- Abarbanel, H.D.I., Rabinovich, M.I., and Sushchik, M.M. (1993) Introduction to Nonlinear Dynamics for Physicists, World Scientific, Singapore.
- Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions, 10th edn, US Govt. Printing Office, Washington.
- Addison, P.S. (2002) The Illustrated Wavelet Transform Handbook, Institute of Physics Publishing, Bristol and Philadelphia.
- Allan, M.P. and Tildesley, J.P. (1987) Computer Simulations of Liquids, Oxford Science Publications, Oxford.
- Amdahl, G. (1967) Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capabilities, Proc. AFIPS, p. 483.
- Ancona, M.G. (2002) Computational Methods for Applied Science and Engineering, Rinton Press, Princeton.
- Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. (2013) LAPACK Users’ Guide, 3rd edn, SIAM, Philadelphia, www.netlib.org (accessed 22 March 2015).
- Anderson, J.A., Lorenz, C.D., and Travesset, A. (2008) HOOMD-blue, general purpose molecular dynamics simulations. J. Comput. Phys., 227 (10), 5342, codeblue.umich.edu/hoomd-blue (accessed 22 March 2015).
- Arfken, G.B. and Weber, H.J. (2001) Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego.
- Argyris, J., Haase, M., and Heinrich, J.C. (1991) Comput. Methods Appl. Mech. Eng, 86, 1.
- Armin, B. and Shlomo, H. (eds) (1991) Fractals and Disordered Systems, Springer, Berlin.
- Askar, A. and Cakmak, A.S. (1977) J. Chem. Phys., 68, 2794.
- Banacloche, J.G. (1999) A quantum bouncing ball. Am. J. Phys., 67, 776.
- Barnsley, M.F. and Hurd, L.P. (1992) Fractal Image Compression, A.K. Peters, Wellesley.
- Beazley, D.M. (2009) Python Essential Reference, 4th edn, Addison-Wesley, Reading, MA, USA.
- Becker, R.A. (1954) Introduction to Theoretical Mechanics, McGraw-Hill, New York.
- Bevington, P.R. and Robinson, D.K. (2002) Data Reduction and Error Analysis for the Physical Sciences, 3rd edn, McGraw-Hill, New York.
- Bleher, S., Grebogi, C., and Ott, E. (1990) Bifurcations in chaotic scattering. Physica D, 46, 87.
- Briggs, W.L. and Henson, V.E. (1995) The DFT, An Owner’s Manual, SIAM, Philadelphia.
- Bunde, A. and Havlin, S. (eds) (1991) Fractals and Disordered Systems, Springer, Berlin.
- Burgers, J.M. (1974) The Non-Linear Diffusion Equation; Asymptotic Solutions and Stattistical Problems, Reidel, Boston.
- Car, R. and Parrinello, M. (1985) Phys. Rev. Lett., 55, 2471.
- Cencini, M., Ceconni, F. and Vulpiani, A. (2010) Chaos From Simple Models To Complex Systems, World Scientific, Singapore.
- Christiansen, P.L. and Lomdahl, P.S. (1981) Physica D, 2, 482.
- Christiansen, P.L. and Olsen, O.H. (1978) Phys. Lett. A, 68, 185; Christiansen, P.L. and Olsen, O.H. (1979) Phys. Scr., 20, 531.
- Clark University (2011) Statistical and Thermal Physics Curriculum Development Project, stp.clarku.edu/ (accessed 22 March 2015); Density of States of the 2D Ising Model.
- CPUG, Computational Physics degree program for Undergraduates (2009), physics.oregonstate.edu/CPUG (accessed 22 March 2015).
- Crank, J. and Nicolson, P. (1946) Proc. Cambridge Philos. Soc., 43, 50.
- Cooley, J.W. and Tukey, J.W. (1965) Math. Comput., 19, 297.
- Courant, R., Friedrichs, K., and Lewy, H. (1928) Math. Ann., 100, 32.
- Critchley, S. (2014) The Dangers of Certainty: A Lesson from Auschwitz, New York Times, New York.
- Danielson, G.C. and Lanczos, C. (1942)J.Franklin Inst., 233, 365.
- Daubechies, I. (1995) Wavelets and other phase domain localization methods, Proc. Int. Congr. Math., 1, 2, Basel, 56, Birkhäuser, Basel.
- DeJong, M.L. (1992) Chaos and the simple pendulum. Phys. Teach., 30, 115.
- Dongarra, J. (2011) On the Future of High Performance Computing: How to Think for Peta and Exascale Computing, Conference on Computational Physics 2011, Gatlinburg; Emerging Technologies for High Performance Computing, GPU Club presentation, University of Manchester, www.netlib.org/utk/people/JackDongarra/SLIDES/gpu-0711.pdf (accessed 22 March 2015).
- Dongarra, J., Sterling, T., Simon, H., and Strohmaier, E. (2005) High-performance computing. Comput. Sci. Eng., 7, 51.
- Dongarra, J., Hittinger, J., Bell, J., Chacson, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., and Wild, S. (2014) Applied Mathematics Research for Exascale Computing, US Department of Energy Report, http://www.osti.gov/bridge (accessed 22 March 2015).
- Donnelly, D. and Rust, B. (2005) The fast Fourier transform for experimentalists. Comput. Sci. Eng., 7, 71.
- Eclipse an open development platform (2014) www.eclipse.org (accessed 22 March 2015).
- Ercolessi, F. (1997) A molecular dynamics primer, www.ud.infn.it/~ercolessi/md/ (accessed 22 March 2015).
- Faber, R. (2010) CUDA, Supercomputing for the Masses: Part 15, www.drdobbs.com/architecture-and-design/cuda-supercomputing-for-the-masses-part/222600097 (accessed 22 March 2015).
- Falkovich, G. and Sreenivasan, K.R. (2006) Lesson from hydrodynamic turbulence. Phys. Today, 59, 43.
- Family, F. and Vicsek, T. (1985) J. Phys. A, 18, L75.
- Feigenbaum, M.J. (1979) J. Stat. Phys., 21, 669.
- Fetter, A.L. and Walecka, J.D. (1980) Theoretical Mechanics of Particles and Continua, McGraw-Hill, New York.
- Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals, McGraw-Hill, New York.
- Fitzgerald, R. (2004) New experiments set the scale for the onset of turbulence in pipe flow. Phys. Today, 57, 21.
- Fosdick L.D., Jessup, E.R. Schauble, C.J.C., and Domik, G. (1996) An Introduction to High Performance Scientific Computing, MIT Press, Cambridge.
- Fox, G. (1994) Parallel Computing Works!. Morgan Kaufmann, San Diego.
- Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.-T., Coteus, P., Giampapa, M.E., Haring, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht, M., Steinmacher-Burow, B.D., Takken, T., and Vranas, P. (2005) Overview of the Blue Gene/L system architecure. IBM J. Res Dev., 49, 195; Feldman, M., IBM Specs Out Blue Gene/Q Chip, (2011) HPC Wire, August 22 2011.
- Garcia, A.L. (2000) Numerical Methods for Physics, 2nd edn, Prentice-Hall, Upper Saddle River, NJ, USA.
- Gibbs, R.L. (1975) The quantum bouncer. Am. J. Phys., 43, 25.
- Gnuplot (2014) gnuplot homepage www.gnuplot.info (accessed 22 March 2015).
- Goldberg, A., Schey, H.M., and Schwartz, J.L. (1967) Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. Am. J. Phys., 35, 177–186.
- Goodings, D.A. and Szeredi, T. (1992) The quantum bouncer by the path integral method. Am.j.Phys., 59, 924.
- Goswani, J.C. and Chan, A.K. (1999) Fundamentals of Wavelets, John Wiley & Sons, New York.
- Gottfried, K. (1966) Quantum Mechanics, Benjamin, New York.
- Gould, H., Tobochnik, J., and Christian, W. (2006) An Introduction to Computer Simulations Methods, 3rd edn, Addison-Wesley, Reading, USA.
- Graps, A. (1995) An introduction to wavelets. Comput. Sci. Eng., 2, 50.
- Gurney, W.S.C. and Nisbet, R.M. (1998) Ecological Dynamics, Oxford University Press, Oxford.
- Haftel, M.I. and Tabakin, F. (1970) Nucl. Phys., 158, 1.
- Hardwich, J. (1996) Rules for Optimization, www.cs.cmu.edu/~jch/java (accessed 22 March 2015).
- Hartmann, W.M. (1998) Signals, Sound, and Sensation, AIP Press, Springer, New York.
- Higgins, R.J. (1976) Fast Fourier transform: An introduction with some minicomputer experiments. Am. J. Phys., 44, 766.
- Hildebrand, F.B. (1956) Introduction to Numerical Analysis, McGraw-Hill, New York.
- Hinsen, K. (2013) Software development for reproducible research. Comput. Sci. Eng, 4 (15), 60–63, www.computer.org/portal/web/cise/home (accessed 22 March 2015).
- History of Python (2009) The History of Python python-history.blogspot.com/2009/01/brief-timeline-of-python.html (accessed 22 March 2015).
- Hockney, R.W. and J.W Eastwood (1988) Computer Simulation Using Particles, Adam Hilger, Bristol.
- Hubble, E. (1929) A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA, 15 (3), 168.
- Hunag, K. (1987) Statistical Mechanics, John Wiley & Sons, New York.
- Jackson, J.D. (1988) Classical Electrodynamics, 3rd edn, John Wiley & Sons, New York.
- Jackson, J.E. (1988) A User’s Guide to Principal Components, John Wiley & Sons, New York.
- Jolliffe, IY. (2001) Principal Component Analysis, 2nd edn, Springer, New York.
- José, J.V. and Salatan, E.J. (1988) Classical Dynamics, Cambridge University Press, Cambridge.
- Kennedy, R. (2006) The case of Pollock’s Fractals Focuses on Physics, New York Times, 2, 5 December 2006.
- Kirk, D. and Wen-Mei, WH. (2013) Programming Massively Parallel Processors, 2nd edn, Morgan Kauffman, Waltham.
- Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, John Wiley & Sons, Inc., Hoboken.
- Klöckner, A. (2014) PyCUDA, mathema.tician.de/software/pycuda (accessed 22 March 2015).
- Koonin, S.E. (1986) Computational Physics, Benjamin, Menlo Park, CA.
- Korteweg, D.J. and deVries, G. (1895) Philos. Mag, 39, 4.
- Kreyszig, E. (1998) Advanced Engineering Mathematics, 8th edn, John Wiley Sons, New York.
- Lamb, H. (1993) Hydrodynamics, 6th edn, Cambridge University Press, Cambridge.
- Landau, D.P. and Wang, F. (2001) Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E, 64, 056101; Landau, D.P., Tsai, S.-H., and Exler, M. (2004) A new approach to Monte Carlo simulations in statistical physics: Wang–Landau sampling.Am. J. Phys., 72, 1294.
- Landau, L.D. and Lifshitz, E.M. (1987) Fluid Mechanics, 2nd edn, Butterworth-Heinemann, Oxford.
- Landau, L.D. and Lifshitz, E.M. (1976) Quantum Mechanics, Pergamon, Oxford.
- Landau, L.D. and Lifshitz, E.M. (1976) Mechanics, 3rd edn, Butterworth-Heinemann, Oxford.
- Landau, R.H. (2008) Resource letter CP-2: Computational physics. Am. J. Phys., 76, 296.
- Landau, R.H. (2005) A First Course in Scientific Computing, Princeton University Press, Princeton.
- Landau, R.H. (1996) Quantum Mechanics II, A Second Course in Quantum Theory, 2nd edn, John Wiley & Sons, New York.
- Lang, W.C. and Forinash, K. (1998) Time-frequency analysis with the continuous wavelet transform. Am. J. Phys., 66, 794.
- Langtangen, H.P. (2008) Python Scripting for Computational Science, Springer, Heidelberg.
- Langtangen, H.P. (2009) A Primer on Scientific Programming with Python, Springer, Heidelberg.
- Li, Z. (2014) Numerical Methods for Partial Differential Equations – Finite Element Method, www4.ncsu.edu/~zhilin/ (accessed 22 March 2015).
- Lorenz, E.N. (1963) Deterministic non-periodic flow./. Atmos. Sci., 20, 130.
- Lotka, A.J. (1925) Elements of Physical Biology, Williams and Wilkins, Baltimore.
- MacKeown, P.K. (1985) Am. J. Phys., 53, 880.
- MacKeown, P.K. and Newman, D.J. (1987) Computational Techniques in Physics, Adam Hilger, Bristol.
- Maestri, J.J.V., Landau, R.H., and Páez, M.J. (2000) Two-particle Schrödinger equation animations of wave packet-wave packet scattering. Am. J. Phys., 68, 1113; http://physics.oregonstate.edu/~rubin/nacphy/ComPhys/PACKETS/.
- Mallat, P.G. (1982) A theory for multireso-lution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11 (7), 674.
- Mandelbrot, B. (1967) How long is the coast of Britain? Science, 156, 638.
- Mandelbrot, B. (1982) The Fractal Geometry of Nature, Freeman, San Francisco.
- Manneville, P. (1990) Dissipative Structures and Weak Turbulence, Academic Press, San Diego.
- Mannheim, P.D. (1983) The physics behind path integrals in quantum mechanics. Am. J. Phys., 51, 328.
- Marion, J.B. and Thornton, S.T. (2003) Classical Dynamics of Particles and Systems, 5th edn, Harcourt Brace Jovanovich, Orlando.
- Mathews, J. (2002) Numerical Methods for Mathematics, Science and Engineering, Prentice-Hall, Upper Saddle River.
- Metropolis, M., Rosenbluth, A.W., Rosen-bluth, M.N., Teller, A.H., and Teller, E. (1953) J. Chem. Phys., 21, 1087.
- Moon, F.C. and Li, G.-X. (1985) Phys. Rev. Lett., 55, 1439.
- Morse, P.M. and Feshbach, H. (1953) Methods of Theoretical Physics, McGraw-Hill, New York.
- Motter, A. and Campbell, D. (2013) Chaos at fifty. Phys. Today, 66 (5), 27.
- Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R.D., and Schulten, K. (1996) NAMD – Scalable Molecular Dynamics. J. Supercomput. Apps. High Perform. Comput., 10, 251–268, www.ks.uiuc.edu/Research/namd (accessed 22 March 2015).
- Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., Abele, H., Baessler, S., Ruess, F.J., Stoferle, T., Westphal, A., Gagarski, A.M., Petrov, G.A., and Strelkov, A.V. (2002) Quantum states of neutrons in the Earth’s gravitational field. Nature, 415, 297.
- NIST Digital Library of Mathematical Functions (2014) dlmf.nist.gov/ (accessed 22 March 2015).
- Numerical Python (2013) NumPy numpy.scipy.org (accessed 22 March 2015).
- NumPy Tutorial, Tentative (2015) Tentative NumPy Tutorial wiki.scipy.org/Tentative_NumPy_Tutorial (accessed 22 March 2015).
- Oliphant, T.E. (2006) Guide to NumPy, csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf (accessed 22 March 2015).
- Ott, E. (2002) Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
- Otto A. (2011) Numerical Simulations of Fluids and Plasmas, how.gi.alaska.edu/ao/sim (accessed 22 March 2015).
- Pancake, C.M. (1996) Is parallelism for you?, Comput. Sci. Eng., 3, 18.
- Peitgen, H.-O., Jürgens, H., and Saupe, D. (1992) Chaos and Fractals, Springer, New York.
- Penna, T.J.P. (1994) Comput. Phys., 9, 341.
- Perez, F., Granger, B.E. and Hunter, J.D. (2010) Python: An Ecosystem for Scientifc Computing. Comput. Sci. Eng., 13 (2), www.computer.org/web/computingnow/cise (accessed 22 March 2015).
- Perlin, K. (1985) An Image Synthesizer, Computer Graphics (Proceedings of ACM SIG-GRAPH 85) 24, 3.
- Phatak, S.C. and Rao, S.S. (1995) Logistic map: A possible random-number generator. Phys. Rev. E, 51, 3670.
- Plischke, M. and Bergersen, B. (1994) Equilibrium Statistical Physics, 2nd edn, World Scientific, Singapore.
- Polikar, R. (2001) The Wavelet Tutorial, users.rowan.edu/~polikar/WAVELETS/WTtutorial.html (accessed 22 March 2015).
- Polycarpou, A.C. (2006) Introduction to the Finite Element Method in Electromagnetics, Morgan and Claypool, San Rafael.
- Potvin, J. (1993) Comput. Phys., 7, 149. (2013) Pov-Ray, Persistence of Vision Ray-tracer, www.povray.org (accessed 22 March 2015).
- Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1994) Numerical Recipes, Cambridge University Press, Cambridge.
- Python (2014) Python for Programmers, https://wiki.python.org/moin/BeginnersGuide/Programmers (accessed 22 March 2015).
- LearnPython.org (2014) Interactive Python Tutorial, http://www.learnpython.org/ (accessed 22 March 2015).
- (2014)The Python Tutorial, docs.python.org/2/tutorial/ (accessed 22 March 2015).
- (2014) Python Index of Packages, pypi.python.org/pypi (accessed 22 March 2015).
- (2014) Python Documentation, www.python.org/doc (accessed 22 March 2015).
- Quinn, M.J. (2004) Parallel Programming in C with MPI and OpenMP, McGraw-Hill, New York.
- Ramasubramanian, K. and Sriram, M.S. (2000) A comparative study of computation of Lyapunov spectra with different algorithms. Physica D, 139, 72.
- Rapaport, D.C. (1995) The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge.
- Rasband, S.N. (1990) Chaotic Dynamics of Nonlinear Systems, John Wiley & Sons, New York.
- Rawitscher, G., Koltracht, I., Dai, H., and Ribetti, C. (1996) Comput. Phys., 10, 335.
- Reddy, J.N. (1993) An Introduction to the Finite Element Method, 2nd edn, McGraw-Hill, New York.
- Refson, K. (2000) Moldy, A General-Purpose Molecular Dynamics Simulation Program, cc-ipcp.icp.ac.ru/Moldy_2_16.html (accessed 22 March 2015).
- Reynolds, O. (1883) Proc. R. Soc. Lond., 35, 84.
- Richardson. L.F. (1961) Problem of contiguity: an appendix of statistics of deadly quarrels. General Syst. Yearbook, 6, 139.
- Rowe, A.C.H. and Abbott, P.C. (1995) Daubechies wavelets and mathematica. Comput. Phys., 9, 635.
- Russell, J.S. (1844) Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London.
- Sander, E., Sander, L.M., and Ziff, R.M. (1994) Comput. Phys., 8, 420.
- Sanders, J. and Kandrot, E. (2011) Cuda by Example, Addison Wesley, Upper Saddle River.
- Satoh, A. (2011) Introduction to Practice of Molecular Simulation, Elsevier, Amsterdam.
- Scheck, F. (1994) Mechanics, from Newton’s Laws to Deterministic Chaos, 2nd edn, Springer, New York.
- Shannon, C.E. (1948) A mathematical theory of communication. Bell Syst. Tech.J., 27, 379.
- (2014) SciPy, a Python-based ecosystem, www.scipy.org (accessed 22 March 2015).
- Shaw C.T. (1992) Using Computational Fluid Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
- Singh, P.P. and Thompson, W.J. (1993) Comput. Phys., 7, 388.
- Sipper, M. (1997) Evolution of Parallel Cellular Machines, Springer, Heidelberg, cell-auto.com (accessed 22 March 2015).
- Smith, D.N. (1991) Concepts of Object-Oriented Programming, McGraw-Hill, New York.
- Smith, L.I. (2002) A Tutorial on Principal Components Analysis, www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf (accessed 22 March 2015).
- Smith, S.W. (1999) The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego.
- Stetz, A., Carroll, J., Chirapatpimol, N., Dixit, M., Igo, G., Nasser, M., Ortendahl, D., and Perez-Mendez, V. (1973) Determination of the Axial Vector Form Factor in the Radiative Decay of the Pion, LBL 1707.
- Sullivan, D. (2000) Electromagnetic Simulations Using the FDTD Methods, IEEE Press, New York.
- Tabor, M. (1989) Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New York.
- Taflove, A. and Hagness, S. (2000) Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn, Artech House, Boston.
- Tait, R.N., Smy, T., and Brett, M.J. (1990) Thin Solid Films, 187, 375.
- Thijssen J.M. (1999) Computational Physics, Cambridge University Press, Cambridge.
- Thompson, W.J. (1992) Computing for Scientists and Engineers, John Wiley & Sons, New York.
- Tickner, J. (2004) Simulating nuclear particle transport in stochastic media using Perlin noise functions. Nucl. Instrum. Methods B, 203, 124.
- Vallée, O. (2000) Comment on a quantum bouncing ball. Am. J. Phys., 68, 672.
- van de Velde, E.F. (1994) Concurrent Scientific Computing, Springer, New York.
- van den Berg, J.C. (ed.) (1999) Wavelets in Physics, Cambridge University Press, Cambridge.
- Vano, J.A., Wildenberg, J.C., Anderson, M.B., Noel, J.K., and Sprott, J.C. (2006) Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity, 19, 2391–2404.
- Visscher, P.B. (1991) Comput. Phys., 5, 596.
- Vold, M.J. (1959)J. Colloid Sci., 14, 168.
- Volterra, V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. Lincei. Ser. VI, 2.
- Warburton, R.D.H. and Wang, J. (2004) Analysis of asymptotic projectile motion with air resistance using the Lambert W function. Am. J.Phys., 72, 1404.
- Ward, D.W. and Nelson, K.A. (2005) Finite difference time domain, FDTD, simulations of electromagnetic wave propagation using a spreadsheet. Comput. Appl. Eng. Educat, 13 (3), 213–221.
- Whineray, J. (1992) An energy representation approach to the quantum bouncer. Am. J. Phys., 60, 948.
- (2014) Principal component analysis, en.wikipedia.org/wiki/Principal_component_analysis (accessed 22 March 2015).
- Williams, G.P. (1997) Chaos Theory Tamed, Joseph Henry Press, Washington.
- Witten, T.A. and Sander, L.M. (1981) Phys. Rev. Lett., 47, 1400; Witten, T.A. and Sander, L.M. (1983) Phys. Rev. B, 27, 5686.
- Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985) Determining Lyapunov exponents from a time series. Physica D, 16, 285.
- Wolfram S. (1983) Statistical mechanics of cellular automata. Rev. Mod. Phys., 55, 601.
- Yang, C.N. (1952) The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev., 85, 809.
- Yee, K. (1966) IEEE Trans. Ant. Propagat., AP-14, 302.
- Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Shakhnovich, E.I., and Dill, A. (1995) Proc. Natl. Acad. Sci. USA, 92, 325.
- Zabusky, N.J. and Kruskal, M.D. (1965) Phys. Rev. Lett., 15, 240.
- Zeller, C. (2008) High Performance Computing with CUDA, www.nvidia.com/object/sc10_cuda_tutorial.htmlP (accessed 22 March 2015).