INTRODUCTION

Image

It seems impossible to believe that at one point in ancient time, human beings had absolutely no formal mathematics—that from scratch, the ideas for numbers and numeration were begun, applications found, and inventions pursued, one layered upon another, creating the very foundation of everyday life. So dependent are we upon this mathematic base—wherein we can do everything from predict space flight to forecast the outcomes of elections to review a simple grocery bill—that to imagine a world with no mathematical concepts is quite a difficult thought to entertain.

In this volume we encounter the humble beginnings of the ancient mathematicians and various developments over thousands of years, as well as modern intellectual battles fought today between, for example, the logicians who either support the mathematic philosophy of Platonism or promote its aptly named rival, anti-Platonism. We explore worldwide math contributions from 4000 BCE through today. Topics presented from the old world include mathematical astronomy, Greek trigonometry and mensuration, and the ideas of Omar Khayyam. Contemporary topics include isomorphic structures, topos theory, and computers and proof.

We also find that mathematic discovery was not always easy for the discoverers, who perhaps fled for their lives from Nazi threats, or created brilliant mathematical innovation while beleaguered by serious mental problems, or who pursued a mathematic topic for many years only to have another mathematician suddenly and quite conclusively prove that what had been attempted was all wrong, effectively quashing years of painstaking work. For the creative mathematician, as for those who engage in other loves or conflicts, heartbreak or disaster might be encountered. The lesson learned is one in courage and the pure guts of those willing to take a chance—even when most of the world said no.

Entering into math history is a bit like trying to sort through a closet full of favourite old possessions. We pick up an item, prepared to toss it if necessary, and suddenly a second and third look at the thing reminds us that this is fascinating stuff. First thing we know, a half hour has passed and we are still wondering how, for instance, the Babylonians (c. 2000 BCE) managed to write a table of numbers quite close to Pythagorean Triples more than 1,000 years before Pythagoras himself (c. 500 BCE) supposedly discovered them.

The modern-day math student lives and breathes with her math teacher’s voice ringing in her ear, saying, “Memorize these Pythagorean triples for the quiz on Friday.” Babylonian students might have heard the same request. Their triples were approximated by the formula of the day, a2 + b2/2a, which gives values close to Pythagoras’s more accurate a2 + b2 = c2. Consider that such pre-Pythagorean triples were written by ancient scribes in cuneiform and sexagesimal (that’s base 60). One such sexagesimal line of triples from an ancient clay tablet of the time translates to read as follows: 2, 1 59, 2 49. (The smaller space shown between individual numbers, such as the 1 and the 59 in the example, are just as one would leave a slight space if reporting in degrees and minutes, also base 60). In base 10 this line of triples would be 120, 119, 169. The reader is invited for old time’s sake to plug these base 10 numbers into the Pythagorean Formula a2 + b2 = c2 to verify the ancient set of Pythagorean triples that appeared more than 1,000 years before Pythagoras himself appeared.

An equally compelling example of credit for discovery falling upon someone other than the discoverer is found in a quite familiar geometrically appearing set of numbers. Most math students recognize the beautiful Pascal’s Triangle and can even reproduce it, given pencil and paper. The triangle yields at a glance the coefficients of a binomial expansion, among many other bits of useful mathematics information. As proud as Blaise Pascal (1600s) must have been over his Pascal’s triangle, imagine that of Zhu Shijie (a.k.a. Chu Shih-Chieh), who first published the triangle in his book, Precious Mirror of Four Elements (1303). Zhu probably did not give credit to Pascal, as Pascal would not be born for another 320 years.

Zhu’s book has a gentle kind of title that suggests the generous sort of person Zhu might have been. Indeed, he gave full credit for the aforementioned triangle to his predecessor, Yang Hui (1300), who in turn probably lifted the triangle from Jia Xian (c. 1100). In fact, despite significant contributions to math theory of his times, Zhu unselfishly referred to methods in his book as the old way of doing things, thus praising the work of those who came before him.

We dig deeper into our closet of mathematic treasures and imagine mathematician Kurt Gödel (1906–1978). His eyes were said to be piercing, perhaps even haunting. Like a teacher of our past, could Mr. Gödel pointedly be asking about a little something we omitted from our homework, perhaps? We probably have all been confronted at one time or another for turning in an assignment that was incomplete. Gödel, however, made a career out of incompleteness, literally throwing the whole world into a tizzy with his incompleteness theorem. Paranoid and mentally unstable, his tormented mind could nonetheless uncover what other great minds could not. It was 1931, a year after his doctoral thesis first announced to the world that a young mathematics great had arrived.

Later an Austrian escapee of the Nazis, Gödel with his incompleteness theorem proved to be brilliant and on target, but also bad news for heavyweight mathematicians Bertrand Russell, David Hilbert, Gottlob Frege, and Alfred North Whitehead. These four giants in the math world had spent significant portions of their careers trying to construct axiom systems that could be used to prove all mathematical truths. Gödel’s incompleteness theorem ended those pursuits, trashing years of mathematical work.

Russell, Hilbert, Frege, and Whitehead all made their marks in other areas of math. How would they have taken this shocking news of enormous rejection? Let’s try to imagine.

Bertrand Russell might stare downward upon us, shocks of tufted white hair about his face, perhaps asking himself at the tragic moment, can it be possible, all that work, gone in a moment? Would he have thrown math books around the office in anger? How about David Hilbert? Can we imagine his hurt, his pain, at having the whole world know that his efforts have simply been dashed by that upstart mathematician, Gödel? Consider Frege and then Whitehead, and then we realize that another half hour has passed. But our mental image of Gödel’s stern countenance calls us back for yet more penetrating thought.

Gödel was called one of the great logicians since Aristotle (384–322 BCE). Gödel’s engaging gaze captivated the attention of Albert Einstein, who attended Gödel’s hearing to become a U.S. citizen. Einstein feared that Gödel’s unpredictable behaviour might sabotage his own cause to remain in the U.S. Einstein’s presence prevailed. Citizenship was granted to Gödel. In 1949 Gödel returned the favour by mathematically demonstrating that Einstein’s theory of relativity allows for possible time travel.

The story of Gödel did not end well. Growing ever more paranoid as his life progressed, he starved himself to death.

Our investigative journey is far from complete. Yet we take a few sentimental minutes to ponder Gödel and maybe ask, how could his mind have entertained these mathematical brilliancies that shook the careers of the world’s brightest and yet feared ordinary food so that his resulting anorexia eventually took his life? How could the same mind entertain such opposing thoughts? But there’s so much still to be tackled yet in math history.

How about this 13th century word problem? Maybe we always hated word problems in math class. How might we have felt seven or eight hundred years ago?

Suppose one has an unknown number of objects. If one counts them by threes, there remain two of them. If one counts them by fives, there remain three of them. If one counts them by sevens, there remain two of them. How many objects are there?

Even if we detest word problems we can hardly resist. After a bit of trial and error we find the answer and chuckle as though we knew we could do it all along; we just were sweating a little at first, and now feel that deeper sense of satisfaction at having solved a problem. Perhaps at some point we might wonder if our slipshod method might have been improved upon. Did it have to be trial and error? That same dilemma plagued Asian mathematicians in the 1st through 13th centuries CE. Where were the equations that might easily solve the problems? In China, probably around the 13th century, the concept of equations was just coming into existence.

In Asia the slow evolution of algorithms of root extraction was leading to a fully developed concept of the equation. But strangely, for reasons not clear now, a period of progressive loss of achievements occurred. The 14th through 16th centuries of Asian math are sometimes referred to as the “fall into oblivion.” Counting rods were out. The abacus was in. Perhaps that new technology of the day led to sluggish development, until the new abacus caught on. By the 17th century counting rods had been totally discarded. One can imagine a student with his abacus before math class, sliding the buttons up and down to attack a math problem. In this math closet of history we, too, touch the smooth wooden buttons and suddenly a tactile sense has become a part of our math experience, the gentle clicking as numbers are added for us by this ingenious advancement in technology, giving us what we crave—speed and accuracy—relieving the brain for other tasks while we calculate.

If much of this mysterious development in math sounds like fiction, then we have arrived in contemporary mathematical times. For while you might think that cold, rigid, unalterable, and concrete numbers seem to make up our world of mathematics, think again. Remember Gottlob Frege, whose years of math pursuit with axiomatic study was abruptly rejected by Kurt Gödel’s incompleteness theorem? Frege was a battler, developing the Frege argument for Platonism. Platonism asserts that math objects, such as numbers, are nonphysical objects that cannot be perceived by the senses. Intuition makes it possible to acquire knowledge of nonphysical math objects, which exist outside of space and time. Frege supports that notion. Others join the other side of the epistemological argument against Platonism.

What we are engaging in here is called mathematics philosophy. If this pursuit seems like a waste of time, recall that other “wastes of time” such as imaginary numbers, which later proved crucial to developing electrical circuitry and thus our modern world, did become important. But we began in pursuit of the aforementioned term fiction, which is where we are now headed. One philosophy of math beyond Platonism is nominalism. And one version of nominalism is fictionalism. Fictionalists agree with Platonists that if there really were such a thing as the number 4, then it would be an abstract object. The American philosopher Hartry Field is a fictionalist.

Mathematics philosophers have forever undertaken mental excursions that defy belief—at first, that is. As with the other objects we have come across in this closet, we might not even recognize nor understand it immediately, but we pick it up for examination anyway. Then we read for a while about Platonism, Nominalism, Fictionalism—arguments for and against—and we have been launched into a modern-day journey, for this is truly new math. Topics such as these are not from the ancients but rather from modern mathematicians. The ideas are still in relative infancy, waiting to find acceptance, and it is hoped, applications that might one day change our world or that of those who follow us.

Perhaps the trip will take us down a dead-end road. Perhaps the trip will lead to significant discovery. One can never be certain. But there’s this whole closet to go through, and we select the next item….

Image