.C.H. and Abbott, P.C. (1995) Daubechies wavelets and mathematica. Comput. Phys., 9, 635.
  144. Russell, J.S. (1844) Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London.
  145. Sander, E., Sander, L.M., and Ziff, R.M. (1994) Comput. Phys., 8, 420.
  146. Sanders, J. and Kandrot, E. (2011) Cuda by Example, Addison Wesley, Upper Saddle River.
  147. Satoh, A. (2011) Introduction to Practice of Molecular Simulation, Elsevier, Amsterdam.
  148. Scheck, F. (1994) Mechanics, from Newton’s Laws to Deterministic Chaos, 2nd edn, Springer, New York.
  149. Shannon, C.E. (1948) A mathematical theory of communication. Bell Syst. Tech.J., 27, 379.
  150. (2014) SciPy, a Python-based ecosystem, www.scipy.org (accessed 22 March 2015).
  151. Shaw C.T. (1992) Using Computational Fluid Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
  152. Singh, P.P. and Thompson, W.J. (1993) Comput. Phys., 7, 388.
  153. Sipper, M. (1997) Evolution of Parallel Cellular Machines, Springer, Heidelberg, cell-auto.com (accessed 22 March 2015).
  154. Smith, D.N. (1991) Concepts of Object-Oriented Programming, McGraw-Hill, New York.
  155. Smith, L.I. (2002) A Tutorial on Principal Components Analysis, www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf (accessed 22 March 2015).
  156. Smith, S.W. (1999) The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego.
  157. Stetz, A., Carroll, J., Chirapatpimol, N., Dixit, M., Igo, G., Nasser, M., Ortendahl, D., and Perez-Mendez, V. (1973) Determination of the Axial Vector Form Factor in the Radiative Decay of the Pion, LBL 1707.
  158. Sullivan, D. (2000) Electromagnetic Simulations Using the FDTD Methods, IEEE Press, New York.
  159. Tabor, M. (1989) Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New York.
  160. Taflove, A. and Hagness, S. (2000) Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn, Artech House, Boston.
  161. Tait, R.N., Smy, T., and Brett, M.J. (1990) Thin Solid Films, 187, 375.
  162. Thijssen J.M. (1999) Computational Physics, Cambridge University Press, Cambridge.
  163. Thompson, W.J. (1992) Computing for Scientists and Engineers, John Wiley & Sons, New York.
  164. Tickner, J. (2004) Simulating nuclear particle transport in stochastic media using Perlin noise functions. Nucl. Instrum. Methods B, 203, 124.
  165. Vallée, O. (2000) Comment on a quantum bouncing ball. Am. J. Phys., 68, 672.
  166. van de Velde, E.F. (1994) Concurrent Scientific Computing, Springer, New York.
  167. van den Berg, J.C. (ed.) (1999) Wavelets in Physics, Cambridge University Press, Cambridge.
  168. Vano, J.A., Wildenberg, J.C., Anderson, M.B., Noel, J.K., and Sprott, J.C. (2006) Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity, 19, 2391–2404.
  169. Visscher, P.B. (1991) Comput. Phys., 5, 596.
  170. Vold, M.J. (1959)J. Colloid Sci., 14, 168.
  171. Volterra, V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. Lincei. Ser. VI, 2.
  172. Warburton, R.D.H. and Wang, J. (2004) Analysis of asymptotic projectile motion with air resistance using the Lambert W function. Am. J.Phys., 72, 1404.
  173. Ward, D.W. and Nelson, K.A. (2005) Finite difference time domain, FDTD, simulations of electromagnetic wave propagation using a spreadsheet. Comput. Appl. Eng. Educat, 13 (3), 213–221.
  174. Whineray, J. (1992) An energy representation approach to the quantum bouncer. Am. J. Phys., 60, 948.
  175. (2014) Principal component analysis, en.wikipedia.org/wiki/Principal_component_analysis (accessed 22 March 2015).
  176. Williams, G.P. (1997) Chaos Theory Tamed, Joseph Henry Press, Washington.
  177. Witten, T.A. and Sander, L.M. (1981) Phys. Rev. Lett., 47, 1400; Witten, T.A. and Sander, L.M. (1983) Phys. Rev. B, 27, 5686.
  178. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985) Determining Lyapunov exponents from a time series. Physica D, 16, 285.
  179. Wolfram S. (1983) Statistical mechanics of cellular automata. Rev. Mod. Phys., 55, 601.
  180. Yang, C.N. (1952) The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev., 85, 809.
  181. Yee, K. (1966) IEEE Trans. Ant. Propagat., AP-14, 302.
  182. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Shakhnovich, E.I., and Dill, A. (1995) Proc. Natl. Acad. Sci. USA, 92, 325.
  183. Zabusky, N.J. and Kruskal, M.D. (1965) Phys. Rev. Lett., 15, 240.
  184. Zeller, C. (2008) High Performance Computing with CUDA, www.nvidia.com/object/sc10_cuda_tutorial.htmlP (accessed 22 March 2015).