Bibliography

The problem with digital books is that you can always find what you are looking for but you need to go into a bookstore to find what you weren’t looking for.

Paul Krugman

Books

Abascal, Kathy. Herbs and Influenza: How Herbs Used in the 1918 Flu Pandemic Can Be Effective Today. Vashon, Wash.: Tigana Press, 2006.

Buhner, Stephen Harrod. Healing Lyme Disease Coinfections: Complementary and Holistic Treatments for Bartonella and Mycoplasma. Rochester, Vt.: Inner Traditions, 2013.

———. Herbal Antibiotics, 2nd ed. North Adams, Mass.: Storey Publishing, 2012.

———. The Lost Language of Plants: The Ecological Importance of Plant Medicines to Life on Earth. White River Junction, Vt.: Chelsea Green, 2002.

Chang, Hson-Mou, and Paul Pui-Hay But. Pharmacology and Applications of Chinese Materia Medica. 2 vols. River Edge, N.J.: World Scientific, 1987.

Felter, Harvey Wickes, and John Uri Lloyd. King’s American Dispensatory. 2 vols. Sandy, Ore.: Eclectic Medical Publications, 1983.

Foster, Steven, and Yue Chongxi. Herbal Emissaries. Rochester, Vt.: Healing Arts Press, 1992.

Gladstar, Rosemary, and Pamela Hirsch. Planting the Future. Rochester, Vt.: Healing Arts Press, 2000.

Grieve, Maude. A Modern Herbal. 2 vols. N.Y.: Dover, 1971.

Griggs, Barbara. Green Pharmacy. Rochester, Vt.: Healing Arts Press, 1991.

Hobbs, Christopher. Medicinal Mushrooms, Loveland, Colo.: Interweave Press, 1995.

Lappé, Marc. When Antibiotics Fail. Berkeley, Calif.: North Atlantic Books, 1986.

Levy, Stuart. The Antibiotic Paradox. N.Y.: Plenum Press, 1992.

Manandhar, Narayan P. Plants and People of Nepal. Portland, Ore.: Timber Press, 2002.

Miller, Orson K. Mushrooms of North America. N.Y.: E. P. Dutton, 1972.

Moerman, Daniel. Native American Ethnobotany. Portland, Ore.: Timber Press, 1998.

Moore, Michael. Medicinal Plants of the Desert and Canyon West. Sante Fe: Museum of New Mexico Press, 1989.

———. Medicinal Plants of the Mountain West. Sante Fe: Museum of New Mexico Press, 1979.

———. Medicinal Plants of the Pacific West. Sante Fe, N.M.: Red Crane Books, 1993.

Nadkarni, K. M., and A. K. Nadkarni. Indian Materia Medica, 3rd ed. Bombay: Popular Prakashan, 1954.

Scheld, W. Michael, Richard Whitley, and Christina M. Marra. Infections of the Central Nervous System. Philadelphia: Lippincott Williams and Wilkins, 2004.

Weiss, Rudolph. Herbal Medicine. Gothenburg, Sweden: AB Arcanum, 1988.

Wu, Jing-Nuan. An Illustrated Chinese Materia Medica. N.Y.: Oxford University Press, 2005.

Zhu, You-Ping. Chinese Materia Medica. Amsterdam: Harwood Academic Publishers, 1998.

Journal Papers and Other Publications

Comment: Many of the research papers that are published in the West, and a good number of those from the East and South, are easily found on the very useful Internet database PubMed. That has made this kind of research much easier; it is fostering the wide dispersal of the scientific study of plant medicines. At the same time, there is a powerful movement among many of the world’s researchers to begin publishing their studies only in open-source Internet journals, which means that you can access the whole journal article, not just the abstract. A substantial number of the journals that had been prominent in the past are now so exclusive, so expensive, that many universities are abandoning them. Some journals that originally cost $200 per year for a university subscription are now in the $20,000 range — and at the same time, the professors and researchers are still doing all the work on them without remuneration. Further, many of the formerly prominent journals are now owned by big corporations, sometimes pharmaceutical companies, and they do control what is printed. And finally, many of the non-open-source journals are now writing their abstracts in such a way as to eliminate any reasonable transfer of information. If you want any of the useful information from the study, you gotta pay. The normal fee range for a four-page article tends to be anywhere from $34 to $51 for 24-hour access. Some of the publishers even restrict users’ ability to print the articles; they are read-only. As the Supreme Court of the United States once said (in its better days), “Well, there’s no definition of piggish in the law, but we recognize it when we see it.”

The open-source movement is altering things considerably, and it’s about time.

As I have noted in this book and elsewhere, many of the Chinese studies have not been translated into English and are not available on PubMed. However, the Chinese National Knowledge Infrastructure (CNKI) database is developing into an Eastern form of PubMed. It is in its infancy but it is going to be a powerhouse eventually, especially when it comes to plant medicines. The Asian cultures are not caught up in the pharmaceutical-dominated prejudice of the Western medical system. They know plant medicines work; they just want to find out how to use them most effectively. So they are beginning to create a unique hybrid composed of traditional healing approaches and Western medicine, which we in the West would do well to emulate in our own fashion. (But you know, horses might make a comeback, so we keep putting our cultural money on the manufacture of buggy whips — the new ones we are making even have computer chips in them, a CD, and a GPS.)

Though the Chinese journal articles, for the most part, have not been translated into English, the abstracts for them are in English. This is opening up a tremendous amount of research that has, formerly, not been accessible. The best way to access this site, if you are interested, is to get on Google Scholar, then type in what you are looking for, like this: scutellaria cnki. Or: cordyceps cnki. This will open that world to you — it’s worth it.

My bibliographical references for CNKI listings will look like this:

Wang, G., et al. Anti-tumor activity study of extract from Scutellaria barbata D. Don. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2004-09, CNKI.

The first number after the journal title is the year of publication, and the second number is the issue. The paper above, for example, was published in issue 9 of 2004. Google’s search engine does have a bit of trouble scanning the CNKI database at this point, so if you are trying to access that exact article you pretty much have to type the title in verbatim on Google Scholar with the appendage CNKI and then look over the entries that appear. It will be there somewhere. (Some of the abstract translations are challenging, so be prepared.)

Google Scholar, PubMed, and CNKI are much like bookstores — you will often find what you were not looking for. A lot of useful discoveries come from that, if you are willing to trust it.

The Viruses

Miscellaneous

Bennett, R. et al. La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and monkeys. Virology Journal 5, no. 25 (2008): 525–40.

Cassidy, L., and J. Patterson. Mechanism of La Crosse virus inhibition by ribavirin. Antimicrobial Agents and Chemotherapy 33, no. 11 (1989): 2009–11, 1989.

Charrel, R., et al. Chikungunya outbreaks — the globalization of vectorborne diseases. New England Journal of Medicine 356, no. 8 (2007): 769–71.

Chen, Y., et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine 3, no. 8 (1997): 866–71.

Deas, T., et al. Inhibition of flavivirus infections by antisense olidomers specifically suppressing viral translation and RNA replication. Journal of Virology 79, no. 5 (2005): 4599–609.

De Clerq, Eric. Antivirals and antiviral strategies. Nature Reviews, Microbiology 2 (2004): 704–20.

Epstein, Paul. Emerging diseases and ecosystem instability: New threats to public health. American Journal of Public Health 85, no. 2 (1995): 168–72.

Erwin, P., et al. La Crosse encephalitis in eastern Tennessee. American Journal of Epidemiology 155, no. 11 (2002): 1060–65.

Furr, Samantha, and Ian Marriott. Viral CNS infections: Role of glial pattern recognition receptors in neuroinflammation. Frontiers in Microbiology 3, article 201 (2012).

Gaggar, A., et al. Proline-glycine-proline (PGP) and high mobility group box 1 protein (HMGB1). Open Respiratory Medicine Journal 4 (2010): 32–38.

Halsey, E., et al. Correlation of serotype-specific dengue virus infection with clinical manifestations. PLoS 6, no. 5 (2012): e1638.

Kaushik, D., et al. Microglial responses to viral challenges. Frontiers in Bioscience 17 (2011): 2187–205.

Kuiken, T., et al. Emerging viral infections in a rapidly changing world. Current Opinion in Biotechnology 14, no. 6 (2003): 641–46.

Li, X. F., et al. Protective activity of the ethanol extract of Cynachum paniculatum (BUNGE) Kitagawa on treating herpes encephalitis. International Journal of Immunopathological Pharmacology 25, no. 1 (2012): 259–66.

Mackenzie, J. Emerging viral diseases: An Australian perspective. Emerging Infectious Diseases 5, no. 1 (1999): 1–8.

Mackenzie, J., et al. Emerging flaviviruses: The spread of and resurgence of Japanese encephalitis, West Nile, and dengue viruses. Nature Medicine 10, no. 12 (2004): S98–109.

Mackenzie, J., et al. Emerging viral diseases of Southeast Asia and the western Pacific. Emerging Infectious Diseases 7, no. 3, supplement (2001): 497–504.

Nichol, S., et al. Emerging viral diseases. Proceedings of the National Academy of Sciences 97, no. 23 (2000): 12411–12.

Pekosz, Andrew, and Gregory Glass. Emerging viral diseases. Maryland Medicine 9, no. 1 (2008): 11–16.

Pekosz, A., et al. Induction of apoptosis by La Crosse virus infection and role of neuronal differentiation and human Bcl-2 expression in its prevention. Journal of Virology 70, no. 8 (1996): 5329–35.

Pekosz, A., et al. Protection from La Crosse virus encephalitis with recombinant glycoproteins. Journal of Virology 69, no. 6 (1995): 3475–81.

Schwartz, R., and R. Pellicciari. Manipulation of brain kynurenines: Glial targets, neuronal effects, and clinical opportunities. Journal of Pharmacology and Experimental Therapeutics 303, no. 1 (2002): 1–10.

Steiner, I., et al. Viral encephalitis: A review of diagnostic methods and guidelines for management. European Journal of Neurology 12 (2005): 331–43.

Sun, S., and D. Wirtz. Mechanics of enveloped virus entry into host cells. Biophysical Journal 90, no. 1 (2006): L10–12.

Uchil, P., et al. Nuclear location of flavivirus RNA synthesis in infected cells. Journal of Virology 80, no. 11 (2006): 5451–64.

Villarreal, L. P., V. R. Defilippis, and K. A. Gottlieb. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272, no. 1 (2000): 1–6.

Wang, H., et al. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock 32, no. 4 (2009): 348–57.

Whitley, R., and J. Gnann. Viral encephalitis: Familiar infections and emerging pathogens. Lancet 359 (2002): 507–13.

Wu, S., et al. Antiviral effects of an iminosugar derivative on flavivirus infections. Journal of Virology 76, no. 8 (2002): 3596–604.

Influenza

Alleva, L., et al. Systemic release of high mobility group box 1 protein during severe murine influenza. Journal of Immunology 181 (2008): 1454–59.

Bermejo-Martin, J., et al. Host adaptive immunity deficiency in severe pandemic influenza. Critical Care 14, no. 5 (2010): R167.

Hagau, N., et al. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Critical Care 14 (2010): R203.

Ito, Y., et al. Increased levels of cytokines and high-mobility group box 1 are associated with the development of severe pneumonia, but not acute encephalopathy, in 2009 H1N1 influenza-infected children. Cytokine 56, no. 2 (2011): 180–87.

Julkunen, I., et al. Inflammatory responses in influenza A virus infection. Vaccine 19, suppl. 1 (2000): S32–37.

Julkunen, I., et al. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12, no. 2–3 (2001): 171–80.

Kobasa, D., et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, no. 18 (2007): 319–23.

Kosai, K., et al. Elevated levels of high mobility group box chromosomal protein-1 (HMGB1) in sera from patients with severe bacterial pneumonia coinfected with influenza virus. Scandinavian Journal of Infectious Diseases 40, no. 4 (2008) :338–42.

Larsen, D., et al. Systemic and mucosal immune responses to H1N1 influenza virus infection in pigs. Veterinary Microbiology 74 (2000): 117–31.

Lee, N., et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS One 6, no. 10 (2011): e26050.

Lee, N., et al. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection. Clinical Infectious Diseases 45 (2007): 723–31.

Mauad, T., et al. Lung pathology in fatal novel human influenza A (N1N1) infection. American Journal of Respiratory and Critical Care Medicine 181 (2010): 72–79.

Ohta, T., et al. Serum concentrations of complement anaphylatoxins and proinflammatory mediators in patients with 2009 H1N1 influenza. Microbiology and Immunology 55, no. 3 (2011): 191–98.

Oslund, K., and N. Baumgarth. Influenza-induced innate immunity: Regulators of viral replication, respiratory tract pathology, and adaptive immunity. Future Virology 6, no. 8 (2011): 951–62.

Phung, T., et al. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells. Microbiology and Immunology 55, no. 12 (2011): 874–84.

Sladkova, T., and F. Kostolansky. The role of cytokines in the immune response to influenza A infection. Acta Virologica 50, no. 3 (2006): 151–62.

Teijara, J., et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, no. 6 (2011): 980–91.

Thompson, C., et al. Infection of human airway epithelium by human and avian strains of influenza A virus. Journal of Virology 80, no. 16 (2006): 8060–68.

Us, D. Cytokine storm in avian influenza. Mikrobiyoloji Bülteni 42, no. 2 (2008): 365–80.

Walsh, K., et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proceedings of the National Academy of Sciences 108, no. 29 (2011): 12018–23.

Xuelian, Y., et al. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6. PLoS One 6, no. 12 (2011): e28680.

Japanese Encephalitis

Aleyas, A., et al. Functional modulation of dendritic cells and macrophages by Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -independent pathways. Journal of Immunology 183, no. 4 (2010): 2462–74.

Aleyas, A., et al. Multifront assault on antigen presentation by Japanese encephalitis virus subverts CD8+ T cell responses. Journal of Immunology 185, no. 3 (2010): 1429–41.

Biswas, S., et al. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. Journal of Medical Virology 82, no. 2 (2010): 304–10.

Cao, S., et al. Japanese encephalitis virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells. Virology Journal 8 (2011): 39.

Chen, C., et al. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 11, no. 9 (2000): 1833–37.

Chen, C., et al. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. Journal of General Virology 91 (2010): 1028–37.

Chen, C., et al. Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-α signaling and contributes to neuronal death. Glia 60, no. 3 (2012): 487–501.

Chen, C., et al. Src signaling involvement in Japanese encephalitis virus-induced cytokine production in microglia. Neurochemistry International 58, no. 8 (2011): 924–33.

Chen, C., et al. TNF-α and IL-1ß mediate Japanese encephalitis virus-induced RANTES gene expression in astrocytes. Neurochemistry International 58, no. 2 (2011): 234–42.

Chen, C., et al. Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. Journal of Virology 78, no. 22 (2004): 12107–19.

Das, A., et al. Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PLoS One 6, no. 3 (2011): e17225.

Das, S., et al. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. Journal of Neurochemistry 115, no. 2 (2010): 537–49.

Das, S., et al. Japanese encephalitis virus infection induces IL-18 and IL-1beta in microglia and astrocytes: Correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. Journal of Neuroimmunology 195, no. 1–2 (2008): 60–72.

Das, S., and A. Basu. Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. Journal of Neurochemistry 106, no. 4 (2008): 1624–36.

Ghosh, D., and A. Basu. Japanese encephalitis — a pathological and clinical perspective. PLoS 3, no. 9 (2009): e437.

Ghoshal, A., et al. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55, no. 5 (2007): 483–96.

Hong-Lin, S., et al. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and unfolded protein response. Journal of Virology 76, no. 9 (2002): 4162–71.

Khanna, N., et al. Induction of hypoglycaemia in Japanese encephalitis virus infection: The role of T lymphocytes. Clinical and Experimental Immunology 107, no. 2 (1997): 282–87.

Kim, E., et al. Paradoxical effects of chondroitin sulfate-E on Japanese encephalitis viral infection. Biochemical and Biophysical Research Communications 409(4): 717-22, 2011.

Kumar, S., et al. Some observations on the tropism of Japanese encephalitis virus in rat brain. Brain Research 1268 (2009): 135–41.

Liao, S., et al. Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neuroscience Letters 324, no. 2 (2002): 133–36.

Lin, C., et al. Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Research 137, no. 1 (2008): 49–55.

Lin, R., et al. Blocking of the alpha interferon Jak-Stat signaling pathway by Japanese encephalitis virus infection. Journal of Virology 78, no. 17 (2004): 9285–94.

Lin, R., et al. Replication-incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system. Journal of General Virology 85 (2004): 521–33.

Mathus, A., et al. Breakdown of blood-brain barrier by virus-induced cytokine during Japanese encephalitis virus infection. International Journal of Experimental Pathology 73, no. 5 (1992): 603–11.

Mishra, M., and A. Basu. Minocycling neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. Journal of Neurochemistry 105, no. 5 (2008): 1582–95.

Mori, Y., et al. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. Journal of Virology 79, no. 6 (2005): 3448–58.

Nazmi, A., et al. RIG-1 mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One 6, no. 6 (2011): e21761.

Ogata, A., et al. Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. Journal of Virology 65, no. 2 (1991): 880–86.

Raung, S., et al. Japanese encephalitis virus infection stimulates Src tyrosine kinase in neuron/glia. Neuroscience Letters 419, no. 3 (2007): 263–68.

Raung, S., et al. Tyrosine kinase inhibitors attenuate Japanese encephalitis virus-induced neurotoxicity. Biochemical and Biophysical Research Communications 327, no. 2 (2005): 399–406.

Saxena, S., et al. Induction of nitric oxide synthase during Japanese encephalitis virus infection. Archives of Biochemistry and Biophysics 391, no. 1 (2001): 1–7.

Saxena, S., et al. An insufficient anti-inflammatory cytokine response in mouse brain is associated with increased tissue pathology and viral load during Japanese encephalitis virus infection. Archives of Virology 153, no. 2 (2008): 283–92.

Saxena, V., et al. Kinetic of cytokine profile during intraperitoneal inoculation of Japanese encephalitis virus in BALB/c mice model. Microbes and Infection 10(10-11): 1210-7, 2008.

Srivastava, R., et al. Status of proinflammatory and anti-inflammatory cytokines in different brain regions of a rat model of Japanese encephalitis. Inflammation Research 61, no. 4 (2012): 381–89.

Swarup, V., et al. Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. Journal of Neurochemistry 103, no. 2 (2007): 771–83.

Tandon, A., et al. Alteration in plasma glucose levels in Japanese encephalitis patients. International Journal of Experimental Pathology 83, no. 1 (2002): 39–46.

Tani, H., et al. Involvement of ceramide in the propagation of Japanese encephalitis virus. Journal of Virology 84, no. 6 (2010): 2798–807.

Thongtan, T., et al. Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. Journal of Medical Virology 84, no. 4 (2012): 615–23.

Thongtan, T., et al. Highly permissive infection of microglial cells by Japanese encephalitis virus: A possible role as a viral reservoir. Microbes and Infection 12, no. 1 (2010): 37-45.

Tsao, C., et al. Japanese encephalitis virus infection activates caspase-8 and -9 in a FADD-independent and mitochondrion-dependent manner. Journal of General Virology 89 (2008): 1930–41.

Yang, K., et al. A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes. Journal of General Virology 85 (2004): 635–42.

Yang, T., et al. Japanese encephalitis virus NS2B-NS3 protease induces caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells. Virus Research 143, no. 1 (2009): 77–85.

Yang, Y., et al. Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain. Virology Journal 8 (2011): 80.

Yasui, K. Neuropathogenesis of Japanese encephalitis virus. Journal of Neurovirology 8, suppl. 2 (2002): 112–14.

SARS

Berger, A., et al. Severe acute respiratory syndrome (SARS) — paradigm of an emerging viral infection. Journal of Clinical Virology 29 (2004): 13–22.

Chen, J., et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice. Journal of Virology 84, no. 3 (2010): 1289–301.

Glass, W., et al. Mechanisms of host defense following severe acute respiratory syndrome-associated coronavirus (SARS-CoV) pulmonary infection of mice. Journal of Immunology 173, no. 6 (2004): 4030–39.

Hogan, R., et al. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. Journal of Virology 78, no. 20 (2004): 11416–21.

Jiang, Y., et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. American Journal of Respiratory and Critical Care Medicine 171 (2005): 850–57.

Law, H., et al. Chemokine up-regulation in SARS-coronavirus-infected monocyte-derived human dendritic cells. Blood 106, no. 7 (2005): 2366–74.

Lee, C., et al. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with SARS. Journal of Immunology 172 (2004): 7841–47.

Li, D., et al. Association of RANTES with the replication of severe acute respiratory syndrome coronavirus in THP-1 cells. European Journal of Medical Research 10, no. 3 (2005): 117–20.

Nagata, N., et al. Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice. Immunopathology and Infectious Disease 172, no. 6 (2008): 1625–37.

Okabayashi, T., et al. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. Journal of Medical Virology 78, no. 4 (2006): 417–24.

Oudit, G., et al. The role of ACE2 in pulmonary diseases — relevance for the nephrologist. Nephrology, Dialysis, Transplantation 24 (2009): 136265.

Pyrc, K., et al. Antiviral strategies against human coronaviruses. Infectious Disorders Drug Targets 7, no. 1 (2007): 59–66.

Rockx, B., et al. Early upregulation of acute respiratory distress syndrome-associated cytokines promoted lethal disease in aged-mouse model of severe acute respiratory syndrome coronavirus infection. Journal of Virology 83, no. 14 (2009): 7062–74.

Sims, A., et al. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Research 133, no. 1 (2008): 33–44.

Sims, A., et al. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia. Journal of Virology 79, no. 24 (2005): 15511–24.

Spiegel, M., et al. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. Journal of General Virology 87 (2006): 1953–60.

Theron, M., et al. A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 32, no. 1 (2005): 30–38.

Yang, Y. H., et al. Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. Journal of Medical Virology 77, no. 1 (2005): 1–7.

Yang, Z., et al. PH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. Journal of Virology 78, no. 11 (2004): 5642–50.

Yen, Y., et al. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. Journal of Virology 80, no. 6 (2006): 2684–93.

Yoshikawa, T., et al. Severe respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. Journal of Virology 83, no. 7 (2009): 3039–48.

Tick-Borne Encephalitis

Atrasheuskaya, A., et al. Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clinical and Experimental Immunology 131 (2003): 148–54.

Dumpis, U., et al. Tick-borne encephalitis. Clinical Infectious Diseases 28 (1999): 882–90.

Kaiser, Richard. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98. Brain 122 (1999): 2067–78.

Lepej, S., et al. Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurologica Scandanavica 115, no. 2 (2007): 109–14.

Mansfield, K., et al. Tick-borne encephalitis virus — a review of an emerging zoonosis. Journal of General Virology 90 (2009): 1781–94.

Pancewicz, S., et al. Decreased antioxidant-defense mechanisms in cerebrospinal fluid (CSF) in patients with tick-borne encephalitis (TBE). Neurologia i Neurochirurgia Polska 36, no. 4 (202): 767–76.

Singh, S., and H. Girschick. Tick-host interactions and their immunological implications in tick-borne diseases. Current Science 85, no. 9 (2003): 1284–98.

Stadler, K., et al. Proteolytic activation of tick-borne encephalitis virus by furin. Journal of Virology 71, no. 11 (1997): 8475–81.

Stiasny, K. et al. Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. Journal of Virology 75, no. 16 (2001): 7392–98.

Zajkowska, J., et al. Evaluation of CXCL10, CXCL11, CXCL12, and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick-borne encephalitis (TBE). Advances in Medical Sciences 56, no. 2 (2011): 311–17.

West Nile Encephalitis

Ambrose, R., and J. Mackenzie. West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune invasion. Journal of Virology 85, no. 6 (2011): 2723–32.

Arjona. A., et al. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. Journal of Clinical Investigation 117, no. 10 (2007): 3059–66.

Bai, F., et al. IL-10 signaling blockade controls murine West Nile virus infection. PLoS Pathology 5, no. 10 (2009): e1000610.

Bai, F., et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. Journal of Infectious Diseases 202, no. 12 (2010): 1804–12.

Bode, A., et al. West Nile virus disease: A descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003. Clinical Infectious Diseases 42 (2006): 1234–40.

Bourgeois, M., et al. Gene expression analysis in the thalamus and cerebrum of horses experimentally infected with West Nile virus. PLoS One 6, no. 10 (2011): e24371.

Brien, J., et al. Key role of T cell defects in age-related vulnerability to West Nile virus. Journal of Experimental Medicine 206, no. 12 (2009): 2735–45.

Brien, J., et al. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. Journal of Immunology 181, no. 12 (2008): 8568–75.

Cheeran, M., et al. Differential responses of human brain cells to West Nile virus infection. Journal of Neurovirology 11, no. 6 (2005): 512–24.

Cheng, Y., et al. Major histocompatibility complex class 1 (MHC-1) induction by West Nile virus. Journal of Infectious Diseases 189, no. 4 (2004): 658–68.

Cheng, Y., et al. The role of tumor necrosis factor in modulating responses of murine embryo fibroblasts by flavivirus West Nile. Virology 329, no. 2 (2004): 361–70.

Dai, J., et al. ICAM-1 participates in the entry of West Nile virus into the central nervous system. Journal of Virology 82, no. 8 (2008): 4164–68.

Diamond, M., et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. Journal of Virology 77, no. 4 (2003): 2578–86.

Getts, D., et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. Journal of Experimental Medicine 205, no. 10 (2008): 2319–37. Accessed via the Journal of Experimental Medicine website at jem.rupress.org.

Glass, W., et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. Journal of Experimental Medicine 203 (2006): 35–40.

Glass, W., et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. Journal of Experimental Medicine 202, no. 8 (2006): 1087–98.

Jiminez-Clavero, M. A. Animal viral diseases and global change: Bluetongue and West Nile fever as paradigms. Frontiers in Genetics 3, no. 105 (2012). Published electronically ahead of print June 13, 2012.

Jordan, I., et al. Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. Journal of Infectious Diseases 182 (2000): 1214–17.

Keller, B., et al. Innate immune evasion by hepatitis C and West Nile virus. Cytokine Growth Factor Reviews 18, no. 5–6 (2007): 535–44.

Klein, R., et al. Neuronal CXCL10 directs CD8+ T cell recruitment and control of West Nile virus encephalitis. Journal of Virology 79, no. 17 (2005): 11457–66.

Kong, K., et al. West Nile virus attenuates activation of primary human macrophages. Viral Immunology 21, no. 1 (2008): 78–82.

Kumar, M., et al. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. Journal of Neuroinflammation 7 (2010): 73–87.

Lim, J., and P. Murphy. Chemokine control of West Nile virus infection. Experimental Cell Research 317, no. 5 (2011): 569–74.

Mackenzie, J., et al. Cholesterol manipulation by West Nile virus perturbs the cellular membrane response. Cell Host & Microbe 2, no. 4 (2007): 229–39.

McCandless, E., et al. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proceedings of the National Academy of Sciences 105, no. 32 (2008): 11270–75.

Medigeshi, G., et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. Journal of Virology 81, no. 20 (2007): 10849–60.

Morrey, J., et al. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antiviral Chemistry and Chemotherapy 15 (2004): 67–75.

Munoz-Erazo, L., et al. Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Molecular Vision 18 (2012): 730–43.

Murray, K., et al. Risk factors for encephalitis and death from West Nile virus infection. Epidemiology and Infection 134 (2006): 1325–32.

Peterson, L., et al. West Nile virus: A primer for the clinician. Annals of Internal Medicine 137, no. 3 (2002): 173–79.

Puig-Basagoiti, F., et al. High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery. Antimicrobial Agents and Chemotherapy 49, no. 12 (2005): 4980–88.

Qian, F., et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. Journal of Infectious Diseases 203, no. 10 (2011): 1415–24.

Roe, K., et al. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. Journal of General Virology 93, pt. 6 (2012): 1193–203.

Samuel, M., et al. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. Journal of Virology 79, no. 21 (2005): 13350–61.

Samuel, M., et al. Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. Journal of Virology 81, no. 6 (2007): 2614–23.

Samuel, M., et al. Pathogenesis of West Nile virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. Journal of Virology 80, no. 19 (2006): 9349–60.

Sapkal, G., et al. Neutralization escape variant ofWest Nile virus associated with altered peripheral pathogenicity and differential cytokine profile. Virus Research 158, no. 1–2 (2011): 130–39.

Schneider, B., et al. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile infection. PLoS One 5, no. 7 (2010): e11704.

Shen, J., et al. Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibilty complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. Journal of Virology 71, no. 12 (1997): 9323–32.

Shirato, K., et al. The kinetics of proinflammatory cytokines in murine peritoneal macrophages infected with envelope protein-glycosylated of non-glycosylated West Nile virus. Virus Research 121, no. 1 (2006): 11–16.

Shrestha, B., et al. CD8+ T cells require perforin to clear West Nile virus from infected neurons. Journal of Virology 80, no. 1 (2006): 119–29.

Shrestha, B., et al. Infection and injury of neurons by West Nile encephalitis virus. Journal of Virology 77, no. 24 (2003): 13203–13.

Sitati, E., et al. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. Journal of Virology 81, no. 18 (2007): 9801–11.

Styer, L., et al. Mosquito saliva causes enhancement of West Nile virus infection in mice. Journal of Virology 85, no. 4 (2011): 1517–27.

Szretter, K., et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile pathogenesis. Journal of Virology 83, no. 18 (2009): 9329–38.

Town, T. Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30 (2009): 24253.

Venter, M., et al. Cytokine induction after laboratory-acquired West Nile virus infection. New England Journal of Medicine 360 (2009): 1260–62.

Verma, S., et al. Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes. Journal of General Virology 92 (2011): 507–15.

Verma, S., et al. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, no. 1 (2010): 130–38.

Wang, P., et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. Journal of Virology 82, no. 18 (2008): 8978–85.

Wang, T., et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Medicine 10, no. 12 (2004): 1366–73.

Wang, Y., et al. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. Journal of Virology 77, no. 24 (2003): 13323–34.

Welte, T., et al. Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain. Vaccine 29, no. 29–30 (2011): 4853–61.

Wen, J., et al. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. Journal of Virology 79, no. 3 (2005): 1934–42.

Xiao, S., et al. West Nile virus infection in the golden hamster (Mesocricetus auratus): A model for West Nile encephalitis. Emerging Infectious Diseases 7, no. 4 (2001): 714–21.

Zhang, B., et al. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. Journal of Immunology 180, no. 4 (2008): 2641–49.

Zhang, B., et al. TNF-alpha-dependent regulation of CXCR3 expression modulates neuronal survival during West Nile virus encephalitis. Journal of Neuroimmunology 224, no. 1–2 (2010): 28–38.

The Herbs

Miscellaneous

Ahmad, A., et al. Antiviral properties of extract of Opuntia streptacantha. Antiviral Research 30, no. 2–3 (1996): 75–85.

Allard, P., et al. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. Journal of Natural Products 74, no. 11 (2011): 2446–53.

Alleva, L., et al. Using complementary and alternative medicines to target the host response during severe influenza. Evidence-Based Complementary and Alternative Medicine 7, no. 4 (2010): 501–10.

Arora, R. Potential of complementary and alternative medicine in preventive management of novel H1N1 flu (swine flu) pandemic. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1155/2011/586506.

Bergner, P. Influenza prevention. Medical Herbalism 15, no. 4 (2008): 2–8.

Boon, A., et al. In vitro effect of bioactive compounds on influenza virus specific B- and T-cell responses. Scandinavian Journal of Immunology 55 (2002): 24–32.

Calderon-Montano, J., et al. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry 11, no. 4 (2011): 298–344.

Charuwichitratana, S., et al. Herpes zoster: Treatment with Clinacanthus nutans cream. International Journal of Dermatology 35, no. 9 (1996): 665–66.

Chen, F., et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology 31, no. 1 (2004): 69–75.

Chiu, Y., et al. Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Marine Biotechnology 14, no. 4 (2012): 468–78. Published electronically ahead of print December 23, 2011.

Choi, H., et al. Inhibitory effect on replication of enterovirus 71 of herb methanol extract. Journal of Applied Biological Chemistry 51, no. 3 (2008): 123–27.

Choi, H., et al. Inhibitory effect on replication of enterovirus 71 of herb plant water extracts. Journal of Cosmetics and Public Health 4, no. 1 (2008): 9–12.

Conley, A., et al. Invasive plant alters ability to predict disease vector distribution. Ecological Applications 21, no. 2 (2011): 329–34.

De Clercq, Eric. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Review of Anti-infective Therapy 4, no. 2 (2006): 291–302.

Devi, B., and K. Manoharan. Antiviral medicinal plants — an ethnobotanical approach. Journal of Phytology 1, no. 6 (2009): 417–21.

Efferth, T., et al. The antiviral activities of artemisinin and artesunate. Clinical Infectious Diseases 47 (2008): 804–11.

Elsässer-Beile, U., et al. Cytokine production in leukocyte cultures during therapy with Echinacea extract. Journal of Clinical Laboratory Analysis 10, no. 6 (1996): 441–45.

Faral-Tello, P., et al. Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. Scientific World Journal (2012). doi: 10.1100/2012/174837.

Fokina, G., et al. The antiviral action of medicinal plant extracts in experimental tick-borne encephalitis. Voprosy Virusologii 38 , no. 4 (1993): 170–73.

Gaby, A. Natural remedies for herpes simplex. Alternative Medicine Review 22, no. 2 (2006): 93–101.

Greenway, F., et al. Temporary relief of postherpetic neuralgia pain with topical geranium oil. American Journal of Medicine 115, no. 7 (2003): 586–87.

Gupta, P., et al. Antiviral profile of Nyctanthes arbortristis L. against encephalitis causing viruses. Indian Journal of Experimental Biology 43, no. 12 (2005): 1156–60.

Hafidh, R., et al. Asia is the mine of natural antiviral products for public health. Open Complementary Medicine Journal 1 (2009): 58–68.

Haidari, M., et al. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 16, no. 12 (2009): 1127–36.

Hake, I., et al. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue. Journal of Neuroimmunology 206, no. 1–2 (2009): 91–99.

Herrmann, F., et al. Diversity of pharmacological properties in Chinese and European medicinal plants: Cytotoxicity, antiviral, and antitrypanosomal screening of 82 herbal drugs. Diversity 3 (2011): 547–80.

Ho, T., et al. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research 74, no. 2 (2007): 92–101.

Hsu, C., et al. An evaluation of the additive effect of natural herbal medicine on SARS or SARS-like infectious diseases in 2003: A randomized, double-blind, and controlled pilot study. Evidence-Based Complementary and Alternative Medicine 5, no. 3 (2008): 355–62.

Hsu, H., et al. Anti-enterovirus 71 activity screening of Taiwanese folk medicinal plants and immune modulation of Ampelopsis brevipedunculata (Maxim.) Trautv against the virus. African Journal of Microbiology Research 5, no. 17 (2011): 2500–2511.

Jassim, S. A. A., and M. A. Naji. Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology 95 (2003): 412–27.

Jenny, M., et al. Crinum latifolium leaf extracts suppress immune activation cascades in peripheral blood mononuclear cells and proliferation of prostate tumor cells. Scientia Pharmaceutica 79 (2011): 323–35.

Jia, F., et al. Identification of palmatine as an inhibitor of West Nile virus. Archives of Virology 155, no. 8 ( 2010): 1325–29.

Jiao, F., et al. A randomized trial of Ligustrazini hydrochlorioi in the treatment of viral encephalitis in children. Journal of Nepal Paediatric Society 30, no. 2 (2010): 119–22.

Kalra, M., et al. Cold and flu: Conventional vs botanical and nutritional therapy. International Journal of Drug Development and Research 3, no. 1 (2011): 314–27.

Kang, Dae Gill, et al. Anti-hypertensive effect of water extract of danshen on renovascular hypertension through inhibition of renin angiotensin system. American Journal of Chinese Medicine 30, no. 1 (2002): 87–93.

Kimmel, E., et al. Oligomeric procyanidins stimulate innate antiviral immunity in dengue virus infected human PBMCs. Antiviral Research 90, no. 1 (2011): 80–86.

Kitazato, K., et al. Viral infectious disease and natural products with antiviral activity. Drug Discoveries and Therapeutics 1, no. 1 (2007): 14-22.

Kongkaew, C., and N. Chaiyakunapruk. Efficacy of Clinacanthus nutans extracts in patients with herpes infection. Complementary Therapies in Medicine 19, no. 1 (2011): 47–53.

Krylova, N., et al. In vitro activity of luromarin against tick-borne encephalitis virus. Antibiotiki i Khimioteripiia 55, no. 7–8 (2010): 17–19.

Kurokawa, M., et al. Development of new antiviral agents from natural products. Open Antimicrobial Agents Journal 2 (2010): 49–57.

Kurokawa, M., and K. Shiraki. New antiviral agents from traditional medicines. Journal of Traditional Medicie 22, suppl. 1 (2005): 138–44.

Lee, R., and M. Balick. Flu for you? The common cold, influenza, and traditional medicine. Ethnomedicine 2, no. 3 (2006): 252–55.

Li, S., et al. Identification of natural compounds with antiviral activities against the SARS-associated coronavirus. Antiviral Research 67 (2005): 18–23.

Li, W., et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. Journal of Immunology 178, no. 6 (2007): 3856–64.

Li, Y., et al. Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research 18, no. 9 (2004): 718–22.

Martinez, C., et al. Research advances in plant-made flavivirus antigens. Biotechnology Advances 30, no. 6 (2012): 1493–505. Published electronically ahead of print March 28, 2012.

McNamara, M., et al. The treatment of an acute herpes zoster outbreak with an herbal, anti-viral remedy in an immunocompromised individual. A case study from the Klearsen Corporation (Boulder, Colo.), hosted on the website of the retailer Nature’s Rite. www.mynaturesrite.com/pdfs/casestudyshingles.pdf, accessed May 22, 2012.

Mori, K., et al. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biological & Pharmaceutical Bulletin 31, no. 9 (2008): 1727–32.

Nawawi, A., et al. Anti-herpes simplex virus activity of alkaloids isolated from Stephania cepharantha. Biological & Pharmaceutical Bulletin 22, no. 3 (1999): 268–74.

Niu, L., et al. Evaluating the effect of herpes zoster treatment with three regimens. Chinese Journal of Dermatovenereology, 2007-08, CNKI.

Park, J., et al. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorganic & Medicinal Chemistry Letters 21, no. 18 (2011): 5602–4.

Reichling, J., et al. Essential oils of aromatic plants with antibacterial, antifungal, and cytotoxic properties — an overview. Forschende Komplementärmedizin 16 (2009): 79–90.

Reis, S., et al. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue virus-2. International Immunopharmacology 8, no. 3 92008): 468–76.

Roner, M., et al. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). Journal of General Virology 88, pt. 1 (2007): 275–85.

Roxas, M. Herpes zoster and postherpetic neuralgia: Diagnosis and therapeutic considerations. Alternative Medicine Review 11, no. 2 (2006): 102–13.

Roxas, M., and Julie Jurenka. Colds and influenza: A review of diagnosis and conventional, botanical, and nutritional considerations. Alternative Medicine Review 12, no. 1 (2007): 25–48.

Sabini, M., et al. Evaluation of antiviral activity of aqueous extracts from Achyrocline satureioides against Western equine encephalitis. Natural Products Research 26, no. 5 (2012): 405–15.

Sang, S., et al. Treatment of herpes zoster with Clinacanthus nutans (bi phaya yaw) extract. Journal of the Medical Association of Thailand 78, no. 11 (1995): 624–27.

Shin, W., et al. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiology and Immunology 54, no. 1 (2010): 11–19.

Simoes, L., et al. Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil. Letters in Applied Microbiology 53, no. 6 (2011): 602–7.

Solanki, J., et al. Pharmacognostic and preliminary phytochemical evaluation of the leaves of Crinum latifolium L. International Journal of Pharmaceutical Sciences and Research 2, no. 12 (2011): 3219–23.

Souhail, M., et al. Plants as a source of natural antiviral agents. Asian Journal of Animal and Veterinary Advances 6, no. 12 (2011): 1125–52.

Su, F., et al. A water extract of Pueraria lobata inhibited cytotoxicity of enterovirus 71 in a human foreskin fibroblast cell line. Kaohsiung Journal of Medical Sciences 24, no. 10 (2008): 523–30.

Sun, X., et al. Observation of the efficacy of Ampelopsis brevipedunculata Trautv in the treatment of herpes zoster. Journal of Traditional Chinese Medicine 6, no. 1 (1986): 17–18.

Swarup, V., et al. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrobial Agents and Chemotherapy 51, no. 9 (2007): 3367–70.

Tang, L., et al. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complementary and Alternative Medicine 12 (2012): 3–13.

Thomas, S., et al. Micronutrient intake and the risk of herpes zoster. International Journal of Epidemiology 35 (2006): 307–14.

Tsai, F., et al. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chemistry 128, no. 2 (2011): 312–22.

Wang, C., et al. Antiviral ability of Kalanchoe gracilis leaf extract against enterovirus 71 and coxsackie A16. Evidence-Based Complementary and Alternative Medicine (2012). doi: 10.1155/2012/503165.

Wang, H., et al. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. Journal of Nutrition 136 (2006): 360–65.

Wang, W., et al. Effect of Salvia miltiorrhiza on renal pathological change and expression of ACE and ACE2 in rats with aristolochic acid induced nephropathy. Chinese Journal of Integrated Traditional and Western Nephrology, 2009-02, CNKI.

Weckesser, S., et al. Topical treatment of necrotising herpes zoster with betulin from birch bark. Forschende Komplementärmedizin 17, no. 5 (2010): 271–73.

Wen, C., et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of Traditional and Complementary Medicine 1, no. 1 (2011): 41–50.

Weon, J., et al. Neuroprotective compounds isolated from Cynanchum paniculatum. Archives of Pharmaceutical Research 35, no. 4 (2012): 617–21.

Yamaya, M., et al. Hochy-ekki-to inhibits rhinovirus infection in human tracheal epithelial cells. British Journal of Pharmacology 150 (2007): 702–10.

Yarmolinsky, L., et al. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. New Biotechnology 26, no. 6 (2009): 307–13.

Ye, X., et al. Effect of puerarin injection on the mRNA expressions of AT1 and ACE2 in spontaneous hypertension rats. Chinese Journal of Integrated Traditional and Western Medicine, 2008-09, CNKI.

Yu, L., et al. Protection from H1N1 influenza virus infections in mice by supplementation with selenium. Biological Trace Element Research 141, no. 1–3 (2011): 254–61.

Yucharoen, R., et al. Anti-herpes simplex activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L., and Ocimum americanum L. African Journal of Biotechnology 10, no. 5 (2011): 860–66.

Yukawa, T., et al. Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Research 32, no. 2 (1996): 63–70.

Zhang, M., et al. Effect of integrated traditional Chinese and Western medicine on SARS: A review of clinical evidence. World Journal of Gastroenterology 10, no. 23 (2004): 3500–3505.

Zhang, M., et al. A study of inhibiting effect of Flos Lonicerae-Radix astragali solution on varicella-zoster virus. Medical Journal of Qilu, 2003-2. CNKI.

Zhang, M., et al. The therapeutical effect of large dose of huang qi on elder patients with herpes zoster. Chinese Journal of Dermatovenereology, 2002-4, CNKI.

Zhang, T., et al. Anti-Japanese encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One 7, no. 1 (2012): e30259.

Zheng, M. An experimental study of the anti-HSV-II action of 500 herbal drugs. Journal of Traditional Chinese Medicine 9, no. 2 (1989): 113–16.

Zhu, S., et al. Caging a beast in the inflammation arena: Use of Chinese medicinal herbs to inhibit a late mediator of lethal sepsis, HMGB1. International Journal of Clinical and Experimental Medicine 1 (2008): 64–75.

Zhu, S., et al. Effects of EGb761 on renal tissue ACE2 protein and mRNA expression in adenine-induced renal interstitial fibrosis rats. Chinese Traditional Patent Medicine, 2011-11, CNKI.

Zhuang, M., et al. Procyandins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Research 82, no. 1 (2009): 73–81.

Astragalus (Astragalus membranaceus)

Ai, P., et al. Aqueous extract of astragali radix induces human natriuresis through enhancement of renal response to arterial natriuretic peptide. Journal of Ethnopharmacology 116, no. 3 (2008): 413–21.

Anonymous. “Astragalus.” Fact sheet in the Herbs at a Glance collection (U.S. Department of Health and Human Services National Center for Complementary and Alternative Medicine, updated 2008).

Anonymous. Astragalus membranaceus. Monograph, Alternative Medicine Review 8, no. 1 (2003): 72–77.

Batachandar, S., et al. Antimicrobial activity of Astragalus membranaceus against diarrheal bacterial pathogens. International Journal of Ayurvedic Research, January 2011.

Brush, J., et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans. Phytotherapy Research 20, no. 8 (2006): 687–95.

Burkhart, K. Astragalus membranaceus (Fisch ex Link) Bunge (astragalus), Fabaceae and related species. Paper, Bastyr University (Kenmore, Wash.), 2007, www.aaronsworld.com/Bastyr/Class%20Notes/Bot%20Med/Bot%20Med%20IV/Astragalus_membranaceus.pdf, accessed June 29, 2012.

Cho, J. H., et al. Myelophil, an extract mix of astragali radix and salviae radix, ameliorates chronic fatigue: A randomized, double-blind, controlled pilot study. Complementary Therapies in Medicine 17, no. 3 (2009): 141–46.

De-Hong, Y. U., et al. Studies of chemical constituents and their antioxidant activities from Astragalus mongholicus Bunge. Biomedical and Environmental Sciences 18 (2005): 297–301.

Dobrowolski, C., et al. In vitro rate of phagocytosis in macrophages stimulated by Astragalus membranaceus. Journal of Research Across the Disciplines (online at Jackson University, Jackson, Fla.), no. 1 (2009), www.ju.edu/jrad/documents/dobrowolski-am_research_paper.pdf.

Duan, P., et al. Clinical study on effect of astragalus in efficacy enhancing and toxicity reducing of chemotherapy in patients of malignant tumor. Zhongguo Zhong Xi Yi Jie He Za Zhi 22, no. 7 (2002): 515–17.

Feng, J., et al. The study of the efficacy of astragalus granule on neonatal hypoxic ischemic encephalopathy. Journal of Pediatric Pharmacy, 2009-01, CNKI.

Gao, X. P., et al. Effect of huangqi zengmian powder on interstitial response in patients with esophageal cancer at peri-operational period. Zhongguo Zhong Xi Yi Jie He Za Zhi 21, no. 3 (2001): 171–73.

Haixue, K., et al. Secocycloartane triterpenoidal saponins from the leaves of Astragalus membranaceus Bunge. Helvetica Chimica Acta 92, no. 5 (2009): 950–58.

Huang, X., et al. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. International Journal of Biological Macromolecules 42, no. 2 (2008): 166–71.

Huang, X., et al. Sulfated modification conditions optimization of astragalus polysaccharide by orthogonal test and anti IBDV activity determination of the modifiers. Zhong Yao Cai 31, no. 4 (2008): 588–92.

Huang, Z. Q., et al. Effect of Astragalus membranaceus on T-lymphocyte subsets in patients with viral myocarditis. Zhongguo Zhong Xi Yi Jie He Za Zhi 15, no. 6 (1995): 328–30.

Hyun-Jung, P., et al. The effects of Astragalus membranaceus on repeated restraint stress-induced biochemical and behavioral responses. Korean Journal of Physiology & Pharmacology 13, no. 4 (2009): 315–19.

Ka-Shun Ko, J., et al. Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis. World Journal of Gastroenterology 11, no. 37 (2005): 5787–94.

Kemper, K. J., et al. Astragalus (Astragalus membranaceus). Longwood Herbal Task Force, September 3, 1999. http://longwoodherbal.org/astragalus/astragalus.PDF.

Kong, X. F., et al. Chinese herbal ingredients are effective immune stimulators for chickens infected with the Newcastle disease virus. Poultry Science 85, no. 12 (2006): 2169–75.

Li, M., et al. Effects of astragalus injection on expression of perforin in myocardial infiltrating cells and serum TNF-α in mice with acute myocarditis. Chinese Journal of Contemporary Pediatrics, 2003-06, CNKI.

Li, S. P., et al. Astragalus polysaccharides and astragalosides regulate cytokine secretion in LX-2 cell line. Zhejiang Da Xue Bao Yi Xue Ban 36, no. 6 (2007): 543–48.

Li, S. P., et al. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks. Poultry Science 88, no. 3 (2009): 519–25.

Li, Z. P., et al. Effect of mikvetch injection on immune function of children with tetralogy of Fallot after radical operation. Zhongguo Zhong Xi Yi Jie He Za Zhi 24, no. 7 (2004): 596–600.

Liu, K. Z., et al. Effects of Astragalus and saponins of Panax notoginseng on MMP-9 in patients with type 2 diabetic macroangiopathyl. Zhongguo Zhong Yao Za Zhi 29, no. 3 (2004): 264–66.

Liu, W., et al. Influence of ganciclovir and Astragalus membranaceus on proliferation of hematopoietic progenitor cells of cord blood after cytomegalovirus infection in vitro. Zhonghua Er Ke Za Zhi 42, no. 7 (2004): 490–94.

Liu, Z., et al. Effect of astragalus injection on immune function in patients with congestive heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi 23, no. 5 (2003): 351–53.

Lu, G., et al. Effect of astragalus polysaccharides on blood routine and antioxidant capacity of canine infected with CDV. Journal of Anhui Agricultural Sciences, 2010-12, CNKI.

Lu, M.-C., et al. Effect of Astragalus membranaceus in rats on peripheral nerve regeneration: In vitro and in vivo studies. Journal of Trauma 68, no. 2 (2010): 434–40.

Mao, S. P., et al. Modulatory effect of Astragalus membranaceus on Th1/Th2 cytokine in patients with herpes simplex keratitis. Zhongguo Zhong Xi Yi Jie He Za Zhi 24, no. 2 (2004): 121–23.

Mao, X. F., et al. Effects of beta-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. Journal of Animal Science 83 (2005): 2775–82.

Matkowski, A., et al. Flavonoids and phenol carboxylic acids in Oriental medicinal plant Astragalus membranaceus acclimated in Poland. Zeitschrift für Naturforschung C 58, no. 7–8 (2003): 602–4.

Meschino, J. Astragalus (Astragalus membranaceus Moench): A powerful daily supplement for the immune system. Paper for RenaiSanté Institute of Integrative Medicine, n. d. Accessed online at www.meschinohealth.com/ArticleDirectory/Astragalus_A_Powerful_Daily_Supplement_for_the_Immune_System.

Mikaeili, A., et al. Anti-candidal activity of Astragalus verus in the in vitro and in vivo guinea pig models of cutaneous and systemic candidiasis. Revista Brasileira de Farmacognosia [online] 22, no. 5 (2012): 1035–43.

Nalbantsoy, A., et al. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. Journal of Ethnopharmacology 139, no. 2 (2011): 574–81.

Peng, A., et al. Herbal treatment for renal diseases. Annals of the Academy of Medicine, Singapore 34 (2005): 44–51.

Peng, T., et al. The inhibitory effect of Astragalus membranaceus on coxsackie B-3 virus RNA replication. Chinese Medical Sciences Journal 10, no. 3 (1995): 146–50.

Qu, Z., et al. Inhibition airway remodeling and transforming growth factor-ß1/Smad signaling pathway by astragalus extract in asthmatic mice. International Journal of Molecular Medicine 29, no. 4 (2012): 564–68.

Schafer, Peg. Astragalus membranaceus. Medicinal herb cultivation guide by Chinese Medicinal Herb Farm, 2009, http:// chinesemedicinalherbfarm.com/Astragalus%20membran3.pdf.

Shabbir, M. Z., et al. Immunomodulatory effect of polyimmune (Astragalus membranaceus) extract on humoral response of layer birds vaccinated against Newcastle disease virus. International Journal of Agriculture and Biology 10 (2008): 585–87.

Shang, L., et al. Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro. Journal of Pharmacy and Pharmacology 63, no. 5 (2011): 688–94.

Shen, P., et al. Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. Journal of Nutrition 136 (2006): 899–905.

Sheng, B.-W., et al. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves. Chinese Medical Journal 118, no. 1 (2005): 43–49.

Shi, F. S., et al. Effect of astragalus saponin on vascular endothelial cell and its function in burn patients. Zhongguo Zhong Xi Yi Jie He Za Zhi 21, no. 10 (2001): 750–51.

Shi, J., et al. Therapeutic efficacy of astragalus in patients with chronic glomerulonephritis. Acta Universitatis Medicinalis Secondae Shanghai, 2001-01, CNKI.

Shu, L., et al. Empirical study in vitro of inhibiting action of membranaceus component A6 on influenza virus. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2009-05, CNKI.

Su, L., et al. Effect of intravenous drip infusion of cyclophosphamide with high-dose astragalus injection in treating lupus nephritis. Zhong Xi Yi Jie He Xue Bao 5, no. 3 (2007): 272–75.

Sun, H., et al. Effect on exercise endurance capacity and antioxidant properties of Astragalus membranaceus polysaccharides (APS). Journal of Medicinal Plants Research 4, no. 10 (2010): 982–86.

Taixiang, W., et al. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database of Systematic Reviews 25, no. 1 (2005): CD0004540.

Tang, L., et al. Phytochemical analysis of an antiviral fraction of radix astragali using HPCL-DAD-ESI-MS/MS. Journal of Natural Medicine 64, no. 2 (2010): 182–86.

Tin, M. Y. Study of the anticarcinogenic mechanisms of Astragalus membranaceus in colon cancer cells and tumor xenograft. Master’s thesis, Hong Kong Baptist University, 2006.

Wang, F., et al. Effect of astragalus on cytokines in patients undergoing heart valve replacement. Zhongguo Zhong Xi Yi Jie He Za Zhi 28, no. 6 (2008): 495–98.

Wang, H., et al. Antifibrotic effect of the Chinese herbs, Astragalus mongholicus and Angelica sinensis, in a rat model of chronic puromycin aminonucleoside nephrosis. Life Sciences 13, no. 74 (2004): 1645–58.

Wang, H. F., et al. Effects of Astragalus membranaceus on growth performance, carcass characteristics, and antioxidant status of broiler chickens. Acta Agriculturae Scandinavica 60, no. 3 (2010): 151–58.

Wang, M. S., et al. Clinical study on effect of astragalus injection and its immunoregulation action in treating chronic aplastic anemia. Chinese Journal of Integrative Medicine 13, no. 2 (2007): 98–102.

Wang, X., et al. Treatment of Astragalus membranaceus zhusheye for hemorrhagic fever with renal syndrome — a clinical observation of 91 cases. Journal of Binzhou Medical College, 2001-01, CNKI.

Wang, Z., et al. Antiviral action of combined use of rhizoma polygoni cuspidati and radix astragali on HSV-1 strain. Zhongguo Zhong Yao Za Zhi 24, no. 3 (1999): 176–80.

Wei, L., et al. Randomized double-blind controlled study of therapeutic effects of astragalus injection on children with cerebral palsy. Applied Journal of General Practice, 2008-03, CNKI.

Wojcikowski, K., et al. Effect of Astragalus membranaceus and Angelica sinensis combined with enalapril in rats with obstructive uropathy. Phytotherapy Research 24, no. 6 (2010): 875–84.

Wu, J., et al. Effect of astragalus injection on serious abdominal traumatic patients’ cellular immunity. Chinese Journal of Integrative Medicine 12, no. 1 (2006): 29–31.

Wu, Y., et al. Inhibition of Astragalus membranaceus polysaccharides against liver cancer cell HepG2. African Journal of Microbiology Research 4, no. 20 (2010): 2181–83.

Xian-qing, M., et al. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. International Journal of Phytotherapy and Phytopharmacology 16, no. 5 (2009): 416–25.

Xiaoyan, Z., et al. Effect of superfine pulverization on properties of Astragalus membranaceus powder. Powder Technology 203, no. 3 (2010): 620–25.

Yang, W. J., et al. Synergistic antioxidant activities of eight traditional Chinese herb pairs. Biological & Pharmaceutical Bulletin 32, no. 6 (2009): 1021–26.

Yao-Haur, K., et al. Astragalus membranaceus flavonoids (AMF) ameliorate chronic fatigue syndrome induced by food intake restriction plus forced swimming. Journal of Ethnopharmacology 122, no. 1 (2009): 28–34.

Ye, G., et al. Characterization of anti-Coxsackie virus B3 constituents of radix astragali by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomedical Chromatography 24, no. 11 (2010): 1147–51.

Zhang, C., et al. Effects of mixed Astragalus membranaceus and gentiana extracts on inhibiting influenza A virus. Journal of YunYang Medical College, 2010-03, CNKI.

Zhang, J., et al. Clinical study on effect of astragalus injection on left ventricular remodeling and left ventricular function in patients with acute myocardial infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi 22, no. 5 (2002): 346–48.

Zhang, J. G., et al. Effect of astragalus injection on plasma levels of apoptosis-related factors in aged patients with chronic heart failure. Chinese Journal of Integrative Medicine 11, no. 3 (2005): 187–90.

Zhang, Y., et al. Effects of radix astragali on expression of transforming growth factor B1 and Smad 3 signal pathway in hypertrophic scar of rabbit. Zhonghua Shao Shang Za Zhi 26, no. 5 (2010): 366–70.

Zhang, Y., et al. Treatment of recurrent respiratory tract infections with astragalus particle. Medical Journal of West China, 2012-01, CNKI.

Zhang, Z., et al. Prevention of astragalus polysaccharides on poultry viral disease. Journal of Animal Science and Veterinary Medicine, 2010-04, CNKI.

Zhao, W., et al. Study on effects of Astragalus aksuensis against virus. Chinese Pharmaceutical Journal, 2001-01, CNKI.

Zhong, H., et al. Study on inhibitive effect of radix astragali and radix isatidis in vitro on procine parvovirus. Journal of Northwest A and F University, 2008-10, CNKI.

Zhu, H., et al. In vivo and in vitro antiviral activities of calycosin-7-O-beta-D-glycopyranoside against coxsackie virus B3. Biological & Pharmaceutical Bulletin 32, no. 1 (2009): 68–73.

Zou, Y., et al. Effect of astragalus injection combined with chemotherapy on quality of life in patients with advanced non-small cell lung cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi 23, no. 10 (2003): 733–35.

Zuo, C., et al. Astragalus mongholicus ameliorates renal fibrosis by modulating HGF and TGF-beta in rats with unilateral ureteral obstruction. Journal of Zhejiang University, Science, B 10, no. 5 (2009): 380–90.

Zuo, L., et al. The preventative and curative effects of Astragalus membranaceus Bungo A6 on the mice infected with influenza virus. Virologica Sinica 12, no. 4 (1997): 342–47.

Zwickey, H., et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD25 expression in humans: A pilot study. Phytotherapy Research 21, no. 11 (2007): 1109–12.

Boneset (Eupatorium perfoliatum)

Abad, M., et al. Antiviral activity of some South American medicinal plants. Phytotherapy Research 13, no. 2 (1999): 142–46.

Bergner, P. Boneset and influenza: Historical notes and commentary. Medical Herbalism 13, no. 4 (2003): 16–20.

Daucus, S., and P. Bergner. Eupatorium: Clinical correspondence and commentary. Medical Herbalism 7, no. 4 (1996): 10–12.

de Souza Nunes, L. A. Contribution of homeopathy to the control of an outbreak of dengue in Macaé, Rio de Janeiro. International Journal of High Dilution Research 7, no. 25 (2008): 186–92.

Dubey, R. K., et al. Evaluation of Eupatorium cannabinum Linn. oil in enhancement of shelf life of mango fruits from fungal rotting. World Journal of Microbiology and Biotechnology 23 (2007): 467–73.

Duke, James A. Chemicals in: Eupatorium perfoliatum L. (Asteraceae). Entry in Dr. Duke’s Phytochemical and Ethnobotanical Databases. www.ars-grin.gov/duke/ (accessed December 9, 2010).

Edgar, J. A., et al. Pyrrolizidine alkaloid composition of three Chinese medicinal herbs, Eupatorium cannabinum, E. japonicum and Crotalaria. American Journal of Chinese Medicine 20, no. 3–4 (1992): 281–88.

Elema, E. T., et al. Flavones and flavonol glycosides from Eupatorium cannabinum L. Pharmaceutisch Weekblad, Scientific Edition 11, no. 5 (1989): 161–64.

Garcia, C., et al. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytotherapy Research 17 (2003): 1073–75.

Garcia, G., et al. Antiherpetic activity of some Argentine medicinal plants. Fitoterapia 41, no. 6 (1990): 542–46.

Gassinger, C. A. A controlled clinical trial for testing of efficacy of the homeopathic drug eupatorium perfoliatum D2 in the treatment of common cold (author’s transl). Arzneimittel-Forschung 31, no. 4 (1981): 732–36.

Habtemariam, S., and A. Macpherson. Cytotoxicity and antibacterial activity of ethanol extract from leaves of a herbal drug, boneset (Eupatorium perfoliatum). Phytotherapy Research 14, no. 7 (2000): 575–77.

Hensel, A., et al. Eupatorium perfoliatium L: Phytochemistry, traditional use, and current applications. Journal of Ethnopharmacology 138, no. 3 (2011): 641–51.

Herz, W., et al. Sesquiterpene lactones of Eupatorium perfoliatum. Journal of Organic Chemistry 42, no. 13 (1977): 2264–71.

Jacobs, J., et al. The use of homeopathic combination remedy for dengue fever symptoms: A pilot RCT in Honduras. Homeopathy 96, no. 1 (2007): 22–26.

Jaric, S., et al. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology 111, no. 1 (2007): 160–75.

Kumar, S., et al. Molecular herbal inhibitors of Dengue virus: An update. International Journal of Medicinal and Aromatic Plants 2(1): 1-21, 2012.

Lang, G., et al. Antiplasmodial activities of sesquiterpene lactones from Eupatorium semialatum. Zeitschrift für Naturforschung C 57 (2002): 282–86.

Lexa, A., et al. Choleretic and hepatoprotective properties of Eupatorium cannabinum in the rat. Planta Medica 55, no. 2 (1989): 127–32.

Lira-Salazar, G., et al. Effects of homeopathic medications Eupatorium perfoliatum and Arsenicum album on parasitemia of Plasmodium berghei-infected mice. Homeopathy 95, no. 4 (2006): 223–28.

Maas, M., et al. Antiinflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. Journal of Ethnopharmacology 137, no. 1 (2011): 371–81.

Maas, M., et al. Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules 14, no. 1 (2008): 36–45.

Maas, M. Eupatorium perfoliatum L: Phytochemical characterization and functional in vitro investigations — antiinflammatory, antiprotozoal, and antiviral activities. Ph.D. thesis (summary), University of Münster, 2011, www.uni-muenster.de/imperia/md/content/pharmazeutische_biologie/prof_hensel/summary_mareike_maasaktuellx.pdf.

Maas, M., et al. An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry 72, no. 7 (2011): 635–44.

Paolini, J., et al. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. Journal of Chromatography A 1076, no. 1–2 (2005): 170–78.

Pengelly, A., et al. Eupatorium perfoliatum L.: Boneset. Appalachian Plant Monograph prepared by Tai Sophia Institute for Appalachian Center for Ethnobotanical Studies, September 2011, www.frostburg.edu/fsu/assets/File/ACES/eupatorium%20perfoliatum-final(1).pdf.

Robinson, G., et al. Medical attributes of Eupatorium perfoliatum — boneset. Paper developed as part of a medical botany course at Wilkes University (Wilkes-Barre, Penn.), July 2007. http://klemow.wilkes.edu/Eupatorium.html.

Rücker, G., et al. Allergenic sesquiterpene lactones from Eupatorium cannabinum L. and Kaunia rufescens (Lund ex de Candolle). Natural Toxins 5, no. 6 (1997): 223–27.

Tabanca, N., et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Natural Product Communications 5, no. 9 (2010): 1409–15.

Wagner, H., et al. Immunological studies of plant combination preparations. In-vitro and in-vivo studies on the stimulation of phagocytosis. Arzneimittel-Forschung 41, no. 10 (1991): 1072–76.

Wagner, H., et al. Immunostimulating action of polysaccharides (heteroglycans) from higher plants. Arzneimittel-Forschung 35, no. 7 (1985): 1069–75.

Woerdenbag, H. J. Enhanced cytostatic of the sesquiterpene lactone eupatoriopicrin by glutathione depletion. British Journal of Cancer 59, no. 1 (1989): 68–75.

Woerdenbag, H. J. Eupatorium cannabinum L. A review emphasizing the sesquiterpene lactones and their biological activity, Pharmaceutisch Weekblad, Scientific Edition 8 (1986): 245–51.

Yarnell, E. Eupatorium perfoliatum L. (boneset), Asteraceae. Paper, Bastyr University (Kenmore, Wash.), 2007, www.aaronsworld.com/Bastyr/Class%20Notes/Bot%20Med/Bot%20Med%20IV/Eupatorium_perfoliatum.pdf.

Zanon, S., et al. Search for antiviral activity of certain medicinal plants from Cordoba, Argentina. Revista Latinoamericana de Microbiologia 41 (1999): 59–62.

Chinese Skullcap (Scutellaria baicalensis)

7Song. The skullcaps — a Scutellaria monograph. Blog, Northeast School of Herbal Medicine, updated February 12, 2012. http://7song.com/blog/2012/02/the-skullcaps-a-scutellaria-monograph.

Akao, T., Y. Sakashita, M. Hanada, et al. Enteric excretion of baicalein, a flavone of scutellariae radix, via glucuronidation in rat: involvement of multi drug resistance-associated protein2. Pharmaceutical Research 21, no. 11 (2004): 2120–26.

Arweiler, N. B., G. Pergola, J. Kuenz, et al. Clinical and antibacterial effect of an anti-inflammatory toothpaste formulation with Scutellaria baicalensis extract on experimental gingivitis. Clinical Oral Investigation 15, no. 6 (2011): 909–13.

Baikal skullcap. Landscaping Revolution, 2009. http://landscapingrevolution.com/ingrid_garden/herbs/baikal_skullcap.html (accessed March 29, 2012).

Baikal skullcap (Scutellaria baicalensis). Sigma-Aldrich Plant Profiler, 2010. www.sigmaaldrich.com/life-science/nutrition-research/learning-center/plant-profiler (accessed March 29, 2012).

Baylor, N., et al. Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-glucuronic acid, 5, 6-dihydroxyflavone). Journal of Infectious Diseases 165, no. 3 (1992): 433–37.

Ben-Nathan, D., et al. Protective effects of melatonin in mice infected with encephalitis viruses. Archives of Virology 149, no. 2 (1995): 223–30.

Bhandari, M., A. Bhandari, R. Prakesh, et al. Scutellaria baicalensis Georgi: A rising paradigm of herbal remedies. WebmedCentral 1, no. 11 (2010): WMC001105.

Blach-Olszewska, Z., B. Jatczak, A. Rak, et al. Production of cytokines and stimulation of resistance to viral infection in human leukocytes by Scutellaria baicalensis flavones. Journal of Interferon & Cytokine Research 28, no. 9 (2008): 571–81.

Bonham, M., J. Posakony, I. Coleman, et al. Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clinical Cancer Research 11, no. 10 (2005): 3905–14.

Bonilla, E., et al. Melatonin and viral infections. Journal of Pineal Research 36, no. 2 (2004): 73–79.

Broncel, M. Antiatherosclerotic properties of flavones from the roots of Scutellaria baicalensis Georgi. Wiadomości Lekarskie 60, no. 5–6 (2007): 294–97.

Chan, B. C., M. Ip, C. B. Lau, et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin of MRSA pyruvate kinase. Journal of Ethnopharmacology 137, no. 1 (2011): 767–73.

Chen, C.-M., L.-F. Wang, and K.-T. Cheng. Maternal baicalin treatment increases fetal lung surfactant phospholipids in rats. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1093/ecam/nep073.

Chen, G., et al. Effect of baicalin and tetramethylpyrazine on intracranial hypertension of infectious brain edema in rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi 19, no. 4 (1999): 224–26.

Chen, L., J. Dou, Z. Su, et al. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Research 91, no. 3 (2011): 314–20.

Chen, X., H. Nishida, and T. Konishi. Baicalin promoted the repair of DNA single strand breakage caused by H(2)O(2) in cultured NIH3T3 fibroblasts. Biological and Pharmaceutical Bulletin 26, no. 2 (2003): 282–84.

Choi, J. H., A. Y. Choi, H. Yoon, et al. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Experimental and Molecular Medicine 42, no. 12 (2010): 811–22.

Chu, Z. Y., M. Chu, and Y. Teng. Effect of baicalin on in vivo anti-virus. Zhongguo Zhong Yao Za Zhi 32, no. 22 (2007): 2413–15.

Cole, I. B., J. Cao, A. R. Alan, et al. Comparisons of Scutellaria baicalensis, Scutellaria lateriflora and Scutellaria racemosa: Genome size, antioxidant potential and phytochemistry. Planta Medica 74, no. 4 (2008): 474–81.

Dai, Z. J., X. J. Wang, Q. Xue, et al. Effects of Scutellaria barbata drug-containing serum on apoptosis and mitochondrial transmembrane potential of hepatoma H22 cells. Zhong Xi Yi Jie He Xue Bao 6, no. 8 (2008): 821–26.

Dou, J., L. Chen, G. Xu, et al. Effects of baicalin and its inhibition of hemagglutinin-neuraminidase. Archives of Virology 156, no. 5 (2011): 793–801.

Du, Y., X. Y. Chen, H. Y. Yang, et al. Determination of wogonin in rat plasma by liquid chromatography-tandem mass spectrometry. Yao Xue Xue Bao 37, no. 5 (2002): 362–66.

Dygai, A. M., N. I. Suslov, E. G. Skurikhin, et al. The modulating effects of preparations of Baikal skullcap (Scutellaria baicalensis) on erythron reactions under conditions of neurotic exposures. Eksperimental’naia i Klinicheskaia Farmakologiia 61, no. 1 (1998): 37–39.

Fong, Y. K., C. R. Li, S. K. Wo, et al. In vitro and in situ evaluation of herb-drug interactions during intestinal metabolism and absorption of baicalein. Journal of Ethnopharmacology 141, no. 2 (2012): 742–43. Published electronically ahead of print August 26, 2011.

Franzblau, S. G., and C. Cross. Comparative in vitro antimicrobial activity of Chinese medicinal herbs. Journal of Ethnopharmacology 15, no. 3 (1986): 279–88.

Fu, Z., H. Lu, Z. Zhu, et al. Combination of baicalein and amphotericin B accelerates Candida albicans apoptosis. Biological and Pharmaceutical Bulletin 34, no. 2 (2011): 214–18.

Gao, H. M., Z. M. Wang, and J. Tian. Pharmacokinetics and metabolites of scutellarin in normal and model rats. Yao Xue Xue Bao 40, no. 11 (2005): 1024–27.

Gao, L., et al. Inhibiting effect of baicalin on influenza, herpes simplex and CoxB-3 virus infections in cultured cells. Chinese Journal of New Drugs, 2008-06, CNKI.

Gasiorowski, K., E. Lamer-Zarawska, J. Leszek, et al. Flavones from root of Scutellaria baicalensis Georgi: Drugs of the future in neurodegeneration? CNS and Neurological Disorders Drug Targets 10, no. 2 (2011): 184–91.

Go, W. J., J. H. Ryu, F. Qiang, and H. K. Han. Evaluation of the flavonoid oroxylin A as an inhibitor of P-glycoprotein-mediated cellular efflux. Journal of Natural Products 72, no. 9 (2009): 1616–19.

Goldberg, V. E., V. M. Ryzhakov, M. G. Matiash, et al. Dry extract of Scutellaria baicalensis as a hemostimulant in antineoplastic chemotherapy in patients with lung cancer. Eksperimental’naia i Klinicheskaia Farmakologiia 60, no. 6 (1997): 28–30.

Guo, S. S., et al. The cytology mechanism of anti-parainfluenza virus infection of total flavone of Scutellaria barbata. Acta Pharmaceutica Sinica 44, no. 12 (2009): 1348–52.

Guo, X. Y., L. Yang, Y. Chen, et al. Identification of the metabolites of baicalein in human plasma. Journal of Asian Natural Products 13, no. 9 (2011): 861–68.

Hamada, H., M. Hiramatsu, R. Edamatsu, et al. Free radical scavenging action of baicalein. Archives of Biochemistry and Biophysics 306, no. 1 (1993): 261–66.

Han, Y., et al. The inhibition effects of baicalin on neurotoxic action induced by kainic acid. Acta Academiae Medicinae Jiangxi, 1995-01, CNKI.

Hao, H., Y. Aixia, L. Dan, et al. Baicalin suppresses expression of chlamydia protease-like activity factor in Hep-2 cells infected by Chlamydia trachomatis. Fitoterapia 80, no. 7 (2009): 448–52.

Hao, H., Y. Aixia, F. Lei, et al. Effects of baicalin on Chlamydia trachomatis infection in vitro. Planta Medica 76, no. 1 (2010): 76–78.

Hattori, A., H. Migitaka, M. Ligo, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35, no. 3 (1995): 627–34.

He, H. J., Z. Y. Lv, Z. Y. Li, et al. Efficacy of combined treatment with albendazole and baicalein against eosinophilic meningitis induced by Angiostrongylus cantonensis in mice. Journal of Helminthology 85, no. 1 (2011): 92–99.

Hou, Y. C., S. P. Lin, S. Y. Tsai, et al. Flavonoid pharmacokinetics and tissue distribution after repeated dosing of the roots of Scutellaria barbata in rats. Planta Medica 77, no. 5 (2011): 455–60.

Hsieh, C.-J., K. Hall, T. Ha, et al. Baicalein inhibits IL-Iβ- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-κB pathway. Clinical and Molecular Allergy 5, no. 5 (2007): 1–10.

Huang, W.-H., A.-R. Lee, and C.-H. Yang. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis Georgi. Bioscience, Biotechnology, and Biochemistry 70, no. 10 (2006): 2371–80.

Huang, Y., S. Y. Tsang, X. Yao, et al. Biological properties of baicalein in cardiovascular system. Current Drug Targets — Cardiovascular & Haematological Disorders 5, no. 2 (2005): 177–84.

Hwang, Y. K., M. Jinhua, B. R. Choi, et al. Effects of Scutellaria baicalensis on chronic cerebral hypoperfusion-induced memory impairments and chronic lipopolysaccharide infusion-induced memory impairments. Journal of Ethnopharmacology 371, no. 1 (2011): 681–89.

Jeong, K., Y.-C. Shin, S. Park, et al. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. Journal of Biomedical Science 18, no. 14 (2011): 1–12.

Ju, W. Z., F. Liu, T. Wu, et al. Simultaneous determination of baicalin and chlorogenic acid in human plasma by UPLC-MS/MS. Yao Xue Xue Bao 42, no. 10 (2007): 1074–77.

Jung, H. S., M. H. Kim, N. G. Gwak, et al. Antiallergic effect of Scutellaria baicalensis on inflammation in vivo and in vitro. Journal of Ethnopharmacology 141, no. 1 (2012): 345–49. Published electronically ahead of print March 3, 2012.

Kim, E. H., B. Shim, S. Kang, et al. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. Journal of Ethnopharmacology 126, no. 2 (2009): 320–31.

Kim, H. M., E. J. Moon, E. Li, et al. The nitric oxide-producing activities of Scutellaria baicalensis. Toxicology 135, no. 2–3 (1999): 109–15.

Kim, Y. H., D. W. Jeong, Y. C. Kim, et al. Pharmacokinetics of baicalein, baicalin and wogonin after oral administration of a standardized extract of Scutellaria baicalensis, PF-2405 in rats. Archives of Pharmaceutical Research 30, no. 2 (2007): 260–65.

Kim, Y. H., D. W. Jeong, I. B. Paek, et al. Liquid chromatography with tandem mass spectrometry for the simultaneous determination of baicalein, baicalin, oroxylin A and wogonin in rat plasma. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 844, no. 2 (2006): 261–67.

Kimura, Y., and M. Sumiyoshi. Effects of baicalein and wogonin isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. European Journal of Pharmacology 661, no. 1–3 (2011): 124–32.

Kolar, J., and I. Machackova. Melatonin in higher plants: Occurrence and possible functions. Journal of Pineal Research 39 (2005): 333–41.

Kong, B., J. Wang, and Y. L. Xiong. Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork. Journal of Food Protection 70, no. 3 (2007): 641–47.

Konoshima, T., et al. Studies on inhibitors of skin tumor promotion. XI. Inhibitory effects of flavonoids from Scutellaria baicalensis on Epstein-Barr virus activation and their anti-tumor-promoting activities Chemical and Pharmaceutical Bulletin (Tokyo) 40, no. 2 (1992): 531–33.

Kowalczyk, E., P. Krzesinski, M. Kura, et al. Pharmacological effects of flavonoids from Scutellaria baicalensis. Przegląd Lekarski 63, no. 2 (2006): 95–96.

Kuroda, M., et al. Chemical constituents of the aerial parts of Scutellaria lateriflora and their alpha-glycosidase inhibitory activities. Natural Products Communications 7, no. 4 (2012): 471–74.

Lai, M.-Y., S.-L. Hsiu, C.-C. Chen, et al. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of scutellariae radix in humans. Biological and Pharmaceutical Bulletin 26, no. 1 (2003): 79–83.

Lai, M. Y., S. L. Hsiu, Y. C. Hou, et al. Significant decrease of cyclosporine bioavailability in rats caused by a decoction of the roots of Scutellaria baicalensis. Planta Medica 70, no. 2 (2004): 132–37.

Latella, G., et al. Prevention of colonic fibrosis by Boswellia and Scutellaria extracts in rats with colitis induced by 2,4,5-trinitrobenzene sulphonic acid. European Journal of Clinical Investigation 38, no. 6 (2008): 410–20.

Lee, A., et al. Synthesis and structure-activity relationships of flavonoids derived from Scutellaria baicalensis Georgi as potent anti-flu agents against Tamiflu-resistant H1N1 virus and H3N2 virus. Journal of Chinese Medicine Research and Development 1, no. 1 (2012): 28–36.

Lee, H., Y. O. Kim, H. Kim, et al. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB Journal 17, no. 13 (2003): 1943–44.

Lee, J. H., and S. R. Lee. The effect of baicalein on hippocampal neuronal damage and metalloproteinase activity following transient global cerebral ischaemia. Phytotherapy Research 26, no. 11 (2012): 1614–19. Published electronically ahead of print February 17, 2012.

Levy, R. M., R. Saikovsky, E. Schmidt, et al. Flavocoxid is as effective as naproxen for managing the signs and symptoms of osteoarthritis of the knee in humans: A short-term randomized, double-blind pilot study. Nutrition Research 29, no. 5 (2009): 298–304.

Li, B. Inhibition of HIV infection by baicalin — a flavonoid compound purified from Chinese herbal medicine. Cellular & Molecular Biology Research 39, no. 2 (1993): 119–24.

Li, B. Q., T. Fu, Y. Dongyan, et al. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochemical and Biophysical Research Communications 276, no. 2 (2000): 534–38.

Li, C., G. Lin, and Z. Zuo. Pharmacological effects and pharmacokinetics properties of radix scutellaria and its bioactive flavones. Biopharmaceutics & Drug Disposition 32, no. 8 (2011): 427–45.

Li, C., L. Zhang, Z. Zuo, et al. Identification and quantification of baicalein, wogonin, oroxylin A and their major glucoronide conjugated metabolites in rat plasma after oral administration of radix scutellariae. Journal of Pharmaceutical and Biomedical Analysis 54, no. 4 (2011): 750–58.

Li, Y., P. Zhuang, B. Shen, et al. Baicalin promotes neuronal differentiation of neural stem/progenitor cells through modulating p-stat3 and bHLH family protein expression. Brain Research 6, no. 1429 (2012): 36–42.

Lim, B. O., R. W. Choue, H. Y. Lee, et al. Effect of the flavonoid components obtained from Scutellaria radix on the histamine, immunoglobulin e and lipid peroxidation of spleen lymphocytes of Sprague-Dawley rats. Bioscience, Biotechnology, and Biochemistry 67, no. 5 (2003): 1126–29.

Lin, A. M., Y. H. Ping, G. F. Chang, et al. Neuroprotective effect of oral S/B remedy (Scutellaria baicalensis Georgi and Bupleurum scorzonerifolium Willd.) on iron-induced neurodegeneration in the nigrostriatal dopaminergic system of rat brain. Journal of Ethnopharmacology 134, no. 3 (2011): 884–91.

Lin, B. Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Reviews in Medicinal Chemistry 11, no. 14 (2011): 1222–38.

Lin, W., et al. Study on the prevention effect of extracts from several medicinal plants on mosaic virus disease of Momordica grosvenori Swingle. Journal of Anhui Agricultural Sciences, 2009-04, CNKI.

Lin, Y. Study on the inhibitory effect of Scutellaria baicalensis Georgi on neuraminidase of influenza A virus. Paper for Asia University, 2010, http://asiair.asia.edu.tw/ir/handle/310904400/10902 (accessed May 19, 2012).

Liu, G., N. Rajesh, X. Wang, et al. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 879, no. 13–14 (2011): 1023–28.

Liu, L., Y. X. Deng, Y. Liang, et al. Increased oral AUC of baicalin in streptozotocin-induced beta-glucuronidase. Planta Medica 76, no. 1 (2010): 70–75.

Liu, T. M., and X. H. Jiang. Studies on the absorption kinetics of baicalin and baicalein in rats’ stomachs and intestines. Zhongguo Zhong Yao Za Zhi 31, no. 12 (2006): 999–1001.

Lixuan, Z., D. Jingcheng, Y. Wengin, et al. Baicalin attenuates inflammation by inhibiting NF-kappaB activation in cigarette smoke induced inflammatory models. Pulmonary Pharmacology & Therapeutics 23, no. 5 (2010): 411–19.

Lu, T., J. Song, F. Huang, et al. Comparative pharmacokinetics of baicalin after oral administration of pure baicalin, radix scutellariae extract and huang-lian-jie-du-tang to rats. Journal of Ethnopharmacology 110, no. 3 (2007): 412–18.

Lu, Y., R., Joerger, and C. Wu. Study of the chemical composition and antimicrobial activities of ethanol extracts from roots of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry 59, no. 20 (2011): 10934–42.

Lu, Z. Clinical comparative study of intravenous piperacillin sodium or injection of scutellaria compound in patients with pulmonary infection. Zhong Xi Yi Jie He Za Zhi 10, no. 7 (1990): 413–15, 389.

Luo, J., et al. Effect of glucoside of root of Scutellaria baicalensis against Ureaplasma urealyticum in vitro. Journal of Microbiology, 2006-05, CNKI.

Luo, X., X. Zhou, P. Su, et al. Effects of Scutellaria baicalensis stem-leaf total flavonoid on proliferation of vassal smooth muscle cells stimulated by high triglyceride blood serum. Zhongguo Zhong Yao Za Zhi 34, no. 21 (2009): 2803–7.

Ma, S. C., J. Du, P. P. But, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus. Journal of Ethnopharmacology 79, no. 2 (2002): 205–11.

Mai, S., et al. Clinical observation of baicalin used in treatment of bacterial meningitis. Maternal and Child Health Care of China, 2006-04, CNKI.

Makino, T., A. Hishida, Y. Goda, et al. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. Journal of Natural Medicines 62, no. 3 (2008): 294–99.

Martin, J., and J. Dusek. The baikal scullcap (Scutellaria baicalensis Georgi) — a potential source of new drugs. Ceská a Slovenská Farmacie 51, no. 6 (2002): 277–83.

Morgan, S. L., J. E. Baggott, L. Moreland, et al. The safety of flavocoxid, a medical food, in the dietary management of knee osteoarthritis. Journal of Medicinal Food 12, no. 5 (2009): 1143–48.

Murch, S. J., H. P. Rupasinghe, D. Goodenowe, et al. A metabolic analysis of medicinal diversity in huang-qin (Scutellaria baicalensis Georgi) genotypes: Discovery of novel compounds. Plant Cell Reports 23, no. 6 (2004): 419–25.

Nagai, T., et al. Inhibition of influenza virus sialidase and anti-influenza virus activity by plant flavonoids. Chemical and Pharmaceutical Bulletin (Tokyo) 38, no. 5 (1990): 1329–32.

Nagai, T., Y. Miyaichi, T. Tomimori, et al. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antiviral Research 19, no. 3 (1992): 207–17.

Nagai, T., R. Moriguchi, Y. Suzuki, et al. Mode of action of the anti-influenza virus activity of plant flavonoid, 5,7,4'-trihydroxy-8- methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Research 26, no. 1 (1995): 11–25.

Nagai, T., Y. Suzuki, T. Tomimori, et al. Antiviral activity of plant flavonoid, 5,7,4'-trihydroxyl- 8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses. Biological and Pharmaceutical Bulletin 18, no. 2 (1995): 295–99.

Ozmen, A., S. Madlener, S. Bauer, et al. In vitro anti-leukemic activity of the ethno-pharmacological plant Scutellaria orientalis ssp. carica endemic to western Turkey. Phytomedicine 17, no. 1 (2010): 55–62.

Pant, C. C., A. B. Melkani, L. Mohan, et al. Composition and antibacterial activity of essential oil from Scutellaria grossa Wall ex Benth. Natural Product Research 26, no. 2 (2012): 190–92.

Peng, J., Q. Qi, Q. You, et al. Subchronic toxicity and plasma pharmacokinetic studies on wogonin, a natural flavonoid, in Beagle dogs. Journal of Ethnopharmacology 124, no. 2 (2009): 257–62.

Perez, A. T., B. Arun, D. Tripathy, et al. A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Research and Treatment 120, no. 1 (2010): 111–18.

Piao, H. Z., I. Y. Choi, J. S. Park, et al. Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. International Immunopharmacology 8, no. 12 (2008): 1658–62.

Reiter, R. J., D. X. Tan, S. Burkhardt, et al. Melatonin in Plants. Nutrition Reviews 59, no. 9 (2001): 286–90.

Scute root (Scutellaria baicalensis). Entry in Important Herbs from Around the World of the Tillotson Institute of Natural Health, www.tillotsoninstitute.com/important-herbs/scute-root-scutellaria-baicalensis-.html (accessed March 29, 2012).

Scutellaria baicalensis Georgi. Entry in the Germplasm Resources Information Network (GRIN) database of the USDA Agricultural Research Service National Genetic Resources Program, www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?33424 (accessed March 29, 2012).

Shang, X., X. He, X. He, et al. The genus Scutellaria: An ethnopharmacological and phytochemical review. Journal of Ethnopharmacology 128, no. 2 (2010): 279–313.

Shang, Y.-Z., H. Miao, J.-J. Cheng, et al. Effects of amelioration of total flavonoids from stems and leaves of Scutellaria baicalensis Georgi on deficits, neuronal damage and free radicals disorder induced by cerebral ischemia in rats. Biological and Pharmaceutical Bulletin 29, no. 4 (2006): 805–10.

Sheng, J. P., H. R. Chen, and L. Shen. Comparative study on selenium and amino acids content in leaves of planted and wild Scutellaria baicalensis. Guang Pu Xue Yu Guang Pu Fen Xi 29, no. 1 (2009): 211–13.

Sheng, J. P., H. R. Chen, and L. Shen. Determination of six mineral elements in roots, stems, leaves, flowers and seeds of Scutellaria baicalensis by FAAS. Guang Pu Xue Yu Guang Pu Fen Xi 29, no. 2 (2009): 519–21.

Sherwood, K., and C. Idso. The pharmacological activity of Scutellaria plants. CO2 Science 12, no. 24 (2009): 17.

Shi, R., S. Qiqo, D. Yu, et al. Simultaneous determination of five flavonoids from Scutellaria barbata extract in rat plasma by LC-MS/MS and its application to pharmacokinetic study. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 879, no. 19 (2011): 1625–32.

Shih, Y. T., I. J. Chen, Y. C. Wu, et al. San-huang-xie-xin-tang protects against activated microglia and 6-OHDA-induced toxicity in neuronal SH-SY5Y cells. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1093/ecam/nep025.

Smol’ianinov, E. S., V. E. Gol’dberg, M. G. Matiash, et al. Effect of Scutellaria baicalensis extract on the immunological status of patients with lung cancer receiving antineoplastic chemotherapy. Eksperimental’naia i Klinicheskaia Farmakologiia 60, no. 6 (1997): 49–51.

Song, L. Study development on pharmacodynamics effect of Scutellaria. Chinese Archives of Traditional Chinese Medicine, 2008-08, CNKI.

Song, S. H., and Z. Z. Wang. Analysis of essential oils from different organs of Scutellaria baicalensis. Zhong Yao Cai 33, no. 8 (2010): 1265–70.

Suk, K., H. Lee, S. S. Kang, et al. Flavonoid baicalein attenuates activation-induced cell death of brain microglia. Journal of Pharmacology and Experimental Therapeutics 305, no. 2 (2003): 638–45.

Tang, Z. M., M. Peng, and C. J. Zhan. Screening 20 Chinese herbs often used for clearing heat and dissipating toxin with nude mice model of hepatitis C viral infection. Zhongguo Zhong Xi Yi He Za Zhi 23, no. 6 (2003): 447–48.

Tian, S., G. He, J. Song, et al. Pharmacokinetic study of baicalein after oral administration in monkeys. Fitoterapia 83, no. 3 (2012): 532–40. Published electronically ahead of print January 8, 2012.

Trinh, H. T., E. H. Joh, H. Y. Kwak, et al. Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Acta Pharmacologica Sinica 31, no. 6 (2010): 718–24.

Tsai, P. L., and T. H. Tsai. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinine and SKF-525A: A microdialysis study. Planta Medica 70, no. 11 (2004): 1069–74.

Tsai, T. H., S. C. Liu, P. L. Tsai, et al. The effects of the cyclosporin A, a P-glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: A microdialysis study. British Journal of Pharmacology 137, no. 8 (2002): 1314–20.

Tsao, T. F., M. G. Newman, Y. Y. Kwok, et al. Effect of Chinese and Western antimicrobial agents on selected oral bacteria. Journal of Dental Research 61, no. 9 (1982): 1103–6.

Tseng, Y. P., Y. C. Wu, Y. L. Ley, et al. Scutellaria radix suppresses hepatitis B virus production in human hepatoma cells. Frontiers in Bioscience (Elite Edition) 1, no. 2 (2010): 1538–47.

Udut, E. V., V. V. Zhdanov, L. A. Gur’iantseva, et al. Mechanisms of the erythropoiesis-stimulating effect of skullcap (Scutellaria baicalensis) extract. Eksperimental’naia i Klinicheskaia Farmakologiia 68, no. 4 (2005): 43–45.

Wang, G. F., Z. F. Wu, L. Wan, et al. Influence of baicalin on the expression of receptor activator of nuclear factor-kappaB ligand in cultured human periodontal ligament cells. Pharmacology 77, no. 2 (2006): 71–77.

Wang, H., et al. Studies on chemical constituents of the roots of Scutellaria viscidula Bge. Journal of Shenyang Pharmaceutical University, 2003-05, CNKI.

Wang, X., et al. Antivirus effects of Scutellaria baicalensis root preparations by two different extraction methods on coxsackie B_(3m) and its cell protection function in vitro. Chinese Pharmaceutical, 2006, CNKI.

Wolfson, P., and D. L. Hoffmann. An investigation into the efficacy of Scutellaria lateriflora in healthy volunteers. Alternative Therapies in Health and Medicine 9, no. 2 (2003): 74–78.

Wu, J., D. Hu, and K. X. Wang. Study of Scutellaria baicalensis and baicalin against antimicrobial susceptibility of Helicobacter pylori strains in vitro. Zhong Yao Cai 31, no. 5 (2008): 707–10.

Xiao, L., et al. Comparative study on HPLC-FPS of radix scutellariae of various sources. Journal of Shenyang Pharmaceutical University, 2004-01, CNKI.

Xiao, L., et al. Isolation and identification of the chemical constituents of roots of Scutellaria amoena C.H. Wright. Journal of Shenyang Pharmaceutical University, 2003-09, CNKI.

Xie, L. H., X. Wang, P. Basnet, et al. Evaluation of variation of acteoside and three major flavonoids in wild and cultivated Scutellaria baicalensis roots by micellar electrokinetic chromatography. Chemical & Pharmaceutical Bulletin (Tokyo) 50, no. 7 (2002): 896–99.

Xiong, Z., B. Jiang, P. F. Wu, et al. Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biological and Pharmaceutical Bulletin 34, no. 2 (2011): 253–59.

Xu, G., J. Dou, L. Zhang, et al. Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum. Biological and Pharmaceutical Bulletin 33, no. 2 (2010): 238–43.

Xu, S., et al. Antiviral effect and mechanism of Scutellaria baicalensis Georgi. Chinese Archives of Traditional Chinese Medicine, 2007-07, CNKI.

Yan, X., et al. Therapeutic effects of baicalin on encephaledema followed by the laboratory brain blood swelling in neonatal rats. Pediatric Emergency Medicine, 2004-04, CNKI.

Yang, D., H. Hu, S. Huang, et al. Study of the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria. Zhong Yao Cai 23, no. 5 (2000): 272–74.

Yang, J., et al. Experimental research on the antivirus function in vitro Scutellaria baicalensis Georgi extractant. Science Technology and Engineering, 2007-12, CNKI.

Yang, L., X. L. Zheng, H. Sun, et al. Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Science 102, no. 4 (2011): 870–76.

Yang, X., B. Huang, J. Chen, et al. In vitro effects of aqueous extracts of Astragalus membranaceus and Scutellaria baicalensis Georgi on Toxoplasma gondii. Parasitology Research 110, no. 6 (2012): 2221–27. Published electronically ahead of print December 17, 2011.

Yang, Y., et al. The protective effects of baicalin on pertussis bacilli-induced brain edema in rats. Zhonghua Yi Xue Za Zhi 78, no. 8 (1988): 630–32.

Yang, Z. C., B. C. Wang, X. S. Yang, et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids and Surface B Biointerfaces 41, no. 2–3 (2005): 79–81.

Yoon, S. B., Y. J. Lee, S. K. Park, et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. Journal of Ethnopharmacology 125, no. 2 (2009): 286–90.

You, C. L., P. Q. Su, and X. X. Zhou. Study on effect and mechanism of Scutellaria baicalensis stem-leaf total flavonoid in regulating lipid metabolism. Zhongguo Zhong Yao Za Zhi 33, no. 9 (2008): 1064–66.

Yu, C., et al. Oren-gedoku-to and its constituents with therapeutic potential in Alzheimer’s disease inhibit indoleamine 2, 3-dioxygenase activity in vitro. Journal of Alzheimer’s Disease 22, no. 1 (2010): 257–66.

Yu, J., J. Lei, H. Yu, et al. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry 65, no. 7 (2004): 881–84.

Yu, L. Z., J. Y. Wu, J. B. Luo, et al. Effects of different compositions of gegenqinlian decoction on experimental shigellosis in rabbits. Di Yi Jun Yi Da Xue Xue Bao 25, no. 9 (2005): 1132–34.

Yue, G. G., B. C. Chan, H. F. Kwok, et al. Screening for anti-inflammatory and bronchorelaxant activities of 12 commonly used Chinese herbal medicines. Phytotherapy Research 26, no. 6 (2012): 915–25. Published electronically ahead of print November 22, 2011.

Zeng, Y., C. Song, X. Ding, et al. Baicalin reduces the severity of experimental autoimmune encephalomyelitis. Brazilian Journal of Medical and Biological Research 40 (2007): 1003–10.

Zhang, D. Y., J. Wu, F. Ye, et al. Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Research 63, no. 14 (2003): 4037–43.

Zhang, H., and J. Huang. Preliminary study of traditional Chinese medicine treatment of minimal brain dysfunction: Analysis of 100 cases. Zhong Xi Yi Jie He Za Zhi 10, no. 5 (1990): 278–79, 260.

Zhang, J., et al. Content determination of baicalin in root of Scutellaria viscidula Bge by HPCL. Lishizhen Medicine and Materia Medica Research, 2008-03, CNKI.

Zhang, J. L., Q. M. Che, S. Z. Li, et al. Study on metabolism of scutellarin in rats by HPLC-MS and HPLC-NMR. Journal of Asian Natural Products Research 5, no. 4 (2003): 249–56.

Zhang, L., et al. In vitro study of baicalin on infection of respiratory syncytial virus. Zhejiang Clinical Medical Journal, 2008-12, CNKI.

Zhang, L., A. S. Ravipati, S. R. Koyyalamudi, et al. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. Journal of Agricultural and Food Chemistry 59, no. 23 (2011): 12361–67.

Zhang, L., D. Xing, Y. Ding, et al. A chromatographic method for baicalin quantification in rat thalamus. Biomedical Chromatography 19, no. 7 (2005): 494–97.

Zhang, L., D. Xing, W. Wang, et al. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of scutellariae radix extract. Journal of Ethnopharmacology 103, no. 1 (2006): 120–25.

Zhang, X., et al. An experimental study in bacteriostatic effect of decoction of Scutellaria baicalensis baicalin and debaicalin. Journal of Heilonghang Commercial College, 1997-04, CNKI.

Zhang, X. W., W. F. Li, W. W. Li, et al. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharmaceutical Biology 49, no. 3 (2011): 256–61.

Zhang, Y. Y., H. Y. Don, Y. Z. Guo, et al. Comparative study of Scutellaria planipes and Scutellaria baicalensis. Biomedical Chromatography 12, no. 1 (1998): 31–33.

Zhao, T., et al. Antiviral effects of active fraction from stems and leaves of Scutellaria baicalensis. Journal of China Pharmaceutical University, 2006-06, CNKI.

Zhao, T., et al. Study of antibacterial activity of active fraction from stems and leaves of Scutellaria baicalensis Georgi. Chinese Pharmaceutical Bulletin, 2007-07, CNKI.

Zheljazkov, V. D., C. L. Cantrell, M. W. Ebelhar, et al. Quality assessment and yield of baikal skullcap (Scutellaria baicalensis) grown at multiple locations. Horticultural Science 42, no. 5 (2007): 1183–87.

Zhou, J., F. Qu, H.-J. Zhang, et al. Comparison of anti-inflammatory and anti-nociceptive activities of Curcuma wenyujin Y.H. Chen et C. Ling and Scutellaria baicalensis Georgi. Indian Journal of Medical Research 7, no. 4 (2010): 339–49.

Zhou, X., et al. An in vitro study on the effects of radix scutellariae on three strains of cariogenic bacteria. Journal of West China University of Medical Sciences, 2002-03, CNKI.

Zhou, X. Q., H. Liang, X. H. Lu, et al. Flavonoids from Scutellaria baicalensis and their bioactivities. Beijing Da Xue Xue Bao 41, no. 5 (2009): 578–84.

Zhu, Y. X., X. Luo, D. P. Zhao, et al. Analysis of the content of mineral elements in Scutellaria baicalensis, skullcap tea and its solution. Guang Pu Xue Yu Guang Pu Fen 31, no. 11 (2011): 3112–14.

Zhu, Z., L. Zhao, X. Liu, et al. Comparative pharmacokinetics of baicalin and wogonoside by liquid chromatography-mass spectrometry after oral administration of xiaochaihu tang and radix scutellariae extract to rats. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 878, no. 24 (2010): 2184–90.

Cordyceps (Cordyceps sinensis)

Ahn, Y. J., S. J. Park, S. G. Lee, et al. Cordycepin: Selective growth inhibitors derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry 48, no. 7 (2000): 2744–48.

Bao, Z. D., Z. G. Wu, and F. Zheng. Amelioration of aminoglycoside nephrotoxicity by Cordyceps sinensis in old patients. Zhongguo Zhong Xi Yi Jie He Za Zhi 14, no. 5 (1994): 271–73, 259.

Boesi, Alessandro, and Francesca Cardi. Cordyceps sinensis medicinal fungus: Traditional use among Tibetan people, harvesting techniques, and modern uses. HerbalGram (American Botanical Council) 83 (2009): 52–61, http://cms.herbalgram.org/herbalgram/issue83/article3433.html.

Byeon, S. E., S. Y. Lee, A. R. Kim, et al. Inhibition of cytokine expression by butanol extract from Cordyceps bassiana. Pharmazie 66, no. 1 (2011): 58–62.

Byeon, S. E., J. Lee, B. C. Yoo, et al. p-38-targeted inhibition of interleukin-12 expression by ethanol extract from Cordyceps bassiana in lypopolysaccharide-activated macrophages. Immunopharmacology and Immunotoxicology 33, no. 1 (2011): 90–96.

Chang, Y., K. C. Jeng, K. F. Huang, et al. Effect of Cordyceps militaris supplementation on sperm production, sperm motility and hormones in Sprague-Dawley rats. American Journal of Chinese Medicine 36, no. 5 (2008): 849–59.

Chen, S., Z. Li, R. Krochmal, et al. Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: A double-blind, placebo-controlled trial. Journal of Alternative and Complementary Medicine 16, no. 5 (2010): 585–90.

Cheng, Z., W. He, X. Zhou, et al. Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. European Journal of Pharmacology 664, no. 1–3 (2011): 20–28.

Chiou, Y.-L., and C.-Y. Lin. The extract of Cordyceps sinensis inhibited airway inflammation by blocking NF-κB activity. Inflammation 35, no. 3 (2011): 985–93.

Cho, H. J., J. Y. Cho, M. H. Rhee, et al. Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. European Journal of Pharmacology 558, no. 1–3 (2007): 43–51.

Cho, H. J., J. Y. Cho, M. H. Rhee, et al. Inhibitory effects of cordycepin (3'-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. Journal of Microbiology and Biotechnology 17, no. 7 (2007): 1134–38.

Colson, S. N., F. B. Wyatt, D. L. Johnston, et al. Cordyceps sinensis- and Rhodiola rosea-based supplementation in male cyclists and its effect on muscle tissue oxygen saturation. Journal of Strength & Conditioning Research 19, no. 2 (2005): 358–63.

Ding, C., P. X. Tian, W. Xue, et al. Efficacy of Cordyceps sinensis in long term treatment of renal transplant patients. Frontiers in Bioscience (Elite Edition) 1, no. 3 (2011): 301–7.

El Ashry Fel, Z., M. F. Mahmoud, N. N. El Maraghy, and A. F. Ahmed. Effects of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food and Chemical Toxicology 50, no. 3–4 (2012): 1159–65.

Gong, M. F., J. P. Xu, Z. Y. Chu, et al. Effect of Cordyceps sinensis sporocarp on learning-memory in mice. Zhong Yao Cai 34, no. 9 (2011): 1403–5.

Guo, P., Q. Kai, J. Gao, et al. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of Pharmacological Sciences 113, no. 4 (2010): 395–403.

Han, E. S., J. Y. Oh, and H. J. Park. Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells. Journal of Ethnopharmacology 134, no. 3 (2011): 703–10.

Haritakun, R., M. Sappan, R. Suvannakad, et al. An antimycobacterial cyclodepsipeptide from the entomopathogenic fungus Ophiocordyceps communis BCC 16475. Journal of Natural Products 73, no. 1 (2010): 75–78.

Holliday, J., and M. Cleaver. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr) Link (Ascomycetes). A review. International Journal of Medicinal Mushrooms 10, no. 3 (2008): 219–34.

Holliday, J., and M. Cleaver. On the trail of the yak: Ancient cordyceps in the modern world. June 2004. www.earthpulse.com/cordyceps_inc/cordyceps_story.pdf.

Holliday, J., M. Cleaver, and S. P. Wasser. Cordyceps. Encyclopedia of Dietary Supplements 1 (2005): 1–13.

Hsu, C. H., H. L. Sun, J. N. Sheu, et al. Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediatrics & Neonatology 49, no. 5 (2008): 171–78.

Huang, J. C., J. H. Li, T. X. Liu, et al. Effect of combined therapy with hypha cordyceps and ginkgo leaf tablet on micro-inflammation in patients undergoing maintenance hemodialysis. Zhongguo Zhong Xi Yi Jie He Za Zhi 28, no. 6 (2008): 502–4.

Hwang, I. K., S. S. Lim, K. Y. Yoo, et al. A phytochemically characterized extract of Cordyceps militaris and cordycepin protect hippocampal neurons from ischemic injury in gerbils. Planta Medica 74, no. 2 (2008): 114–19.

Jeong, J. W., C. Y. Jin, G. Y. Kim, et al. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. International Immunopharmacology 10, no. 12 (2010): 1580–86.

Jeong, J. W., C. Y. Jin, C. Park, et al. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. International Journal of Oncology 40, no. 5 (2012): 1697–704.

Jiang, Y., J. H. Wong, M. Fu, et al. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine 18, no. 2–3 (2011): 189–93.

Jones, I. L., F. K. Moore, and C. L. Chai. Total synthesis of (+/-)-cordypyridones A and B and related epimers. Organic Letters 11, no. 23 (2009): 5526–29.

Jung, S. M., S. S. Park, W. J. Kim, et al. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. European Journal of Pharmacology 681, no. 1–3 (2012): 15–22.

Khan, A., et al. Cordyceps mushroom: A potent anticancer nutraceutical. Open Nutraceuticals Journal 3 (2010): 179–83.

Kim, H. G., B. Shrestha, S. Y. Lim, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF- kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European Journal of Pharmacology 545, no. 2–3 (2006): 192–99.

Kim, J. H., D. K. Park, C. H. Lee, et al. A new isoflavone glycitein 7-o-beta-d-glucoside 4''-O-methylate, isolated from Cordyceps militaris grown on mucus hypersecretion in the human lung mucoepidermoid cells. Phytotherapy Research 26, no. 12 (2012): 1807–12. Published electronically ahead of print March 9, 2012.

Kim, K. M., Y. G. Kwon, H. T. Chung, et al. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-kappaB activation. Toxicology and Applied Pharmacology 190, no. 1 (2003): 1–8.

King, B. Species diversity and production of antimicrobial compounds by Pacific Northwestern clavicipitalean entomogenous fungi (Cordyceps spp.). Master’s thesis, University of British Columbia, 2006, http://circle.ubc.ca/handle/2429/18403.

Ko, K. M., and H. Y. Leung. Enhancement of ATP generation capacity, antioxidant activity and immunomodulatory activities by Chinese yang and yin tonifying herbs. Chinese Medicine 2, no. 3 (2007): 1–10.

Kuo, C.-F., C.-C. Chen, Y.-H. Luo, et al. Cordyceps sinensis mycelium protects mice from group A streptococcal infection. Journal of Medical Microbiology 54 (2005): 795–802.

Kuo, Y. C., W. J. Tsai, J. Y. Wang, et al. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sciences 68, no. 9 (2001): 1067–82.

Lee, E. J., W. J. Kim, and S. K. Moon. Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytotherapy Research 24, no. 12 (2010): 1755–61.

Lee, S. J., S. K. Kim, W. S. Choi, et al. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Archives of Biochemistry and Biophysics 490, no. 2 (2009): 103–9.

Lei, J., J. Chen, and C. Guo. Pharmacological study on Cordyceps sinensis (Berk.) Sacc. and ze-e Cordyceps. Zhongguo Zhong Yao Za Zhi 17, no. 6 (1992): 364–66.

Leu, S. F., S. L. Poon, H. Y. Pao, et al. The in vivo and in vitro stimulatory effects of cordycepin on mouse Leydig cell steroidogenesis. Bioscience, Biotechnology, and Biochemistry 75, no. 4 (2011): 723–31.

Li, C.-Y., C.-S. Chiang, and M.-L. Tsai. Two-sided effect of Cordyceps sinensis on dendritic cells in different physiological stages. Journal of Leukocyte Biology 85 (2009): 987–95.

Li, Y., W. J. Xue, P. X. Tian, et al. Clinical application of Cordyceps sinensis on immunosuppressive therapy in renal transplantation. Transplant Proceedings 41, no. 5 (2009): 1565–69.

Lin, X. X., Q. M. Xie, W. H. Shen, et al. Effects of fermented cordyceps powder on pulmonary function in sensitized guinea pigs and airway inflammation in sensitized rats. Zhongguo Zhong Yao Za Zhi 26, no. 9 (2001): 622–25.

Liu, Q., I. P. Hong, M. J. Ahn, et al. Anti-adipogenic activity of Cordyceps militaris in 3T3-L1 cells. Natural Product Communications 6, no. 12 (2011): 1839–41.

Liu, Y., et al. Effects of water extract from Cordyceps sinensis mycelium on anti-Newcastle disease virus. Journal of Hebei University of Engineering, 2011-02, CNKI.

Liu, Z., P. Li, D. Zhao, et al. Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury in rats. Inflammation 34, no. 6 (2011): 639–44.

Liu, Z., P. Li, D. Zhao, et al. Protective effect of extract of Cordyceps sinensis in middle cerebral ischemia in rats. Behavioral and Brain Functions 6, no. 61 (2010): 1–6.

Lu, L. Study on effect of Cordyceps sinensis and artemisinin in preventing recurrence of lupus nephritis. Zhongguo Zhong Xi Yi Jie He Za Zhi 22, no. 3 (2002): 169–71.

Manabe, N., M. Sugimoto, Y. Azuma, et al. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse. Japanese Journal of Pharmacology 70, no. 1 (1996): 85-88.

Muslim, N., and H. Rahman. A possible new record of Cordyceps species from Ginseng Camp, Maliau Basin, Sabah, Malaysia. Journal of Tropical Biology and Conservation 6 (2010): 39–41.

Ng, T. B., and H. X. Wang. Pharmacological actions of cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology 57, no. 12 (2005): 1509–19.

Noh, E.-M., J.-S. Kim, H. Hur, et al. Cordycepin inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 48 (2009): 45–48.

Ohta, Y., et al. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. Journal of Agriciculture and Food Chemistry 55, no. 25 (2007): 10194–99.

Pan, B. S., C. Y. Lin, and B. M. Huang. The effect of cordycepin on steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1155/2011/750468.

Panda, A. K., and K. C. Swain. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. Journal of Ayurveda and Integrative Medicine 2, no. 1 (2011): 9–13.

Parcell, A. C., J. M. Smith, S. S. Schulthies, et al. Cordyceps sinensis (CordyMax Cs-4) supplementation does not improve endurance exercise performance. International Journal of Sport Nutrition and Exercise Metabolism 14, no. 2 (2004): 236–42.

Park, D. K., W. S. Choi, and H. J. Park. Antiallergic activity of novel isofalvone methyl-glycosides from Cordyceps militaris grown on germinated soybeans in antigen-stimulated mast cells. Journal of Agricultural and Food Chemistry 60, no. 9 (2012): 2309–15.

Park, D. K., W. S. Choi, P. J. Park, et al. Immunoglobulin and cytokine production from mesenteric lymph node lymphocytes is regulated by extracts of Cordyceps sinensis in C57BI/6N mice. Journal of Medicinal Food 11, no. 4 (2008): 784–88.

Paterson, R. M. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69 (2008): 1469–95.

Qi, W., Y. B. Yan, W. Lei, et al. Prevention of disuse osteoporosis in rats by Cordyceps sinensis extract. Osteoporosis International 23, no. 9 (2012): 2347–57. Published electronically ahead of print December 13, 2011.

Qian, G. M., G. F. Pan, and J. Y. Guo. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Natural Product Research 26, no. 24 (2012): 2358–62. Published electronically ahead of print February 21, 2012.

Rao, Y. K., S. H. Fang, and Y. M. Tzeng. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorate, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of Ethnopharmacology 114, no. 1 (2007): 78–85.

Rao, Y. K., S. H. Fang, W. S. Wu, et al. Constituents isolated form Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. Journal of Ethnopharmacology 131, no. 2 (2010): 363–67.

Shahed, A. R., S. I. Kim, and D. A. Shoskes. Down-regulation of apoptic and inflammatory genes by Cordyceps sinensis extract in rat kidney following ischemia/reperfusion. Transplant Proceedings 33, no. 6 (2001): 2986–87.

Shao, G. Treatment of hyperlipidemia with cultivated cordyceps — a double-blind, randomized placebo control trial. Zhong Xi Yi Jie He Za Zhi 5, no. 11 (1985): 652–54, 642.

Sheng, L., J. Chen, J. Li, et al. An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Applied Biochemistry and Biotechnology 163, no. 5 (2011): 669–78.

Shin, S., S. Lee, and J. Kwon. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lypopolysaccharide-induced inflammation in microphages. Immune Network 9, no. 3 (2009): 98–105.

Shin, S., S. Moon, Y. Park, et al. Role of cordycepin and adenosine on the phenotypic switch of macrophages via induced anti-inflammatory cytokines. Immune Network 9, no. 6 (2009): 255–64.

Siu, K. M., D. H. Mak, P. Y. Chiu, et al. Pharmacological basis of “yin-nourishing” and “yang-invigorating” actions of cordyceps, a Chinese tonifying herb. Life Sciences 76, no. 4 (2004): 385–95.

Sun, W., J. Yu, Y. M. Shi, et al. Effects of cordyceps extract on cytokines and transcription factors in peripheral blood mononuclear cells of asthmatic children during remission stage. Zhong Xi Yi He Xue Bao 8, no. 4 (2010): 341–46.

Sung, G.-H., N. L. Hywel-Jones, J.-M. Sung, et al. Phylogenic classification of cordyceps and the clavicipitaceous fungi. Studies in Mycology 57 (2007): 5–59.

Sung, G.-H., and J. W. Spatafora. Cordyceps cardinalis sp. nov., a new species of cordyceps with an east Asian-eastern North American distribution. Mycologia 96, no. 3 (2004): 658–66.

Thakur, A., R. Hui, Z. Hongyan, et al. Pro-apoptotic effects of Paecilomyces hepiali, a Cordyceps sinensis extract on human lung adenocarcinoma A549 cells in vitro. Journal of Cancer Research and Therapeutics 7, no. 4 (2011): 421–26.

Tsai, Y. J., L. C. Lin, and T. H. Tsai. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. Journal of Agricultural and Food Chemistry 58, no. 8 (2010): 4638–43.

Tu, S., Q. Zhou, R. Tang, et al. Proapoptotic effect of angiotensin II on renal tubular epithelial cells and protective effect of Cordyceps sinensis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 37, no. 1 (2012): 67–72.

Wang, J., Y. M. Liu, W. Cao, et al. Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metabolic Brain Disease 27, no. 2 (2012): 159–65. Published electronically ahead of print February 12, 2012.

Wang, N. Q., L. D. Jiang, X. M. Zhang, et al. Effect of dongchong xiacao capsule on airway inflammation of asthmatic patients. Zhongguo Zhong Yao Za Zhi 32, no. 15 (2007): 1566–68.

Wang, S., F. Q. Wang, K. Feng, et al. Simultaneous determination of nucleosides, myriocin, and carbohydrates in cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection. Journal of Separation Science 32, no. 23–24 (2009): 4069–76.

Wang, S.-H., W.-B. Yang, Y.-C. Liu, et al. A potent sphingomyelinase inhibitor from cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. Journal of Lipid Research 52, no. 3 (2011): 471–79.

Wang, Y., M. Wang, Y. Ling, et al. Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. American Journal of Chinese Medicine 37, no. 5 (2009): 977–89.

Won, K. J., S. C. Lee, C. K. Lee, et al. Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. Journal of Pharmacological Sciences 109, no. 3 (2009): 403–12.

Wong, H. S., H. Y. Leung, and K. M. Ko. “Yang-invigorating” Chinese tonic herbs enhance mitochondrial ATP generation in H9c2 cardiomyocytes. Chinese Medicine 2 (2011): 1–5.

Wong, J., et al. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18, no. 5 (2011): 387–92.

Wu, G., L. Li, G. H. Sung, et al. Inhibition of 2, 4-dinitrofluorobenzine-induced atopic dermatitis by tropical application of the butanol extract of Cordyceps bassiana in NC/Nga mice. Journal of Ethnopharmacology 134, no. 2 (2011): 504–9.

Xie, J. W., L. F. Huang, W. Hu, et al. Analysis of the main nucleosides in Cordyceps sinensis by LC/ESI-MS. Molecules 15, no. 1 (2010): 305–14.

Xu, F., J. B. Huang, L. Jiang, et al. Amelioration of cyclosporin nephrotoxicity by Cordyceps sinensis in kidney-transplanted recipients. Nephrology Dialysis Transplantation 10, no. 1 (1995): 142–43.

Yan, W., et al. Antiviral activity of Cordyceps guangdongensis against influenza virus infections in mice. Acta Edulis Fungi 17, no. 3 (2010): 68–70.

Yang, M. L., P. C. Kuo, T. L. Hwang, et al. Anti-inflammatory principles from Cordyceps sinensis. Journal of Natural Products 74, no. 9 (2011): 1996–2000.

Yu, H. M, S. Wang, and S. C. Huang. Comparison of the protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. Journal of Agricultural and Food Chemistry 54, no. 8 (2006): 3132–38.

Yu, T., J. Shim, Y. Yang, et al. 3-(4-(tert-octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases. Biochemical Pharmacology 83, no. 11 (2012): 1540–51.

Yue, G. G., C. B. Lau, K. P. Fung, et al. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. Journal of Ethnopharmacology 117, no. 1 (2008): 92–101.

Zhang, J., Y. Yu, Z. Zhang, et al. Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. International Immunopharmacology 11, no. 12 (2011): 2251–57.

Zhong, S., et al. Advances in research of polysaccharides in Cordyceps species. Food Technology and Biotechnology 47, no. 3 (2009): 304–12.

Zhou, X., Z. Gong, Y. Su, et al. Cordyceps fungi: Natural products, pharmacological functions and developmental products. Pharmacy and Pharmacology 61 (2009): 279–91.

Zhou, X., L. Luo, W. Dressel, et al. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. American Journal of Chinese Medicine 36, no. 5 (2008): 967–80.

Zhu, J.-S., G. M. Halpern, and K. Jones. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis. Part II. Journal of Alternative and Complementary Medicine 4, no. 4 (1998): 429–57.

Zhu, R., Y.-P. Chen, Y.-Y. Deng, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. Journal of Zhejiang University Science B (Biomedicine and Biotechnology) 12, no. 12 (2011): 1024–33.

Zhu, Z. Y., Q. Yao, Y. Liu, et al. Highly efficient synthesis and anti tumor activity of monosaccharide saponins mimicking components of Chinese folk medicine Cordyceps sinensis. Journal of Asian Natural Products Research 14, no. 5 (2012): 429–35. Published electronically ahead of print March 20, 2012.

Zu, H., Q. Zhou, R. Huang, et al. Effect of Cordyceps sinensis on the expression of HIF-1α and NGAL in rats with renal ischemia-reperfusion injury. Zhong Nan Da Xue Bao Yi Xue Ban 37, no. 1 (2012): 57–66.

Elder (Sambucus spp.)

Akbulut, M., et al. Physiochemical characteristics of some wild grown European elderberry (Sambucus nigra L) genotypes. Pharmacognosy Magazine 5 (2009): 320–23.

American Botanical Council. The ABC Clinical Guide to Elder Berry. (Austin, TX: ABC, 2004).

Anonymous. Sambucus nigra. Monograph, Alternative Medicine Review 10, no. 1 (2005): 51–55.

Barak, V., et al. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Israel Medical Association Journal 4, suppl. (2002): 919–22.

Barak, V., et al. The effect of Sambucol, a black elderberry-based, natural product on the production of human cytokines: I. Inflammatory cytokines. European Cytokine Network 12, no. 2 (2001): 290–96.

Bitsch, I., et al. Bioavailability of anthocyanidin-3-glycosides following consumption of elderberry extract and blackcurrant juice. International Journal of Clinical Pharmacology and Therapeutics 42, no. 5 (2004): 293–400.

Bitsch, R., et al. Urinary excretion of cyanidin glucosides and glucuronides in healthy humans after elderberry juice ingestion. Journal of Biomedicine and Biotechnology 5 (2004): 343–45.

Caceres, A., et al. Plant used in Guatemala for the treatment of gastrointestinal disorders. 1. Screening of 84 plants against enterobacteria. Journal of Ethnopharmacology 30, no. 1 (1990): 55–73.

Cao, G., et al. Anthocyanins are absorbed in glycated forms in elderly women: A pharmacokinetic study. American Journal of Clinical Nutrition 73, no. 5 (2001): 920–26.

Charlebois, D. Elderberry as a medicinal plant. In Issues in New Crops and New Uses, ed. J. Janick and A. Whipkey, 284–92. Alexandria, Va.: ASHS Press, 2007.

Chen, Y., et al. The Sambucus nigra type-2 ribosome-inactivating protein SNA-1' exhibits in plant antiviral activity in transgenic tobacco. FEBS Letters 516, no. 1–3 (2002): 27–30.

Christensen, K., et al. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytotherapy Research 24, suppl. 2 (2010): S129–32.

de Benito, F., et al. Constitutive and inducible type 1 ribosome-inactivating proteins (RIPs) in elderberry (Sambucus nigra L). FEBS Letters 428 (1998): 75–79.

de Benito, F., et al. Ebulitins: A new family of type 1 ribosome-inactivating proteins (rRNA N-glycosidases) from the leaves of Sambucus ebulus L that coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS Letters 360, no. 3 (1995): 299–302.

Elrod, S. Sambucus nigra agglutinin II and related lectins and their potential contribution to medicinal benefits of the elder tree. Paper prepared for a graduate course in advanced biochemistry and molecular biology at the University of Georgia, online at http://susanme.myweb.uga.edu/bcmb8010/report.pdf, accessed June 5, 2012.

Fink, R. HIV type-1 entry inhibitors with a new mode of action. Antiviral Chemistry & Chemotherapy 19, no. 6 (2009): 243–55.

Frank, T., et al. Absorption and excretion of elderberry (Sambucus nigra L) anthocyanins in healthy humans. Methods and Findings in Experimental and Clinical Pharmacology 29, no. 8 (2007): 525–33.

Frank, T., et al. Urinary pharmacokinetics of cyanidin glycosides in healthy young men following consumption of elderberry juice. International Journal of Clinical Pharmacological Research 25, no. 2 (2005): 47–56.

Furusawa, E., et al. Activity of Sambucus sieboldiana on Columbia SK and LGM virus infection in mice. Experimental Biology and Medicine 128, no. 4 (1968): 1196–99.

Girbes, T., et al. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus leaves. Journal of Biological Chemistry 268, no. 24 (1993): 18196–99.

Glatthaar, B., et al. Antiviral activity of a composition of Gentiana lutea L, Primula veris L, Sambucus nigra L, Rumex spp and Verbena officinalis L (Sinupret) against viruses causing respiratory infections. European Journal of Integrative Medicine 1, no. 4 (2009): 258.

Hearst, C., et al. Antibacterial activity of elder (Sambucus nigra L) flower or berry against hospital pathogens. Journal of Medicinal Plants Research 4, no. 17 (2010): 1805-9.

Hwang, B., et al. Antifungal effect of (+)- pinoresinol isolated from Sambucus williamsii. Molecules 15 (2010): 3507–35.

Kaack, K., and T. Austed. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L) during juice processing. Plant Foods in Human Nutrition 52, no. 3 (1998): 187–98.

Kabuce, N., and N. Priede. Sambucus nigra. NOBANIS — Invasive Alien Species Fact Sheet. From the Online Database of the North European and Baltic Network on Invasive Alien Species (NOBANIS; www.nobanis.org), www.nobanis.org/files/factsheets/sambucus_nigra.pdf, accessed March 12, 2012.

Kay, C., et al. Anthocyanins exist in the circulation primarily as metabolites in adult men. Journal of Nutrition 135, no. 11 (2005): 2582–88. Accessed online via http://jn.nutrition.org.

Ko’odziejl, B., et al. Effect of traffic pollution on chemical composition of raw elderberry (Sambucus nigra L). Journal of Elementology 17, no. 1 (2012): 67–78. Accessed online via www.uwm.edu.pl.

Krawitz, C., et al. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complementary and Alternative Medicine 11 (2011): 16–22.

Lak, E., et al. Protective effect of Sambucus elbus extract on teratogenicity of albendazole. Middle-East Journal of Scientific Research 8, no. 3 (2011): 606–10.

Lee, J., and C. Finn. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. Journal of the Science of Food and Agriculture 87, no. 14 (2007): 2665–75.

Li, H., et al. Antiosteoporotic activity of the stems of Sambucus sieboldiana. Biological & Pharmaceutical Bulletin 21, no. 6 (1998): 594–98.

Liao, Q., et al. LC-MS determination and pharmacokinetic studies of ursolic acid in rat plasma after administration of the traditional Chinese medicinal preparation lu-ying extract. Yakugaku Zasshi 125, no. 6 (2005): 509–15.

Marczylo, T., et al. Pharmacokinetics and metabolism of the putative cancer chemopreventive agent cyanidin-3-glucoside in mice. Cancer Chemotherapy and Pharmacology 64, no. 6 (2009): 1261–68.

Martin, C. O., and S. P. Mott. American elder (Sambucus canadensis). Section 7.5.7 of the U.S. Army Corps of Engineers Wildlife Resources Management Manual (Vicksburg, Miss.: U.S. Army Engineer Waterways Experiment Station Environmental Lab, 1997).

McCutcheon, A. R., et al. Antibiotic screening of medicinal plants of the British Columbian native peoples. Journal of Ethnopharmacology 37, no. 3 (1992): 213–23.

McCutcheon, A. R., et al. Anti-mycobacterial screening of British Columbian medicinal plants. Pharmaceutical Biology 35, no. 2 (1997): 77–83.

McCutcheon, A. R., et al. Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology 49 (1995): 101–10.

Milbury, P., et al. Bioavailability of elderberry anthocyanins. Mechanisms of Ageing and Development 123, no. 8 (2002): 997–1006.

Mulleder, U., et al. Urinary excretion of cyanidin glycosides. Journal of Biochemical and Biophysical Methods 53, no. 1–3 (2002): 61–66.

Murcovic, M., et al. Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidatoin in healthy volunteers: A randomized, double-blind, placebo-controlled study. European Journal of Clinical Nutrition 58, no. 2 (2004): 244–49.

Quave, C., et al. Quorum sensing inhibitors of Staphylococcus aureus from Italian medicinal plants. Planta Medica 77, no. 2 (2011): 188–95.

Roschek, B., et al. Elderberry flavonoids bind to and prevent N1N1 infection in vitro. Phytochemistry 70, no. 10 (2009): 1255–61.

Schwaiger, S., et al. Identification and pharmacological characterization of the anti-inflammatory principal of the leaves of dwarf elder (Sambucus ebulis L). Journal of Ethnopharmacology 133 (2011): 704–9.

Serkedjieva, J., et al. Antiviral activity of the infusion (SHS-174) from flowers of Sambucus nigra L, aerial parts of Hypericum perforatum L, and roots of Saponaria officinalis L against influenza and herpes simplex viruses. Phytotherapy Research 4, no. 3 (1990): 97–100.

Shokrzadeh, M., and S. Saravi. The chemistry, pharmacology and clinical properties of Sambucus ebulus: A review. Journal of Medicinal Plants Research 4, no. 2 (2010): 95–103.

Smee, D., et al. Effects of Theramax on influenza virus infections in cell culture and mice. Antiviral Chemistry & Chemotherapy 21, no. 6 (2011): 231–37.

Suntar, I., et al. Wound healing potential of Sambucus ebulus L leaves and isolation of an active component, quercetin 3-O-glucoside. Journal of Ethnopharmacology 129, no. 10 (2010): 106–14.

Talavera, S., et al. Anthocyanins are efficiently absorbed from the small intestine in rats. Journal of Nutrition 134, no. 9 (2004): 2275–79.

Thole, J., et al. A comparative evaluation of the anticancer properties of European and American elderberry fruits. Journal of Medicinal Food 9, no. 4 (2006):498–504.

Uncini Manganelli, R., et al. Antiviral activity in vitro of Urtica dioica L, Parietaria diffusa M et K and Sambucus nigra L. Journal of Ethnopharmacology 98, no. 3 (2005): 323–27.

Vandenbussche, F., et al. Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. European Journal of Biochemistry 271 (2004): 1508–15.

Waknine-Grinberg, J., et al. The immunomodulatory effect of Sambucol on leishmanial and malarial infections. Planta Medica 75, no. 6 (2009): 581–86.

Wu, X., et al. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. Journal of Nutrition 132, no. 7 (2002): 1865–71. Accessed online via http://jn.nutrition.org.

Zakay-Rones, Z., et al. Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L) during an outbreak of influenza B in Panama. Journal of Alternative and Complementary Medicine 1, no. 4 (1995): 361–69.

Zakay-Rones, Z., et al. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. Journal of International Medical Research 32, no. 2 (2004): 132–40.

Zhang, T., et al. Simultaneous analysis of seven bioactive compounds in Sambucus chinensis Lindl by HPLC. Analytical Letters 43, no. 16 (2010): 2525–33.

Zhang, Y., et al. Study of the mechanisms by which Sambucus williamsii HANCE extract exerts protective effects against ocariectomy-induced osteoporosis in vivo. Osteoporos International 22, no. 2 (2011): 703–9.

Ginger (Zingiber officinale)

Ahui, M. L., et al. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. International Immunopharmacology 8, no. 12 (2008): 1626–32.

Ajith, T. A., et al. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food and Chemical Toxicology 45, no. 11 (2007): 2267–72.

Altman, R. D., et al. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis and Rheumatism 44, no. 11 (2001): 2531–38.

Anonymous. Ginger. Entry in the Herbs at a Glance database of the National Center for Complementary and Alternative Medicine (NCCAM), http://nccam.nih.gov/health/ ginger/, accessed February 1, 2013.

Anonymous. Ginger. Entry in Wikipedia, http://en.wikipedia.org/wiki/Ginger, accessed February 9, 2011.

Anonymous. Ginger: Zingiber officinale. Entry in the Herbs2000.com database, www.herbs2000.com/herbs/herbs_ginger.htm, accessed February 9, 2011.

Backon, J. Implication of thromboxane in the pathogenesis of Kawasaki disease and a suggestion for using novel thromboxane synthetase inhibitors in its treatment. Medical Hypotheses 34, no. 3 (1991): 230–31.

Bajpai, D., and K. Chandra. Studies on the antiviral properties of plants with special reference to Zingiber capitatum. Fitoterapia 6, no. 1 (1990): 3–8.

Benchaluk, T., et al. Effects of Zingiber officinale Roscoe on methyl parathion intoxication in rats. Chiang Mai Medical Journal 49, no. 3 (2010): 81–88.

Bensch, K., et al. Investigations into the antiadhesive activity of herbal extracts against Campylobacter jejuni. Phytotherapy Research 25, no. 8 (2011): 1125–32. Published electronically ahead of print January 31, 2011.

Betoni, J. E., et al. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memórias do Instituto Oswaldo Cruz 101, no. 4 (2006): 387–90.

Betz, O., et al. Is ginger a clinically relevant antiemetic? A systematic review of randomized controlled trials. Forschende Komplementärmedizin und Klassische Naturheilkunde 12, no. 1 (2005): 14–23.

Bhat, J., et al. In vivo enhancement of natural killer cell activity through tea fortified with Ayurvedic herbs. Phytotherapy Research 24, no. 1 (2010): 129–35.

Black, C. D., et al. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. Journal of Pain 11, no. 9 (2010): 894–903.

Borrelli, F., et al. Effectiveness and safety of ginger in the treatment of pregnancy-induced nausea and vomiting. Obstetrics and Gynecology 105, no. 4 (2005): 849–56.

Carrasco, F. R., et al. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: Evidence for humor- and cell-mediated responses. Journal of Pharmacy and Pharmacology 61, no. 7 (2009): 961–67.

Chen, I. N., et al. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods for Human Nutrition 63, no. 1 (2008): 15–20.

Choi, W., et al. Antiparasitic effects of Zingiber officinale (ginger) extract against Toxoplasma gondii. Journal of Applied Biomedicine 11, no. 1 (2013): 15–26. Published electronically ahead of print March 1, 2012. Accessed online via www.zsf.jcu.cz/jab19_ms.pdf.

Chrubasik, S., et al. Zingiber rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12, no. 9 (2005): 684–701.

Chung, S. Y., et al. Potent modulation of P-glycoprotein activity by naturally occurring phenylbutenoids from Zingiber cassumunar. Phytotherapy Research 23, 4 (2009): 472–76.

Chung, S. Y., et al. Potent modulation of P-glycoprotein-mediated resistance by kaempferol derivatives isolated from Zingiber zerumbet. Phytotherapy Research 21, no. 6 (2007): 565–69.

Cwikla, C., et al. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytotherapy Research 24, no. 5 (2010): 649–56.

Daswani, P. G., et al. Antidiarrhoeal activity of Zingiber officinale (Rosc.). Current Science 98, no. 2 (2010): 222–29.

Datta, A., et al. Antifilarial effect of Zingiber officinale on Dirofilaria immitis. Journal of Helminthology 61, no. 3 (1987): 268–70.

Demin, G., et al. Comparative antibacterial activities of crude polysaccharides and flavonoids from Zingiber officinale and their extraction. Asian Journal of Traditional Medicines 5, no. 6 (2010): 1.

Denyer, C. V., et al. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products 57, no. 5 (1994)): 658–62.

Dügenci, S. K., et al. Some medicinal plants as immunostimulant for fish. Journal of Ethnopharmacology 88, no. 1 (2003): 99–106.

Egwurugwa, J. N., et al. Effects of ginger (Zingiber officinale) on cadmium toxicity. African Journal of Biotechnology 6, no. 18 (2007): 2078–82.

Fischer-Rasmussen, W., et al. Ginger treatment of hyperemesis gravidarum. European Journal of Obstetrics, Gynecology and Reproductive Biology 38, no. 1 (1991): 19–24.

Foster, Steven. Ginger Zingiber officinale — your food is your medicine. Monograph, Steven Foster Group, Inc., www.stevenfoster.com/education/monograph/ginger.html, accessed February 9, 2011.

Gato, C., et al. Lethal efficacy of extract from Zingiber officinale (traditional Chinese medicine) or [6]-shogaol and [6]-gingerol in Anisakis larvae in vitro. Parasitology Research 76, no. 8 (1990): 653–56.

Gaus, K., et al. Standardized ginger (Zingiber officinale) extract reduces bacterial load and suppresses acute and chronic inflammation in Mongolian gerbils infected with cagAHelicobacter pylori. Pharmaceutical Biology 47, no. 1 (2009): 92–98.

Habib, S., et al. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63, no. 6 (2008): 807–13.

Haghighi, M., et al. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Archives of Iranian Medicine 8, no. 4 (2005): 267–71.

Heeba, G. H., et al. Effect of combined administration of ginger (Zingiber officinale Roscoe) and atorvastatin on the liver of rats. Phytomedicine 17, no. 14 (2010): 1076–81.

Imanishi, N., et al. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional Oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. American Journal of Chinese Medicine 34, no. 1 (2006): 157–69.

Immanuel, G., et al. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. Journal of Fish Biology 74, no. 7 (2009): 1462–75.

Iqbal, Z., et al. In vivo anthelminic activity of Allium sativum, Zingiber officinale, Cucurbita mexicana and Ficus religiosa. International Journal of Agriculture and Biology 3, no. 4 (2001): 454–57.

Iqbal, Z., et al. In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. Journal of Ethnopharmacology 106, no. 2 (2006): 285–87.

Iwami, M., et al. Inhibitory effects of zingerone, a pungent component of Zingiber officinale Roscoe, on colonic motility in rats. Journal of Natural Medicines 65, no. 1 (2011): 89–94.

Jagetia, G. C., et al. Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. Radiation Research 160, no. 5 (2003): 584–92.

Khan, R., et al. Activity of solvent extracts of Prosopis spicigera, Zingiber officinale and Trachyspermum ammi against multidrug resistant bacterial and fungal. Journal of Infection in Developing Countries 4, no. 5 (2010): 292–300.

Koch, C., et al. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 15, no. 102 (2007): 71–78.

Koh, E. M., et al. Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Medica 75, no. 2 (2009): 148–51.

Lakshmi, B. V., et al. Attenuation of acute and chronic restraint stress-induced perturbations in experimental animals by Zingiber officinale Roscoe. Food and Chemical Toxicology 48, no. 2 (2010): 530–35.

Lans, C., et al. Ethnoveterinary medicines used to treat endoparasites and stomach problems in pigs and pets in British Columbia, Canada. Veterinary Parasitology 148, no. 3–4 (2007): 325–40.

Lee, S., et al. Liquid chromatographic determination of 6-, 8-, 10-gingerol, and 6-shogaol in ginger (Zingiber officinale) as the raw herb and dried aqueous extract. Journal of AOAC International 90, no. 5 (2007): 1219–26.

Lin, R. J., et al. Larvicidal activities of ginger (Zingiber officinale) against Angiostrongylus cantonensis. Acta Tropica 115, no. 1–2 (2010): 69–76.

Lin, R. J., et al. Larvicidal constituents of Zingiber officinale (ginger) against Anisakis simplex. Planta Medica 76, no. 16 (2010): 1852–58.

Lopez, P., et al. Solid- and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. Journal of Agricultural and Food Chemistry 53, no. 17 (2005): 6939–46.

Maghsoudi, S., et al. Preventive effect of ginger (Zingiber officinale) pretreatment on renal ischemia-reperfusion in rats. European Surgical Research 46, no. 1 (2011): 45–51.

Mahady, G. B., et al. Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of Helicobacter pylori. Anticancer Research 23, no. 5A (2003): 3699–702.

Malu, S. P., et al. Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Global Journal of Pure and Applied Sciences 15, no. 3 (2009): 365–68.

Masoud, H., et al. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Archives of Iranian Medicine 8, no. 4 (2005): 267–71.

Merawin, L. T., et al. Screening of microfilaricidal effects of plant extracts against Dirofilaria immitis. Research in Veterinary Science 88, no. 1 (2010): 142–47.

Nagoshi, C., et al. Synergistic effect of [10]- gingerol and aminoglycosides against vancomycin-resistant enterococci (VRE). Biological & Pharmaceutical Bulletin 29, no. 3 (2006): 443–47.

Nanjundaiah, S. M., et al. Gastroprotective effect of ginger rhizome (Zingiber officinale) extract: Role of gallic acid and cinnamic acid in H+, K+-ATPase/H. pylori inhibition and anti-oxidative mechanism. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1093/ecam/nep060.

Nogueira de Melo, G. A., et al. Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. Journal of Natural Medicines 65, no. 1 (2011): 241–46.

Nya, E. J., et al. Use of dietary ginger, Zingiber officinale Roscoe, as an immunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 32, no. 11 (2009): 971–77.

Park, K. J., et al. In vitro antiviral activity of aqueous extracts from Korean medicinal plants against influenza virus type A. Journal of Microbiology and Biotechnology 15, no. 5 (2005): 924–29.

Park, M., et al. Antibacterial activity of [10]- gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research 22, no. 11 (2008): 1446–49.

Presser, Art. Ginger (Zingiber officinale). Part of the Smart Supplementation series by the Huntington College of Health Sciences (Knoxville, Tenn.), 2001, www.hchs.edu/literature/Ginger.pdf.

Raji, Y., et al. Anti-inflammatory and analgesic properties of the rhizome extract of Zingiber officinale. African Journal of Biomedical Research 5 (2002): 121–24.

Reinhard, G., et al. Ginger — an herbal medicinal product with broad anti-inflammatory actions. Journal of Medicinal Food 8, no. 2 (2005): 125.

Sabul, B., et al. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 67, no. 22 (2006): 2469–73.

Sasikumar, B., C. Thankamani, V. Srinivasan, et al. Ginger. Calicut, Kerala, India: Indian Institute of Spices Research, October 2008. Accessed online via www.spices.res.in/pdf/package/ginger.pdf.

Schnitzler, P., et al. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrobial Agents and Chemotherapy 51, no. 5 (2007): 1859–62.

Sephavand, R., et al. Ginger (Zingiber officinale Roscoe) elicits antinociceptive properties and potentiates morphone-induced analgesia in the rat radiant heat tail-flick test. Journal of Medicinal Food 13, no. 6 (2010): 1397–401.

Shaba, P., et al. In vitro trypanocidal activity of methanolic extracts of Quercus borealis leaves and Zingiber officinale roots against Trypanosoma evansi. Greener Journal of Agricultural Sciences 1, no. 1 (2011): 41–47.

Sharma, A., et al. Antibacterial activity of medicinal plants against pathogens causing complicated urinary tract infections. Indian Journal of Pharmaceutical Sciences 71, no. 2 (2009): 136–39.

Shivanand, D. J., et al. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry 65 (2004): 1937–54.

Shukla, Y., et al. Cancer preventive properties of ginger: A brief review. Food and Chemical Toxicology 45, no. 5 (2007): 683–90.

Singh, A., et al. Experimental advances in pharmacology of gingerol and analogues. Pharmacie Globale: International Journal of Comprehensive Pharmacy 2, no. 4 (2010): 1–5.

Singh, G., et al. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and Chemical Toxicology 46, no. 10 (2008): 3295–302.

Sookkongwaree, K., et al. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 61, no. 8 (2006): 717–21.

Srivastava, K. C., et al. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Medical Hypotheses 39, no. 4 (1992): 342–48.

Tan, B. K., et al. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: A review. Current Medicinal Chemistry 11, no. 11 (2004): 1423–30.

Thongson, C., et al. Antimicrobial effect of Thai spices against Listeria monocytogenes and Salmonella typhimurium CT104. Journal of Food Protection 68, no. 10 (2005): 2054–58.

Ueda, H., et al. Repeated oral administration of a squeezed ginger (Zingiber officinale) extract augmented the serum corticosterone level and had anti-inflammatory properties. Bioscience, Biotechnology, and Biochemistry 74, no. 11 (2010): 2248–52.

van Breemen, R. B., et al. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 82, no. 1 (2011): 38–43.

Wang, H. M., et al. Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii. Phytotherapy Research 24, no. 12 (2010): 1825–30.

Wang, X., et al. Anti-influenza agents from plants and traditional Chinese medicine. Phytotherapy Research 20, no. 5 (2006): 335–41.

Wattanathorn, J., et al. Zingiber officinale mitigates brain damage and improves memory impairment in focal cerebral ischemic rat. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1155/2011429505.

Yip, Y. B., et al. An experimental study on the effectiveness of massage with aromatic ginger and orange essential oil for moderate-to-severe knee pain among the elderly in Hong Kong. Complementary Therapies in Medicine 16, no. 3 (2008): 131–38.

Zhou, H. L., et al. The modulatory effects of the volatile oil of ginger on the cellular immune response in vitro and in vivo in mice. Journal of Ethnopharmacology 105, no. 1–2 (2006): 301–5.

Zick, S. M., et al. Quantitation of 6-, 8- and 10-gingerols and 6-shogaol in human plasma by high-performance liquid chromatography with electrochemical detection. International Journal of Biomedical Science 6, no. 3 (2010): 233–40.

Houttuynia (Houttuynia cordata)

Anonymous. Ecology of Houttuynia cordata. Entry in the Global Invasive Species Database of the IUCN/SSC Invasive Species Specialist Group (ISSG), www.issg.org/database/species/ecology.asp?si=854, accessed March 29, 2012.

Anonymous. Houttuynia cordata. Entry in the MedLibrary.org online encyclopedia, http://medlibrary.org/medwiki/Houttuynia_ cordata, accessed April 16, 2012.

Anonymous, Houttuynia cordata. Entry in Wikipedia, http://en.wikipedia.org/wiki/Houttuynia_cordata, accessed October 29, 2012.

Baishakhee. Houttuynia cordata. Description on Only Foods website, www.onlyfoods.net/houttuynia-cordata.html, accessed March 29, 2012.

Banjerdpongchai, R., and P. Kongtawelert. Ethanolic extract of fermented Houttuynia cordata Thunb induces human Leukemic HL-60 and Molt-4 cell apoptosis via oxidative stress and a mitochondrial pathway. Asian Pacific Journal of Cancer Prevention 12 (2011): 2871–74.

Bhattacharyya, N., and S. Sarma. Assessment of availability, ecological feature, and habitat preference of the medicinal herb Houttuynia cordata Thunb in the Brahmaputra Valley of Assam, India. Environmental Monitoring and Assessment 160, no. 1–4 (2010): 277–87.

Blanke, K. Chameleon plant. Plant Fact Sheet from the University of Wisconsin Cooperative Extension,2009.

Chakraborti, S., S. Sangram, and R. Sinha. High frequency induction of multiple shoots and clonal propagation from rhizomatous nodal segments of Houttuynia cordata Thunb. — an ethnomedicinal herb of India. InVitro Cellular and Development Biology — Plant 42, no. 5 (2006): 394–98.

Chang, J. S., L. C. Chiang, C. C. Chen, et al. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. American Journal of Chinese Medicine 29, no. 2 (2001): 303–12.

Chen, S. D., H. Gao, Q. C. Zhu, et al. Houttuynoids A–E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata. Organic Letters 14, no. 7 (2012): 1772–75.

Chen, X., Z. Wang, Z. Yang, et al. Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antiviral Research 92, no. 2 (2011): 341–45.

Chen, Y. Y., J. F. Liu, C. M. Chen, et al. A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxidized frying oil-fed model. Journal of Nutritional Science and Vitaminology (Tokyo) 49, no. 5 (2003): 327–33.

Chiang, L. C., J. S. Chang, C. C. Chen, et al. Anti-herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. American Journal of Chinese Medicine 31, no. 3 (2003): 355–62.

Cho, E. J., T. Yokozawa, D. Y. Rhyu, et al. The inhibitory effects of 12 medicinal plants and their component compounds on lipid peroxidation. American Journal of Chinese Medicine 31, no. 6 (2003): 907–17.

Cho, E. J., T. Yokozawa, D. Y. Rhyu, et al. Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine 10, no. 6–7 (2003): 544–51.

Choi, J. Y., J. A. Lee, J. B. Lee, et al. Anti-inflammatory activity of Houttuynia cordata against lipoteichoic acid-induced inflammation in human dermal fibroblasts. Chonnam Medical Journal 46, no. 3 (2010): 140–47.

Chou, S.-C., C.-R. Su, Y.-C. Ku, et al. The constituents and their bioactivities of Houttuynia cordata. Chemical & Pharmaceutical Bulletin 57, no. 11 (2009): 1227–30.

Cui, X. H., L. Wang, and L. Cheng. Analysis of adverse events caused by irrational application of houttuynia injection. Zhongguo Zhong Xi Yi Jie He Za Zhi 31, no. 3 (2011): 407–12.

Deng, K., F. He, J. Shi, et al. Study on network compatibility of metabolisms in vivo rat for volatile oil in houttuynia herb and 2-undecanone. Zhongguo Zhong Yao Za Zhi 36, no. 15 (2011): 2076–83.

Dong, Y., Y. Zhang, L. Yi, et al. Transformation of antimicrobial peptide fusion gene of cecropin B and rabbit NP-1 to Houttuynia cordata. Zhongguo Zhong Yao Za Zhi 35, no. 13 (2010): 1660–65.

Duan, X., D. Zhong, and X. Chen. Derivatization of beta-dicarbonyl compound with 2,4- dinitrophenylhydrazine to enhance mass spectrometric detection: Application to quantitative analysis of houttuynin in human plasma. Journal of Mass Spectrometry 43, no. 6 (2008): 814–24.

Ground Cover — Pest Plants. Pest Plant Fact Sheet no. 15 from the Environment Bay of Plenty Regional Council (Whakatane, New Zealand), 2003.

Han, E. H., J. H. Park, J. Y. Kim, et al. Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcepsilonRI signaling in mast cells. Food and Chemical Toxicology 47, no. 7 (2009): 1659–66.

Hayashi, K., M. Kamiya, and T. Hayashi. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Medica 61, no. 3 (1995): 237–41.

Ho, J.-C. The bioactivities of the essential oil and crude extracts from Houttuynia cordata. Ta Hwa Institute of Technology 1 (2007): 496–500.

Hou, Y., and X. Zhang. Antiphlogistic action of Houttuynia cordata injection in vitro and in mice. Zhongguo Zhong Yao Za Zhi 15, no. 4 (1990): 221–22, 255.

Houttuynia cordata ‘Chameleon’. Species profile on the Ohio State University Department of Horticulture and Crop Science website, www.hcs.ohio-state.edu/hcs/TMI/Plantlist/ho_rdata.html, accessed April 5, 2012.

Houttuynia cordata (heart-leaved houttuynia). Species profile on the Kew Royal Botanic Gardens website, www.kew.org/plants-fungi/Houttuynia-cordata.htm, accessed April 17, 2012.

Hu, S. H., and A. F. Du. Treatment of bovine mastitis with houttuynin sodium bisulphate. Zentralblatt für Veterinärmedizin. Reihe B 44, no. 6 (1997): 365–70.

Inouye, S., M. Takahashi, and S. Abe. The inhibitory activity of hydrosols prepared from 18 Japanese herbs of weakly aromatic flavor against filamentous formation and growth of Candida albicans. Medical Mycology Journal 53, no. 1 (2012): 33–40.

Jang, S. Y., J. S. Bae, Y. H. Lee, et al. Caffeic acid and quercitrin purified from Houttuynia cordata inhibit DNA topoisomerase I activity. Natural Product Research 25, no. 3 (2011): 222–31.

Ji, K. M., M. Li, J. J. Chen, et al. Anaphylactic shock and lethal anaphylaxis caused by Houttuynia cordata injection, a herbal treatment in China. Allergy 64, no. 5 (2009): 816–17.

Ji, W., K. Bi, Q. Chen, et al. Simultaneous determination of eight activate components in Houttuynia cordata injection and its quality control in productive process. Journal of Separation Science 34, no. 21 (2011): 3053–60.

Jiang, X.-L., and H.-F. Cui. Different therapy for different types of ulcerative colitis in China. World Journal of Gastroenterology 10, no. 10 (2004): 1513–20.

Kar, A., and S. K. Borthakur. Medicinal plants used against dysentery, diarrhea and cholera by the tribes of erstwhile Kameng district of Arunachal Pradesh. Natural Product Radiance 7, no. 2 (2008): 176–181.

Katzer, Gernot. Chameleon plant (Houttuynia cordata) Thunb. Entry in Gernot Katzer’s Spice Pages, http://gernot-katzers-spice-pages.com/engl/Hout_cor.html?redirect=1, accessed April 17, 2012.

Kim, G. S., D. H. Kim, J. J. Lim, et al. Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen salmonella within the RAW 264.7 macrophage. Biological and Pharmaceutical Bulletin 31, no. 11 (2008): 2012–17.

Kim, I. S., J. H. Kim, C. Y. Yun, et al. The inhibitory effect of Houttuynia cordata extract on stem cell factor-induced HMC-1 cell migration. Journal of Ethnopharmacology 112, no. 1 (2007): 90–95.

Kim, J., C. S. Park, Y. Lim, et al. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages. Journal of Medicinal Food 12, no. 2 (2009): 365–73.

Kim, S. K., S. Y. Ryu, J. No, et al. Cytotoxic alkaloids from Houttuynia cordata. Archives of Pharmaceutical Research 24, no. 6 (2001): 518–21.

Klawikkan, N., V. Nukoolkarn, S. Jirakanjanakit, et al. Effect of Thai medicinal plant extracts against dengue virus in vitro. Mahidol University Journal of Pharmaceutical Science 38, no. 1–2 (2011): 13–18.

Kusirisin, W., S. Srichairatanakool, P. Lerttrakarnnon, et al. Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Journal of Medicinal Chemistry 5, no. 2 (2009): 139–47.

Lai, K. C., Y. J. Chiu, Y. J. Tang, et al. Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells. Anticancer Research 30, no. 9 (2010): 3549–56.

Lau, K. M., K. M. Lee, C. M. Koon, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology 118, no. 1 (2008): 79–85.

Leardkamolkarn, V., W. Sirigulpanit, C. Phurimsak, et al. The inhibitory actions of Houttuynia cordata aqueous extract on dengue virus and dengue-infected cells. Journal of Food Biochemistry 36, no. 1 (2012): 86–92.

Lee, J. S., I. S. Kim, J. H. Kim, et al. Suppressive effects of Houttuynia cordata Thunb (Saururaceae) extract on Th2 immune response. Journal of Ethnopharmacology 117, no. 1 (2008): 34–40.

Li, C., Y. Zhao, C. Liang, et al. Observations of the curative effect with various liquid for post operative irrigation of ESS of treating chronic sinusitis and nasal polyps. Lin Chuang Er Bi Yan Hou Ke Za Zhi 15, no. 2 (2001): 53–54.

Li, G. Z., O. H. Chai, M. S. Lee, et al. Inhibitory effects of Houttuynia cordata water extracts on anaphylactic reaction and mast cell activation. Biological and Pharmaceutical Bulletin 28, no. 10 (2005): 1864–68.

Li, S., R. Wang, Y. Zhang, et al. Symptom combinations associated with outcome and therapeutic effects in a cohort of cases with SARS. American Journal of Chinese Medicine 34, no. 6 (2006): 937–47.

Li, W., P. Zhou, Y. Zhang, et al. Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Journal of Ethnopharmacology 133, no. 2 (2011): 922–27.

Liang, K. L., Y. C. Su, C. C. Tsai, et al. Postoperative care with Chinese herbal medicine or amoxicillin after functional endoscopic sinus surgery: A randomized, double-blind, placebo-controlled study. American Journal of Rhinology & Allergy 25, no. 3 (2011): 170–75.

Lin, T. Y., Y. C. Liu, J. R. Jheng, et al. Anti-enterovirus 71 activity screening of Chinese herbs with anti-infection and inflammation activities. American Journal of Chinese Medicine 37, no. 1 (2009): 143–58.

Liu, F. Z., H. Shi, Y. J. Shi, et al. Pharmacodynamic experiment of the antivirus effect of Houttuynia cordata injection on influenza virus in mice. Yao Xue Xue Bao 45, no. 3 (2010): 399–402.

Liu, G., H. Xiang, X. Tang, et al. Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus. Molecules 16, no. 10 (2011): 8848–65.

Liu, L., W. Wu, Z. Fu, et al. Comparison of volatile oils of cultivated Houttaynia cordata populations with wild. Zhongguo Zhong Yao Za Zhi 35, no. 7 (2010): 876–81.

Lu, H., X. Wu, Y. Liang, et al. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia Thunb. Chemical & Pharmaceutical Bulletin 54, no. 7 (2006): 936–40.

Lu, H. M., Y. Z. Liang, L. Z. Yi, et al. Anti-inflammatory effect of Houttuynia cordata injection. Journal of Ethnopharmacology 104, no. 1–2 (2006): 245–49.

Lu, Y., X. Wang, D. Chen, et al. Polystyrene/graphene composite electrode fabricated by in situ polymerization for capillary electrophoretic determination of bioactive constituents in herba houttuyiae. Electrophoresis 32, no. 14 (2011): 1906–12.

Marsh, C. Houttuynia cordata — Thunb. Entry in the Plants for a Future database, www.pfaf.org/user/plant.aspx?latinname=Houttuynia+cordata, accessed April 29, 2012.

Meng, J., X. P. Dong, Z. H. Jiang, et al. Study on chemical constituents of flavonoids in fresh herb of Houttuynia cordata. Zhongguo Zhong Yao Za Zhi 31, no. 16 (2006): 1335–37.

Meng, J., X. P. Dong, Y. S. Zhou, et al. Studies on chemical constituents of phenols in fresh Houttuynia cordata. Zhongguo Zhong Yao Za Zhi 32, no. 10 (2007): 929–31.

Meng, J., K. S. Leung, X. P. Dong, et al. Simultaneous quantification of eight bioactive components of Houttuynia cordata and related Saururaceae medicinal plants by on-line high performance liquid chromatography -diode array detector-electrospray mass spectrometry. Fitoterapia 80, no. 8 (2009): 468–74.

Miyata, M., T. Koyama, and K. Yazawa. Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. Journal of Nutritional Science and Vitaminology 56 (2010): 150–56.

Ng, L. T., F. L. Yen, C. W. Liao, et al. Protective effect of Houttuynia cordata extract on bleomycin-induced pulmonary fibrosis in rats. American Journal of Chinese Medicine 35, no. 3 (2007): 465–75.

Nguyen, T. H., M. Sakakibara, S. Sano, et al. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, northern Vietnam. Journal of Hazardous Materials 186, no. 2–3 (2011): 1384–91.

Pan, P., Y. J. Wang, L. Han, et al. Effects of sodium houttuyfonate on expression of NF-κB and MCP-1 in membranous glomerulonephritis. Journal of Ethnopharmacology 131, no. 1 (2010): 203–9.

Park, H., and M. S. Oh. Houttuyniae herba protects rat primary cortical cells from Aβ25-35-induced neurotoxicity via regulation of calcium influx and mitochondria-mediated apoptosis. Human & Experimental Toxicology 1 (2012): 1.

Puttawong, S., and S. Wongroung. Plucao (Houttuynia cordata) Thunb. and sabsua (Eupatorium odoratum L.) extracts suppress Colletotrichum capsici and Fusarium oxysporum. Journal of Agricultural & Food Industrial Organization 1, special issue (2009): S381–386.

Ren, X., X. Sui, and J. Yin. The effect of Houttuynia cordata injection on pseudorabies herpesvirus (PrV) infection in vitro. Pharmaceutical Biology 49, no. 2 (2011): 161–66.

Sarker, M. S. K., and C. J. Yang. Eosungcho (Houttuynia cordata) with multi strain probiotics as alternative to antibiotic for broiler production. Journal of Medicinal Plants Research 5, no. 18 (2011): 4411–17.

Shim, S. Y., Y. K. Seo, and J. R. Park. Down-regulation of FcepsilonRI expression by Houttuynia cordata Thunb extract in human basophilic KU812F cells. Journal of Medicinal Food 12, no. 2 (2009): 383–88.

Shin, S., S. S. Joo, J. H. Jeon, et al. Anti-inflammatory effects of a Houttuynia cordata supercritical extract. Journal of Veterinary Science 11, no. 3 (2009): 273–75.

Su, Cory. Comments in the “Plant at a Time: Houttuynia” forum hosted on Susun Weed’s Wise Woman Forum, June 22, 2007 (4:53 p.m.), www.healingwiseforum.com/ viewtopic.php?t=17315.

Sun, W. W., Y. K. Li, and J. Y. Zhang. Anaphylactoid reactions inducing effect of polysorbate 80 and polysorbate 80 contained Houttuynia cordata injection on beagle. Zhongguo Zhong Xi Yi Jie He Za Zhi 31, no. 1 (2011): 90–93.

Tang, Y. J., J. S. Yang, C. F. Lin, et al. Houttuynia cordata Thunb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells. Oncology Reports 22, no. 5 (2009): 1051–56.

Toda, S. Antioxidative effects of polyphenols in leaves of Houttuynia cordata on protein fragmentation by copper-hydrogen peroxide in vitro. Journal of Medicinal Food 8, no. 2 (2005): 266–68.

Wang, F., F. Lu, and L. Xu. Effects of Houttuynia cordata Thunb on expression of BMP-7 and TGF-beta1 in the renal tissues of diabetic rats. Journal of Traditional Chinese Medicine 27, no. 3 (2007): 220–25.

Wang, F., P. Ouyang, Q. Zuo, et al. Effects of a new houttuyfonate derivative on proliferation of NIH3T3 cell and expression of syndecan-4 induced by tumor necrosis factor alpha. Zhong Yao Cai 33, no. 1 (2010): 92–96.

Wang, H. Y. and J. L. Bao. Effect of Houttuynia cordata aetherolea on adiponectin and connective tissue growth factor in a rat model of diabetes mellitus. Journal of Traditional Chinese Medicine 1 (2012): 1–2.

Wang, L., X. Cui, L. Cheng, et al. Adverse events to houttuynia injection: A systematic review. Journal of Evidence-Based Medicine 3, no. 3 (2010): 168–76.

Wu, L., J. Si, H. Zhou, et al. Study on chemical diversity of volatile oils in Houttuynia cordata and their genetic basis. Zhongguo Zhong Yao Za Zhi 34, no. 1 (2009): 64–67.

Wu, W., Y. L. Zheng, Y. Ma, et al. Analysis on yield and quality of different Houttuynia cordata. Zhongguo Zhong Yao Za Zhi 28, no. 8 (2003): 718–20, 771.

Xu, C. J., Y. Z. Liang, and F. T. Chau. Identification of essential components of Houttuynia cordata by gas chromatography/mass spectrometry and the integrated chemometric approach. Talanta 68, no. 1 (2005): 108–15.

Xu, X., H. Ye, W. Wang, et al. Determination of flavonoids in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. by capillary electrophoresis with electrochemical detection. Talanta 68, no. 3 (2006): 759–64.

Yadav, A. K. Anticestodal activity of Houttuynia cordata leaf extract against Hymenolepis diminuta in experimentally infected rats. Journal of Parasitic Diseases 35, no. 2 (2011): 190–94.

Yang, Z., S. Luo, Z. Yu, et al. GC-MS analysis of the volatile compositions of Houttuynia cordata Thunb obtained by headspace solid-phase micro extraction (HS-SPME). Modern Pharmaceutical Research 2, no. 5 (2009): 90–96.

Yang, Z.-N., Q.-C. Peng, S.-Q. Luo, et al. Central properties of the metabolites of Houttuynia cordata Thunb. populations from different altitudes in Guizhou. Journal of the Chinese Medical Association 31, no. 16 (2010): 261–69.

Yin, J., G. Li, J. Li, et al. In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus. Avian Pathology 40, no. 5 (2011): 491–98.

Yu-eui, R., Z. Yangyang, L. Wenjuan, et al. Research on the effect of Houttuynia cordata Thunb nutrient liquid for increase of white blood cells. Preventive Medicine Tribune 1999-01, CNKI.

Zhang, T. T., Y. Wu, and T. J. Hang. Study on HPLC fingerprint of flavonoids from Houttuynia cordata by comparing with fingerprint reference. Zhong Yao Cai 32, no. 5 (2009): 687–90.

Isatis (Isatis tinctoria)

Ahmad, I., et al. Butyrylcholinesterase, lipoxygenase inhibiting and antifungal alkaloids from Isatis tinctoria. Journal of Enzyme Inhibition and Medicinal Chemistry 23, no. 3 (2008): 313–16.

Ahmad, I., et al. Urease and serine protease inhibitory alkaloids from Isatis tinctoria. Journal of Enzyme Inhibition and Medicinal Chemistry 23, no. 6 (2008): 918–21.

Ahmad, I., et al. Xanthine oxidase/tyrosinase inhibiting, antioxidant, and antifungal oxindole alkaloids from Isatis costata. Pharmaceutical Biology 48, no. 6 (2010): 716–21.

An, Y. Q., et al. Content determination of epigoitrin in radix isatidis and its preparation by RP-HPLC. Zhongguo Zhong Yao Za Zhi 33, no. 18 (2008): 2074–76.

Angelini, L. G., et al. Response of woad (Isatis tinctoria L.) to different irrigation levels to optimise leaf and indigo production. In Irrigation in Mediterranean Agriculture: Challenges and Innovation for the Next Decades, ed. A. Santini, N. Lamaddalena, G. Severino, and M. Palladino, series A, no. 4 in Options Méditerranéennes. Bari, Italy: CIHEAM-IAMB, 2008.

Anonymous. Dyer’s woad [Isatis tinctoria L.]. Plant profile on the website of the California Department of Food and Agriculture, www.cdfa.ca.gov/phpps/ipc/weedinfo/isatis.htm, accessed February 4, 2011.

Anonymous. Isatis L. woad. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=ISTI, accessed February 4, 2011.

Anonymous. Heat Clearing Herbs to Clear Heat and Toxics: Isatis Root. Plant profile on ENaturalHealthCenter.com, www.e2121.com/herb_db/viewherb.php3?viewid=121&setlang=1, accessed February 5, 2011.

Anonymous. Isatis. Monograph on the Adam Herbs website, http://adamherbs.com/herbs/istatis.html, accessed February 5, 2011.

Anonymous. Isatis tinctoria. Monograph, Alternative Medicine Review 7, no. 6 (2002): 523–24.

Anonymous. Isatis tinctoria. Entry in Wikipedia, http://en.wikipedia.org/wiki/Isatis_ tinctoria, accessed February 4, 2011.

Anonymous. Pharmacological research on banlangen. Free Papers Download Center, March 9, 2009, http://eng.hi138.com/?i133492.

Anonymous. Weed of the week: Dyer’s woad. U.S. Department of Agriculture Forest Service, Forest Health Staff, Newtown Square, Penn., August 30, 2006, www. na.fs.fed.us/fhp/ invasive_plants/weeds/dyers_woad.pdf.

Bagci, E., et al. Fatty acid and tocochromanol patterns of some Isatis L. (Brassicaceae) species from Turkey. Pakistan Journal of Botany 41, no. 2 (2009): 639–46.

Bogdana, K., et al. Inhibition of Toxoplasma gondii by indirubin and tryptanthrin analogs. Antimicrobial Agents and Chemotherapy 52, no. 12 (2008): 4466–69.

Brattström, A., et al. The plant extract Isatis tinctoria L. extract (ITE) inhibits allergen-induced airway inflammation and hyperactivity in mice. Phytomedicine 17, no. 8–9 (2010): 551–56.

Chen, L., et al. Immune responses to foot-and-mouth disease DNA vaccines can be enhanced by coinjection with the Isatis indigotica extract. Intervirology 48, no. 4 (2005): 207–12.

Chen, Z. W., et al. Mechanism study of anti- influenza effects of radix isatidis water extract by red blood cells capillary electrophoresis. Zhongguo Zhong Yao Za Zhi 31, no. 20 (2006): 1715–19.

Condurso, C., et al. The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry. Planta Medica 72, no. 10 (2006): 924–28.

Crouch, H. J. Somerset Rare Plant Register species account: Isatis tinctoria. Somerset Rare Plants Group, www.somersetrareplantsgroup.org.uk, accessed February 1, 2013.

Deng, X., et al. Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. Journal of Pharmaceutical and Biomedical Analysis 48, no. 3 (2008): 562–67.

Dong, J., et al. Effective constituents contents in indigowood roots and leaves from different regions. Ying Yong Sheng Tai Xue Bao 17, no. 9 (2006): 1613–18.

Elliott, M. C., et al. Distribution and variation of indole glucosinolates in woad (Isatis tinctoria L.). Plant Physiology 48 (1971): 498–503.

Emam, S. S., et al. Primary metabolites and flavonoid constituents of Isatis microcarpa J. Gay ex Boiss. IJournal of Natural Products (online) 3 (2010): 12–26, www.journalofnaturalproducts.com/Volume3/3_Res_paper-2.pdf.

Fang, J., et al. Influence of radix isatidis on the endotoxin-induced release of TNF-alpha and IL-8 from HL-60 cells. Journal of Huazhong University of Science and Technology. Medical Sciences 25, no. 5 (2005): 546–48.

Fang, J. G., et al. The anti-endotoxic effect of o-aminobenzoic acid from radix isatidis. Acta Pharmacologica Sinica 26, no. 5 (2005): 593–97.

Fang, J. G., et al. Antiviral effect of folium isatidis on herpes simplex virus type I. Zhongguo Zhong Yao Za Zhi 30, no. 17 (2005): 1343–46.

Fatima, I., et al. Isatones A and B, new antifungal oxindole alkaloids from Isatis costata. Molecules 12, no. 2 (2007): 155–62.

Gilbert, K. G., et al. A high degree of genetic diversity is revealed in Isatis spp. (dyer’s woad) by amplified fragment length polymorphism (AFLP). Theoretical and Applied Genetics 104 (2002): 1150–56.

Gilbert, K. G., et al. Quantitative analysis of indigo and indigo precursors in leaves of Isatis spp. and Polygonum tinctorium. Biotechnology Progress 20, no. 4 (2004): 1289–92.

Hamburger, M. Isatis tinctoria — from the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochemistry Review 1, no. 3 (2002): 333–34.

Hamburger, M. New approaches in analyzing the pharmacological properties of herbal extracts. Proceedings of the Western Pharmacology Society 50 (2007): 156–61.

He, C. M. Experimental study on antivirus activity of traditional Chinese medicine. Zhongguo Zhong Yao Za Zhi 29, no. 5 (2004): 452–55.

He, L. W., et al. Chemical constituents from water extract of radix isatidis. Yao Xue Xue Bao 41, no. 12 (2006): 1193–96.

He, Y., et al. Clinical and experimental study on effects of huanglan granule in inhibiting rubella virus. Zhongguo Zhong Xi Yi Jie He Za Zhi 28, no. 4 (2008): 322–25.

Heinemann, C., et al. Prevention of experimentally induced irritant contact dermatitis by extract of Isatis tinctoria compared to pure tryptanthrin and its impact on UVB-induced erythema. Planta Medica 70, no. 5 (2004): 385–90.

Ho, Y. L., et al. Studies on the antinociceptive, anti-inflammatory and anti pyretic effects of Isatis indigotica root. Phytomedicine 9, no. 5 (2002): 419–24.

Hsuan, S. L., et al. The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. Journal of Ethnopharmacology 123, no. 1 (2009): 61–67.

Huang, C., et al. Affect of moroxydine and banlangen to rat with positive hepatitis. Journal of Southwest Nationalities College, 1997-02, CNKI.

Itrat, Fatima. A new alkaloid from Isatis costata. Turkish Journal of Chemistry 31 (2007): 443–47.

Jacobs, Jim, and Monica Pokorny. Ecology and management of dyer’s woad (Isatis tinctoria L.). Invasive Species Technical Note MT-10. U.S. Department of Agriculture Natural Resources Conservation Service, March 2007. ftp://ftp-fc.sc.egov.usda.gov/MT/www/technical/invasive/Invasive_Species_Tech_Note_MT10.pdf.

Jiang, Z., et al. Effection of six Chinese medicinal herbs on activity of Newcastle disease virus. Progress in Veterinary Medicine, 2005-02, CNKI.

Kang, X., et al. Isatis tinctoria L. combined with co-stimulatory molecules blockade prolongs survival of cardiac allografts in alloantigen-primed mice. Transplant Immunology 23, no. 1–2 (2010): 34–39.

Kong, X., et al. Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken. International Immunopharmacology 4, no. 7 (2004): 975–82.

Kong, X. F., et al. Chinese herbal ingredients are effective immune stimulators for chickens infected with the Newcastle disease virus. Poultry Science 85, no. 12 (2006): 2169–75.

Lai, P., et al. Bifunctional modulating effects of an indigo dimer (bisindigotin) to CYP1A1 induction in H4IIE cells. Toxicology 226, no. 2–3 (2006): 188–96.

Li, A., et al. Anti-virus effect of traditional Chinese medicine yi-fu-qing granule on acute respiratory tract infections. Bioscience Trends 3, no. 4 (2009): 119–23.

Li, H. B., et al. Biological evaluation of radix isatidis based on neuraminidase activity assay. Yao Xue Xue Bao 44, no. 2 (2009): 162–66.

Li, H. B., et al. Establishment of bioassay method for antivirus potency of radix isatidis based on chemical fluorometric determination. Guang Pu Xue Yu Guang Pu Fen Xi 29, no. 4 (2009): 908–12.

Li, J., et al. Effect of radix isatidis on the expression of moesin mRNA induced by LPS in the tissues of mice. Journal of Huazhong University of Science and Technology. Medical Sciences 27, no. 2 (2007): 135–37.

Li, W., et al. Experiment studies on viricidal effects of radix isatis against HFRSV. Practical Preventative Medicine, 2006-06, CNKI.

Li, X., et al. New sphingolipids from the root of Isatis indigotica and their cytotoxic activity. Fitoterapia 78, no. 7–8 (2007): 490–95.

Lin, A. H., et al. Studies on anti-endotoxin activity of F022 from radix isatidis. Zhongguo Zhong Yao Za Zhi 27, no. 6 (2002): 439–42.

Lin, C. W., et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research 68, no. 1 (2005): 36–42.

Lingmin, Z., et al. Antiviral activity of the four monomers of isatis tinctoria L against Coxsackievirus B_3 in vitro. Journal of Hubei Medical University, 2005-01, CNKI.

Liu, J. F., et al. Isatisine A, a novel alkaloid with an unprecedented skeleton from leaves of Isatis indigotica. Organic Letters 9, no. 21 (2007): 4127–29.

Liu, J. F., et al. Studies on chemical constituents from leaves of Isatis indigotica. Zhongguo Zhong Yao Za Zhi 31, no. 23 (2006): 1961–65.

Liu, R., et al. Identification of 5 constituents of the aqueous extract of Isatis indigotica by HPLC-MS2. Zhong Yao Cai 28, no. 9 (2005): 772–74.

Liu, Y., et al. Anti-endotoxic effects of syringeic acid of radix isatidis. Journal of Huazhong University of Science and Technology. Medical Sciences 23, no. 2 (2003): 206–8.

Ma, L., et al. Determination of total organic acids and salicylic acid in extract of radix isatidis. Zhongguo Zhong Yao Za Zhi 31, no. 10 (2006): 804–6.

Mak, N. K., et al. Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochemical Pharmacology 67, no. 1 (2004): 167–74.

Moazzeni, H., et al. Isatis L. (Brassicaceae) in Iran: A new record and a new synonym. Turkish Journal of Botany 32 (2008): 243–47.

Moazzeni, H., et al. On the circumscription of Isatis tinctoria L. (Brassicaceae) in Iran. Turkish Journal of Botany 30 (2006): 455–58.

Mohn, Tobias. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Ph.D. diss., University of Basel, 2009, http://edoc.unibas.ch/953/1/Dissertation_Tobias_Mohn.pdf.

Mohn, T., et al. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Phytochemistry 70, no. 7 (2009): 924–34.

Mohn, T., et al. Quantification of active principles and pigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS. Planta Medica 73, no. 2 (2007): 151–56.

Ni, Sein. Case report on virus hepatitis B treated with banlangen leading to seroconversion from positive to negative. Myanmar Medical Journal, 1995, conference issue: 97–99.

Oberthür, C., et al. The content of indigo precursors in Isatis tinctoria leaves — a comparative study of selected accessions and post-harvest treatments. Phytochemistry 65, no. 24 (2004): 3261–68.

Oberthür, C., et al. The elusive indigo precursors in woad (Isatis tinctoria L.) — identification of the major indigo precursor, isatan A, and a structure revision of isatan B. Chemistry & Biodiversity 1, no. 1 (2004): 174–82.

Oberthür, C., et al. Tryptanthrin content in Isatis tinctoria leaves — a comparative study of selected strains and post-harvest treatment. Planta Medica 70, no. 7 (2004): 642–45.

Pokorny, M., et al. Evaluating Montana’s dyer’s woad (Isatis tinctoria) cooperative eradication project. Weed Technology 21 (2007): 262–69.

Qi, C. X., et al. Clinical research of isatis root eyedrops on the acute bacterial conjunctivitis. Zhong Yao Cai 30, no. 1 (2007): 120–22.

Qui, Y., et al. Immunopotentiating effects of four Chinese herbal polysaccharides administered at vaccination in chickens. Poultry Science 86, no. 12 (2007): 2530–35.

Recio, M. C., et al. Anti-arthritic activity of a lipophilic woad (Isatis tinctoria) extract. Planta Medica 72, no. 8 (2006): 715–20.

Recio, M. C., et al. Anti-inflammatory and antiallergenic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin. Planta Medica 72, no. 6 (2006): 539–46.

Roxas, M., et al. Colds and influenza: A review of diagnosis and conventional, botanical and nutritional considerations. Alternative Medicine Review 12, no. 1 (2007): 25–48.

Ruan, J. L., et al. Studies on chemical constituents in leaf of Isatis indigotica. Zhongguo Zhong Yao Za Zhi 30, no. 19 (2005): 1525–26.

Rüster, G. U., et al. Inhibitory activity of indolin-2-one derivatives on compound 48/80-induced histamine release from mast cells. Pharmazie 59, no. 3 (2004): 236–37.

Smith, S. E. What is isatis? Plant profile on WiseGeek website, www.wisegeek.com/what-is-isatis.htm, accessed February 4, 2011.

Song, Z., et al. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung function. APMIS 104, no. 5 (1996): 350–54.

Spataro, G., et al. Analysis of molecular variation in Isatis tinctoria L. populations from Europe and central Asia. Poster abstract H.21 in Proceedings of the XLVIII Italian Society of Agricultural Genetics—SIFV-SIGA Joint Meeting, Lecce, Italy, 15/18 September, 2004, www.siga.unina.it/SIGA2004/H_21.pdf.

Spencer, Neal R., ed. Prospects and progress in biological control of cruciferous weeds. In Proceedings of the X International Symposium on Biological Control of Weeds, July 4–14, 1999. Bozeman: Montana State University, 2000. www. invasive.org/publications/ xsymposium/proceed/submeet.pdf.

Süleyman, K. Morphological and agronomical characteristics of some wild and cultivated Isatis species. Journal of Central European Agriculture 7, no. 3 (2006): 479–84.

Verhille, B. Tinctorial plants, their therapeutic applications in ancient times. The particular case of isatis. Histoire des Sciences Médicales 43, no. 4 (2009): 357–67.

Yang, Z., et al. In vitro inhibition of influenza virus infection by a crude extract of Isatis indigotica root resulting in the prevention of viral attachment. Molecular Medicine Reports 5, no. 3 (2012): 793–99.

Wang, W., et al. Screening of anti-endotoxin components from radix isatidis. Journal of Huazhong University of Science and Technology. Medical Sciences 26, no. 2 (2006): 261–64.

Wang, X., et al. Determination of salylic acid, syringic acid, benzoic acid and anthranilic acid in radix isatidis by HPCE. Zhongguo Zhong Yao Za Zhi 34, no. 2 (2009): 189–92.

Wang, Y., et al. Evaluation on antiendotoxic action and antiviral action in vitro of tetraploid Isatis indigotica. Zhongguo Zhong Yao Za Zhi 25, no. 6 (2000): 327–29.

Wang, Y., et al. Synergistic effects of Isatis tinctoria L. and tacrolimus in the prevention of acute heart rejection in mice. Transplant Immunology 22, no. 1–2 (2009): 5–11.

Wei, X. Y., et al. Bisindigotin, a TCDD antagonist from the Chinese medicinal herb Isatis indigotica. Journal of Natural Products 68, no. 3 (2005): 427–29.

Wu, Y., et al. Novel indole C-glycosides from Isatis indigotica and their potential cytotoxic activity. Fitoterapia 82, no. 2 (2011): 288–92. Published electronically ahead of print October 30, 2010.

Xiao, Z., et al. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leukemia & Lymphoma 43, no. 9 (2002): 1763–68.

Xu, T., et al. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad). Biotechnology and Applied Biochemistry 39, pt. 1 (2004): 123–28.

Xu, X., et al. Antivirus effects of IRPS against good parvovirus in goose embryo. Chinese Journal of Veterinary Science, 2008-11, CNKI.

Yang, Z. C., et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids and Surfaces. B. Biointerfaces 41, no. 2–3 (2005): 79–81.

You, W. C., et al. Effects of extracts from indigowood root (Isatis indigotica Fort.) on immune responses in radiation-induced mucositis. Journal of Alternative and Complementary Medicine 15, no. 7 (2009): 771–78.

You, W. C., et al. Indigowood root extract protects hematopoietic cells, reduces tissue damage and modulates inflammatory cytokines after total-body irradiation: Does indirubin play a role in radioprotection. Phytomedicine 16, no. 12 (2009): 1105–11.

Youshun, H., et al. Experimental study on inhibitory effect of ganlu xiaodu dan on Coxsackie virus in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi 18, no. 12 (1998): 737–40.

Zech-Matterne, V., et al. New archaeobotanical finds of Isatis tinctoria L. (woad) from Iron Age Gaul and a discussion of the importance of woad in ancient time, Vegetation History and Archaeobotany 19, no. 2 (2010): 137–42.

Zeng, Q., et al. Anti-virus activity of three Chinese herbs against porcine reproductive and respiratory syndrome virus in vitro. Journal of Hunan Agricultural University, 2010-04, CNKI.

Zhao, Y. L., et al. Effects of different extracts from radix isatidis lymphocytes of mice by biothermodynamics. Zhongguo Zhong Yao Za Zhi 31, no. 7 (2006): 590–93.

Zhao, Y. L., et al. Thermodynamics study on antibacterial effect of different extracts from radix isatis. Chinese Journal of Integrative Medicine 12, no. 1 (2006): 42–45.

Zou, P., et al. Chemical fingerprinting of Isatis indigotica root by RP-HPLC and hierarchical clustering analysis. Journal of Pharmaceutical and Biomedical Analysis 38, no. 3 (2005): 514–20.

Zou, P., et al. Determination of indicant, isatin, indirubin and indigotin in Isatis indigotica by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 21, no. 7 (2007): 1239–46.

Zuo, L., et al. Studies on chemical constituents in root of Isatis indigotica. Zhongguo Zhong Yao Za Zhi 32, no. 8 (2007): 688–91.

Licorice (Glycyrrhiza glabra)

Acharya, S. K., et al. A preliminary open trial on interferon stimulator (SNMC) derived from Glycyrrhiza glabra in the treatment of subacute hepatic failure, Indian Journal of Medical Research 98 (1993): 69–74.

Adams, L. S., et al. Analysis of the interactions of botanical extract combinations against the viability of prostate cancer cell lines. Evidence-Based Complementary and Alternative Medicine 3, no. 1 (2006): 117–24.

Agarwal, A., et al. An evaluation of the efficacy of licorice gargle for attenuating postoperative sore throat: A prospective, randomized, single-blind study. Anesthesia and Analgesia 109, no. 1 (2009): 77–81.

Aiyegoro, O. A., et al. Use of bioactive plant products in combination with standard antibiotics: Implications in antimicrobial chemotherapy. Journal of Medicinal Plants Research 3, no. 13 (2009): 1147–52.

Aly, A. M. Licorice: A possible anti-inflammatory and anti-ulcer drug. AAPS PharmSciTech 6, no. 1 (2005): E74–82.

Ambawade, S. D., et al. Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra. Indian Journal of Pharmacology 34 (2002): 251–55.

Anonymous. Glycyrrhiza. Entry in Wikipedia, http://en.wikipedia.org/wiki/Glycyrrhiza, accessed February 7, 2011.

Anonymous. Glycyrrhiza. Plant profile on Botany.com, www.botany.com/glycyrrhiza.html, accessed February 7, 2011.

Anonymous. Glycyrrhiza glabra. Monograph, Alternative Medicine Review 10, no. 3 (2005): 230–37.

Anonymous. Glycyrrhiza L. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=GLYCY, accessed February 7, 2011.

Anonymous. Glycyrrhiza lepidota Pursh. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=GLLE3, accessed February 1, 2013.

Anonymous. Glycyrrhiza uralensis. Entry in Wikipedia, http://en.wikipedia.org/wiki/Glycyrrhiza_uralensis, accessed February 7, 2011.

Anonymous. Liquorice. Entry in Wikipedia, http://en.wikipedia.org/wiki/Liquorice, accessed February 7, 2011.

Aoki, F., et al. Clinical safety of licorice flavonoid oil (LFO) and pharmacokinetics of glabridin in healthy humans. Journal of the American College of Nutrition 26, no. 3 (2007): 209–18.

Armanini, D., et al. Treatment of polycystic ovary syndrome with spironolactone plus licorice. European Journal of Obstetrics, Gynecology and Reproductive Biology 131, no. 1 (2007): 61–67.

Ashfaq, U., et al. Glycyrrhizin as antiviral agent against hepatitis C virus. Journal of Translational Medicine 9 (2011): 112.

Asl, M., et al. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytotherapy Research 22, no. 6 (2008): 709–24.

Badam, L. In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. Journal of Communicable Diseases 29, no. 2 (1997): 91–99.

Badam, L. In vitro studies on the effect of glycyrrhizin from Indian Glycyrrhiza glabra Linn on some RNA and DNA viruses. Indian Journal of Pharmacology 26, no. 3 (1994): 194–99.

Barthomeuf, C., et al. Conferone from Ferula schtschurowskiana enhances vinblastine cytotoxicity in MDCK-MDR1 cells by competitively inhibiting P-glycoprotein transport. Planta Medica 72, no. 7 (2006): 634–39.

Belofsky, G., et al. Metabolites of the “smoke tree,” Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. Journal of Natural Products 69, no. 2 (2006): 261–64.

Belofsky, G., et al. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. Journal of Natural Products 67, no. 3 (2004): 481–84.

Betoni, J. E. C., et al. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memórias do Instituto Oswaldo Cruz 101, no. 4 (2006): 387–90.

Biavatti, Maique W. Synergy: An old wisdom, a new paradigm for pharmacotherapy. Brazilian Journal of Pharmaceutical Sciences 45, no. 3 (2009): 371–78.

Biradar, Y. Synergistic evaluation of antiplasmodial compounds in vitro. Chapter 7 in Evaluation of antimalarial activity of selected plants of Indian systems of medicine and study: The synergistic activity of the compounds present therein. Ph.D. diss., Nirma University (India), December 9, 2010, www.ietd.inflibnet.ac.in/bitstream/10603/1379/12/12_chapter7.pdf.

Bojian, B., et al. Glycyrrhiza Linnaeus. In Flora of China 10, 509–11. St. Louis: Missouri Botanical Garden Press; Beijing: Science Press, 2010.

Burgess, J. A. Review of over-the-counter treatments for aphthous ulceration and results from use of a dissolving oral patch containing glycyrrhiza complex herbal extract. Journal of Contemporary Dental Practice 9, no. 3 (2008): 88–98.

Cantelli-Forti, G., et al. Interaction of licorice on glycyrrhizin pharmacokinetics. Environmental Health Perspectives 102, suppl. 9 (1994): 65–68.

Chérigo, L., et al. Bacterial resistance modifying tetrasaccharide agents from Ipomoea murucoides. Phytochemistry 70, no. 2 (2009): 222–27.

Chérigo, L., et al. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. Journal of Natural Products 71, no. 6 (2008): 1037–45.

Chérigo, L., et al. Resin glycosides from the flowers of Ipomoea murucoides. Journal of Natural Products 69, no. 4 (2006): 595–99.

Cho, H. J., et al. Hexane/ethanol extract of Glycyrrhiza uralensis licorice exerts potent anti-inflammatory effects in murine macrophages and in mouse skin. Food Chemistry 121 (2010): 959–66.

Cinatl, J., et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361, no. 9374 (2003): 2045–46.

Cortés-Selva F., et al. Dihydro-beta-agarofuran sesquiterpenes: A new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania. Current Pharmaceutical Design 11, no. 24 (2005): 3125–39.

Crance, J., et al. Interferon, ribavirin, 6- azauridine and glycyrrhizin: Antiviral compounds active against flaviviruses. Antiviral Research 58, no. 1 (2003): 73–79.

Dao, T. T., et al. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorganic & Medicinal Chemistry Letters 21, no. 1 (2011): 294–98. Published electronically ahead of print November 5, 2010.

Dong, Y., et al. The anti-respiratory syncytial virus (RSV) effect of radix glycyrrhizae in vitro. Zhong Yao Cai 27, no. 6 (2004): 425–27.

Efferth, T., et al. Complex interactions between phytochemicals: The multi-target therapeutic concept of phytotherapy. Current Drug Targets 12, no. 1 (2011): 122–32.

Elmadjian, F., et al. The action of mono-ammonium glycyrrhizinate on adrenalectomized subjects and its synergism with hydrocortisone. Journal of Clinical Endocrinology and Metabolism 16, no. 3 (1956): 338–49.

Feng, W., et al. Content variation of saponins and flavonoids from growing and harvesting time of Glycyrrhiza uralensis. Zhong Yao Cai 31, no. 2 (2008): 184–86.

Fiore, C., et al. Antiviral effects of Glycyrrhiza species. Phytotherapy Research 22, no. 2 (2008): 141–48.

Follett, J., et al. Growing licorice (Glycyrrhiza glabra L.). New Zealand Center for Crop & Food Research broadsheet no. 121 (2000).

Foster, Steven. Licorice — Glycyrrhiza. Monograph, Steven Foster Group, Inc., www.stevenfoster.com/education/monograph/licorice.html, accessed February 7, 2011.

Fuhrman, B., et al. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxidants & Redox Signaling 2, no. 3 (2000): 491–506.

Gao, Q., et al. Comparative pharmacokinetic behavior of glycyrrhetic acid after oral administration of glycyrrhizic acid and gancao-fuzi-tang. Biological & Pharmaceutical Bulletin 27, no. 2 (2004): 226–28.

Gao, X., et al. Review of pharmacological effects of glycyrrhiza radix and its bioactive compounds. Zhongguo Zhong Yao Za Zhi 34, no. 21 (2009): 2695–700.

Genovese, T., et al. Glycyrrhizin reduces secondary inflammatory process after spinal cord compression injury in mice. Shock 31, no. 4 (2009): 367–75.

Grankina, V. P., et al. Trace element composition of Ural licorice Glycyrrhiza uralensis Fisch. (Fabaceae family). Contemporary Problems of Ecology 2, no. 4 (2009): 396–99. Abstract, accessed online via www.maik.ru/abstract/proecol/9/proecol0396_abstract.pdf.

Grover, I. S., et al. Effect of liquorice [Glycyrrhiza glabra Linn.] as an adjuvant in newly diagnosed sputum smear-positive patients of pulmonary tuberculosis on directly observed treatment short course (DOTS) therapy. Chest 130, no. 4, suppl. (2006): 95S.

Hammouda, F. M., et al. Glycyrrhiza glabra L. In A Guide to Medicinal Plants in North Africa, 147–50. Malaga, Spain: IUCN Center for Mediterranean Cooperation, 2005, www.uicnmed.org/nabp/database/HTM/PDF/p94.pdf.

Harada, S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. Biochemical Journal 392 (2005): 191–99.

Hayashi, H., et al. Distribution pattern of saponins in different organs of Glycyrrhiza glabra. Planta Medica 59, no. 4 (1993): 351–53.

Hayashi, H., et al. Field survey of Glycyrrhiza plants in central Asia (2). Characterization of phenolics and their variation in the leaves of Glycyrrhiza plants collected in Kazakhstan. Chemical and Pharmaceutical Bulletin (Tokyo) 51, no. 11 (2003): 1147–52.

Hayashi, H., et al. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the root of Glycyrrhiza glabra L. Biological & Pharmaceutical Bulletin 21, no. 9 (1998): 987–89.

He, J., et al. Antibacterial compounds from Glycyrrhiza uralensis. Journal of Natural Products 69 (2006): 121–24.

He, X., et al. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ration were induced by polysaccharide from radix glycyrrhizae in H22 hepatocarcinoma bearing mice. Molecules 16, no. 10 (2011): 8343–52.

Hennell, J., et al. The determination of glycyrrhizic acid in Glycyrrhiza uralensis Fisch ex DC (zhi gan cao) root and the dried aqueous extract by LC-DAD. Journal of Pharmaceutical and Biomedical Analysis 47, no. 3 (2008): 494–500.

Hirabayashi, K., et al. Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1) in vitro. Chemical and Pharmaceutical Bulletin (Tokyo) 39, no. 1 (1991): 112–15.

Hoever, G., et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. Journal of Medicinal Chemistry 48, no. 4 (2005): 1256–59.

Hou, Y., et al. Profound difference of metabolic pharmacokinetics between pure glycyrrhizin and glycyrrhizin in licorice decoction. Life Sciences 76, no. 10 (2005): 1167–76.

Huang, M., et al. Investigation on medicinal plant resources of Glycyrrhiza uralensis in China and chemical assessment of its underground part. Zhongguo Zhong Yao Za Zhi 35, no. 8 (2010): 947–52.

Irani, M., et al. Leaves antimicrobial activity of Glycyrrhiza glabra L. Iranian Journal of Pharmaceutical Research 9, no. 4 (2010): 425–28.

Izadi, M., et al. An evaluation of antibacterial activity of Glycyrrhiza glabra extract on the growth of Salmonella, Shigella and ETEC E. coli. Journal of Biological Sciences 7, no. 5 (2007): 827–29.

Janke, R. Farming a few acres of herbs: Licorice. Kansas State University, May 2004, www.ksre.ksu.edu/bookstore/pubs/MF2616.pdf.

Jatav, V., et al. Recent pharmacological trends of Glycyrrhiza glabra Linn. International Journal of Pharmaceutical Frontier Research 1, no. 1 (2011): 170–85.

Jiang, X., et al. The content dynamics of glycyrrhizic acid and soluble sugar in glycyrrhizae radix et rhizoma. Zhong Yao Cai 34, no. 9 (2011): 1321–23.

Jing, L., et al. Comparative analysis of glycyrrhizin diammonium and lithium chloride on infectious bronchitis virus infection in vitro. Avian Pathology 38, no. 3 (2009): 215–21.

Johns, C. Glycyrrhizic acid toxicity caused by consumption of licorice candy cigars. CJEM 11, no. 1 (2009): 94–96.

Kim, S., et al. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via antiinflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiology of Disease 46, no. 1 (2012): 147–56.

Kim, S., et al. The use of stronger neo- minophagen C, a glycyrrhizin-containing preparation, in robust neuroprotection in the postischemic brain, Anatomy & Cell Biology 44, no. 4 (2011): 304–13.

Ko, H. C., et al. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. Journal of Ethnopharmacology 107, no. 2 (2006): 205–10.

Kojoma, M., et al. Variation of glycyrrhizin and liquiritin contents within a population of 5-year-old licorice (Glycyrrhiza uralensis) plant cultivated under the same conditions. Biological & Pharmaceutical Bulletin 34, no. 8 (2011): 1334–37.

Kolbe, L., et al. Anti-inflammatory efficacy of licochalcone A: Correlation of clinical potency and in vitro effects. Archives of Dermatological Research 298, no. 1 (2006): 23–30.

Kondo, K., et al. Constituent properties of licorices derived from Glycyrrhiza uralensis G. glabra, or G. inflata identified by genetic information. Biological & Pharmaceutical Bulletin 30, no. 7 (2007): 1271–77.

Krahenbuhl, S., et al. Kinetics and dynamics of orally administered 18 beta- glycyrrhetinic acid in humans. Journal of Clinical Endocrinology and Metabolism 78, no. 3 (1994): 581–85.

Kuo, K., et al. Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line. American Journal of Chinese Medicine 37, no. 2 (2009): 383–94.

Kusano, E. How to diagnose and treat a licorice-induced syndrome with findings similar to that of primary hyperaldosteronism. Editorial, Internal Medicine (Tokyo) 43, no. 1 (2004): 5–6.

Kushiev, H., et al. Remediation of abandoned saline soils using Glycyrrhiza glabra: A study from the Hungry Steppes of Central Asia. International Journal of Agricultural Sustainability 3, no. 2 (2005): 102.

Kwon, H., et al. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kB signal disruption. Experimental Biology and Medicine 232, no. 2 (2007): 235–45.

Lapi, F., et al. Myopathies associated with red yeast rice and liquorice: Spontaneous reports from the Italian Surveillance System of Natural Health Products. British Journal of Clinical Pharmacology 66, no. 4 (2008): 572–74.

Li, X. L., et al. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. International Journal of Molecular Sciences 12 (2011): 905–16.

Li, Y. Toxicity attenuation and efficacy potentiation effect of liquorice on treatment of rheumatoid arthriris with Tripterygium wilfodii. Zhongguo Zhong Xi Yi Jie He Za Zhi 26, no. 12 (2006): 1117–19.

Li, Y., et al. The use of albendazole and diammonium glycyrrhizinate in the treatment of eosinophilic meningitis in mice infected with Angiostrongylus cantonensis. Journal of Helminthology 13 (2011): 1–11.

Lin, J. C. Mechanism of action of glycyrrhizic acid in inhibition of Epstein-Barr virus replication in vitro. Antiviral Research 59, no. 1 (2003): 41–47.

Liu, X. R., et al. Treatment of intestinal metaplasia and atypical hyperplasia of gastric mucosa with xiao wei yan powder. Zhongguo Zhong Xi Yi Jie He Za Zhi 12, no. 10 (1992): 602–3, 580.

Lu, S., et al. Survey of study on the extraction, purification and determination methods of glycyrrhizic acid in licorice. Zhongguo Zhong Yao Za Zhi 31, no. 5 (2006): 357–60.

Martin, M. D., et al. A controlled trial of a dissolving oral patch concerning glycyrrhiza (licorice) herbal extract for the treatment of aphthous ulcers. General Dentistry 56, no. 2 (2008): 206–10.

Michaelis, M., et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Medical Microbiology and Immunology 199, no. 4 (2010): 291–97.

Miyamura, M., et al. Properties of glycyrrhizin in Kampo extracts including licorice root and changes in the blood concentration of glycyrrhetic acid after oral administration of Kampo extracts. Yakugaku Zasshi 116, no. 3 (1996): 209–16.

Moghadamnia, A. A. The efficacy of the bioadhesive patches containing licorice extract in the management of recurrent aphthous stomatitis. Phytotherapy Research 23, no. 2 (2009): 246–50.

Molnár, J., et al. Reversal of multidrug resistance by natural substances from plants. Current Topics in Medicinal Chemistry 10, no. 17 (2010): 1757–68.

Montoro, P., et al. Metabolic profiling of roots of licorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/ME and LC-ESI/MS/MS. Journal of Pharmaceutical and Biomedical Analysis 54, no. 3 (2011): 535–44.

Morel, C., et al. Isoflavones as potentiators of antibacterial activity. Journal of Agricultural and Food Chemistry 51, no. 19 (2003): 5677–79.

Muralidharan, P., et al. Cerebroprotective effect of Glycyrrhiza glabra Linn. root extract on hypoxic rats. Bangladesh Journal of Pharmacology 4 (2009): 60–64.

Nomura, T., et al. Chemistry of phenolic compounds of licorice (Glycyrrhiza species) and their estrogenic and cytotoxic activities. Pure and Applied Chemistry 74, no. 7 (2002): 1199–206.

Ozaki, Y., et al. Studies on concentration of glycyrrhizin in plasma and its absorption after oral administration of licorice extract and glycyrrhizin. Yakugaku Zasshi 110, no. 1 (1990): 77–81.

Parsaeimehr, A., et al. Producing friable callus for suspension of culture in Glycyrrhiza glabra. Advances in Environmental Biology 3, no. 2 (2009): 125–28.

Pati, A. K. Licorice (Glycyrrhiza glabra, G. uralensis). Press release from Best Nutrition Products, Inc., Hayward, Calif., July 10, 2010. On the website of PR Log at http://prlog.org/10780323-licorice-glycyrrhiza-glabra-uralensis-dr-abhay-kumar-pati-best- nutrition-hayward-ca-usa.html.

Ploeger, B., et al. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling. Drug Metabolism Reviews 33, no. 2 (2001): 125–47.

Plouzek, C. A., et al. Inhibition of P-glycoprotein activity and reversal of multidrug resistance in vitro by rosemary extract. European Journal of Cancer 35, no. 10 (1999): 1541–45.

Pompei, R., et al. Antiviral activity of glycyrrhizic acid. Experientia 36, no. 3 (1980): 304.

Pompei, R., et al. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 281, no. 5733 (1979): 689–90.

Qiao’e, W., et al. Study on the optimal harvest time of semi-wild Glycyrrhiza uralensis at Liangwai, Inner Mongolia. Zhong Yao Cai 27, no. 4 (2004): 235–37.

Raggi, M., et al. Bioavailability of glycyrrhizin and licorice extract in rat and human plasma as detected by HPLC method. Pharmazie 49, no. 4 (1994): 269–72.

Räikkönen, K., et al. Maternal licorice consumption and detrimental cognitive and psychiatric outcomes in children. American Journal of Epidemiology 170, no. 9 (2009): 1137–46.

Renjie, L., et al. Protective effect of Glycyrrhiza glabra polysaccharides against carbon tetrachloride-induced liver injury in rats. African Journal of Microbiology Research 4, no. 16 (2010): 1784–87.

Saeedi, M., et al. The treatment of atopic dermatitis with licorice gel. Journal of Dermatological Treatment 14, no. 3 (2003): 153–57.

Saif, M. W., et al. Phase I study of the botanical formulation PHY906 with capecitabine in advanced pancreatic and other gastrointestinal malignancies. Phytomedicine 17, no. 3–4 (2010): 161–69.

Sancar, M., et al. Comparative effectiveness of Glycyrrhiza glabra vs. omeprazole and misoprostol for the treatment of aspirin-induced gastric ulcers. African Journal of Pharmacy and Pharmacology 3, no. 12 (2009): 615–20.

Sato, J., et al. Antifungal activity of plant extracts against Arthrinium sacchari and Chaetomium funicola. Journal of Bioscience and Bioengineering 90, no. 4 (2000): 442–46.

Sato, Y., et al. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biological & Pharmaceutical Bulletin 30, no. 1 (2007): 145–49.

Schröfelbauer, B., et al. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signaling. Biochemical Journal 421, no. 3 (2009): 473–82.

Sekizawa, T., et al. Glycyrrhizin increases survival of mice with herpes simplex encephalitis. Acta Virologica 45, no. 1 (2001): 51–54.

Shamsa, F., et al. The anti-inflammatory and anti-viral effects of an ethnic medicine: Glycyrrhizin. Journal of Medicinal Plants 9, suppl. 6 (2010): 1–28.

Shibata, S. A drug over the millennia: Pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120, no. 10 (2000): 849–62.

Simões, M., et al. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Journal of Natural Products 26 (2009): 746–57.

Sofia, H. N., and T. M. Walter. Review of Glycyrrhiza glabra, Linn. Siddha Papers 02 (01) (LR), ISSN 0974-2522, January 12, 2009, http://openmed.nic.in/3195/01/Glycyrrhiza_final.pdf.

Stavri, M., et al. Bacterial efflux pump inhibitors from natural sources. Journal of Antimicrobial Chemotherapy 59 (2007): 1247–60.

Strandberg, T. E., et al. Birth outcome in relation to licorice consumption during pregnancy. American Journal of Epidemiology 153, no. 11 (2001): 1085–88.

Strandberg, T. E., et al. Preterm birth and licorice consumption during pregnancy. American Journal of Epidemiology 156, no. 9 (2002): 803–5.

Sui, X., et al. Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus. Antiviral Research 85, no. 2 (2010): 346–53.

Sultana, S., et al. Antimicrobial, cytotoxic and antioxidant activity of methanolic extract of Glycyrrhiza glabra. Agriculture and Biology Journal of North America (2010). doi:10.5251/abjna.2010.1.5.957.960.

Tancevski, I., et al. Images in cardiovascular medicine: Malicious licorice. Circulation 117 (2008): e299.

Teelucksingh, S., et al. Potentiation of hydrocortisone activity in skin by glycyrrhetinic. Lancet 335, no. 8697 (1990): 1060–63.

Uto, T., et al. Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochemical and Biophysical Research Communications 417, no. 2 (2012): 473–78.

Utsunomiya, T., et al. Glycyrrizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrobial Agents and Chemotherapy 41, no. 3 (1997): 551–56.

Vibha, J., et al. A study on the pharmacokinetics and therapeutic efficacy of Glycyrrhiza glabra: A miracle medical herb. Botany Research International 2, no. 3 (2009): 157–63.

Wagner, H., et al. Natural products chemistry and phytomedicine research in the new millennium: New developments and challenges. ARKIVOC 7 (2004): 277–84.

Wang, X., et al. The anti-respiratory syncytial virus effect of active compound of Glycyrrhiza GD4 in vitro. Zhong Yao Cai 29, no. 7 (2006): 692–94.

Wang, Z., et al. Gastrointestinal absorption characteristics of glycyrrhizin from Glycyrrhiza extract. Biological & Pharmaceutical Bulletin 18, no. 9 (1995): 1238–41.

Williamson, E. M., et al. Synergy: Interactions within herbal medicines. European Phytojournal 8, no. 5 (2001): 401–9.

Wolkerstoerfer, A., et al. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Research 83, no. 2 (2009): 171–78.

Wu, T. H., et al. Hypouricemic effect and regulatory effects on autonomic function of shao-yao gan-cao tang, a Chinese herbal prescription, in asymptomatic hyperuricemic vegetarians. Rheumatology International 28, no. 1 (2007): 27–31.

Yamamoto, Y. Pharmaceutical evaluation of Glycyrrhiza uralensis roots cultivated in eastern Nei-Meng-Gu of China. Biological & Pharmaceutical Bulletin 26, no. 8 (2003): 1144–49.

Yamashiki, M., et al. Effects of the Japanese herbal medicine “sho-saiko-to” (TJ-9) on interleukin-12 production in patients with HCV-positive liver cirrhosis. Developmental Immunology 7, no. 1 (1999): 17–22.

Yasue H., et al. Severe hypokalemia, rhabdomyolysis, muscle paralysis, and respiratory impairment in a hypertensive patient taking herbal medicines containing licorice. Internal Medicine 46, no. 9 (2007): 575–78.

Yim, S. B., et al. Protective effect of glycyrrhizin on 1-methyl-4-phenylpyridinium-induced mitochondrial damage and cell death in differentiated PC12 cells. Journal of Pharmacology and Experimental Therapeutics 321, no. 2 (2007): 816.

Yuan, H. N., et al. A randomized, crossover comparison of herbal medicine and bromocriptine against risperidone-induced hyperprolactinemia in patients with schizophrenia. Journal of Clinical Psychopharmacology 28, no. 3 (2008): 264–370.

Zhang, L., et al. Study on adscription of plasma effective constituents of rat after administrated with Paeonia laclifora and Glycyrrhiza uralensis. Zhongguo Zhong Yao Za Zhi 32, no. 17 (2007): 1789–91.

Zhu, S., et al. Survey of glycyrrhizae radix sources in Mongolia: Chemical assessment of the underground part of Glycyrrhiza uralensis and comparison with Chinese glycyrrhiza radix. Journal of Natural Medicine 63, no. 2 (2009): 137–46.

Zore, G., et al. Chemoprofile and bioactivities of Taverniera cuneifolia (Roth) Arn: A wild relative and possible substitute of Glycyrrhiza glabra L. Phytomedicine 15, no. 4 (2008): 292–300.

Lomatium (Lomatium dissectum)

Anonymous. Bradshaw’s desert parsley. Species fact sheet from the U.S. Fish and Wildlife Service Oregon Fish & Wildlife Office, updated September 22, 2008, www.fws.gov/oregonfwo/Species/Data/BradshawsLomatium/.

Anonymous. Lomatium extract. Product description for BrainChild Nutritionals, www.brainchildnutritionals.com/lomatium-extract-331.html, accessed February 1, 2013.

Anonymous. Lomatium Raf. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=LOMAT, accessed January 31, 2011.

Anonymous. Lomatium sandbergii Coult. & Rose. In Field Guide to Selected Rare Vascular Plants of Washington. Washington Natural Heritage Program and USDI Bureau of Land Management, 2005, www1.dnr.wa.gov/nhp/refdesk/fguide/pdf/lomsan.pdf.

Anonymous. Lomatium tuberosum Hoover. In Field Guide to Selected Rare Vascular Plants of Washington. Washington Natural Heritage Program and USDI Bureau of Land Management, 2005, www1.dnr.wa.gov/nhp/refdesk/fguide/pdf/lotu.pdf.

Anonymous. What is Lomatium dissectum? Brief monograph on the website Lomatium.com, www.lomatium.com/botany.htm, accessed November 25, 2010.

Asuming, W., et al. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochemical Systematics and Ecology 33, no. 1 (2005): 17–26.

Atwood, D., and A. DeBolt. Packard’s lomatium. In Field Guide to the Special Status Plants of the Bureau of Land Management Lower Snake River District. Boise, Id.: USDI Bureau of Land Management Lower Snake River District, April 2000, www.blm.gov/pgdata/etc/medialib/blm/id/publications/field_guide_to_the.Par.68503.File.dat/plomatium.pdf.

Bairamian, S., et al. California lomatiums part III. Composition of the hydrodistilled oils from two varieties of Lomatium dissectum. Isolation of a new hydrocarbon. Journal of Essential Oil Research 16, no. 5 (2004): 461–68. doi:10.1080/10412905.2004.9698772.

Barneby, R. C., et al. A new species of Lomatium (Apiaceae) from Utah. Brittonia 31, no. 1 (1979): 96–100.

Beauchamp, P. S., et al. California Lomatiums part IV(a). Composition of the essential oils of Lomatium rigidum (M.E. Jones) Jepson. Structures of two new funebrene epimers and a tridecatriene. Journal of Essential Oil Research 16, no. 6 (2004): 571–78.

Beauchamp, P. S., et al. Essential oil composition of six Lomatium species attractive to Indra swallowtail butterfly (Papilio indra): Principal component analysis against essential oil composition of Lomatium dissectum var. multifidum. Journal of Essential Oil Research 21 (2009): 535–42.

Bergner, Paul. Antiviral botanicals in herbal medicine. Medical Herbalism 14, no. 3 (2005): 1–12.

Carlson, H. J., et al. Antibiotic agents separated from the root of lace-leaved Leptotaenia. Journal of Bacteriology 55, no. 5 (1948): 615–21.

Chou, S. C., et al. Antibacterial activity of components from Lomatium californicum. Phytotherapy Research 20, no. 2 (2006): 153–56.

Curini, M., et al. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Current Medicinal Chemistry 13, no. 2 (2006): 199–222.

Dev, V., et al. Lomatium grayi and Indra swallowtail butterfly. Composition of the essential oils of three varieties of Lomatium grayi (J.M. Coult et Rose) J.M. Coult et Rose. Journal of Essential Oil Research 19, no. 3 (2007): 244–48. doi: 10.1080/10412905.2007.9699270.

Drum, Ryan. Three herbs: Yarrow, Indian consumption plant, coral root. Presentation at the Southwest Conference on Botanical Medicine, Tempe, Ariz., 2006. Available on the website of Island Herbs at http:// ryandrum.com/threeherbs2.htm.

Garry Oak Ecosystems Recovery Team. Lomatium dissectum var. dissectum. In Species at Risk in Garry Oak & Associated Ecosystems in British Columbia. Victoria, B.C.: Garry Oak Ecosystems Recovery Team, 2003, www.goert.ca/documents/inserts/Lomatium_dissectum_Insert_Sheet.pdf.

Garry Oak Ecosystems Recovery Team. Lomatium grayi. In Species at Risk in Garry Oak & Associated Ecosystems in British Columbia. Victoria, B.C.: Garry Oak Ecosystems Recovery Team, 2003, www.goert.ca/documents/PARFS_lomagray.pdf.

Gupta, P. K., et al. Coumarins. 3. Identification of the lactone of Leptotaenia multifida. Journal of Pharmaceutical Sciences 53 (1964): 1543–44.

Henry, C. and J. D. Lomatium dissectum. The Provisionary (a newsletter of Therapeutic Environments, Albuquerque, N.M.) 5, no. 2 (2009): 1–4.

Keville, Kathi. Herb profile Lomatium. American Herb Association Quarterly Newsletter 19, no. 2 (2003): 3.

Lee, C. L., et al. Influenza A (H(1)N(1)) antiviral and cytotoxic agents from Ferula assa-foetida. Journal of Natural Products 72, no. 9 (2009): 1568–72.

Lee, K. H., et al. Coumarins. VII. The coumarins of Lomatium nuttallii. Journal of Pharmaceutical Sciences 57, no. 5 (1968): 865–68.

Lee, T. T., et al. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorganic & Medicinal Chemistry 2, no. 10 (1994): 1051–56.

Matson, G. A., et al. Antibiotic studies on an extract from Leptotaenia multifeda. Journal of Clinical Investigation 28, no. 5, pt. 1 (1949): 903–8.

McCutcheon, A. R., et al. Antibiotic screening of medicinal plants of the British Columbian native peoples. Journal of Ethnopharmacology 37, no. 3 (1992): 213–23.

McCutcheon, A. R., et al. Anti-mycobacterial screening of British Columbian medicinal plants. Pharmaceutical Biology 35, no. 2 (1997): 77-83.

McCutcheon, A. R., et al. Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology 49 (1995): 101–10.

Meepagala, K. M., et al. Phytotoxic and antifungal compounds from two Apiaceae species, Lomatium californicum and Ligusticum hultenii, rich sources of Z-ligustilide and apiol, respectively. Journal of Chemical Ecology 31, no. 7 (2005): 1567–78.

Pendergrass, K. Introduction to Bradshaw’s lomatium, a federally listed endangered species, and a key and photo guide to the Lomatium species that occur within its range. U.S. Department of Agriculture Natural Resources Conservation Service Technical Note 40b (2010): 1–21.

Pettinato, F. A., et al. An analysis of the volatile oil of Lomatium suksdorfii. Journal of the American Pharmaceutica Association 49, no. 1 (1960): 45–48.

Pettinato, F. A., et al. A note on the preliminary phytochemical and biological study of Lomatium suksdorfii. Journal of the American Pharmaceutical Association 48, no. 7 (1959): 423.

Pettinato, F. A., et al. A note on the volatile oil from the fruits of Lomatium grayi. Journal of the American Pharmaceutical Association 48, no. 5 (1959): 302.

Scholten, M., et al. Environmental regulation of dormancy loss in seeds of Lomatium dissectum (Apiaceae). Annals of Botany 103 (2009): 1091–101.

Starlord. Ancient Amerindian medicine kills the H1N1 virus. Post on the ConspiracyCafé.net website, October 20, 2009 (8:47 p.m.), www.conspiracycafe.net/forum/index.php?/topic/24684-ancient-amerindian-medicine-kills-the-h1n1-virus/.

Steck, Warren. Coumarins and chromones from ‘Lomatium macrocarpum.’ Prepared for the National Research Council of Canada Saskatoon (Saskatchewan) Prairie Regional Lab, March 19, 1973. Accessed online via the Open Archives Initiative at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0769141.

VanWagenen, B. C., et al. Native American food and medicinal plants, 7. Antimicrobial tetronic acids from Lomatium dissectum. Tetrahedron 42 (1986): 1117.

VanWagenen, B. C., et al. Native American food and medicinal plants, 8. Water-soluble constituents of Lomatium dissectum. Journal of Natural Products 51, no. 1 (1988): 136–41.

Yates, Gene. Final report: Lomatium erythrocarpum survey. U.S. Department of Agriculture Forest Service, October 2005, http://fs.fed.us/r6/sfpnw/issssp/.../inv-rpt-va-loer-waw-surveys-2005-10.pdf.

Zakay-Rones, Z. N., et al. Lomatium dissectum: An herbal virucide? Complementary Medicine 2, no. 5 (1987): 32–34.

Red Root (Ceanothus spp.)

Alakurtti, S., et al. Pharmacological properties of the ubiquitous natural product betulin. European Journal of Pharmaceutical Sciences 1 (2006): 1–13.

Berry, A. M., et al. Bacteriohopanetetrol: Abundant lipid in Frankia cells and in nitrogen-fixing nodule tissue. Plant Physiology 95, no. 1 (1991): 111–15.

Bishop, J. G., et al. The effect of ceanothyn on blood coagulation time. Journal of the American Pharmaceutical Association 46, no. 7 (1957): 396–98.

Cichewicz, R. H. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Medical Research Reviews 24, no. 1 (2004): 90–114.

Cook, William. Ceanothus americanus. Entry in The Physiomedical Dispensatory (1869). Electronic version hosted on the website of Medical Herbalism journal, http://medherb.com/cook/home.htm.

de Sá, M. S., et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitology Research 105, no. 1 (2009): 275–79.

Delwiche, C. C., et al. Nitrogren fixation by Ceanothus. Plant Physiology 40, no. 6 (1965): 1045–47.

Eichenmüller, M., et al. Betulinic acid induces apoptosis and inhibits hedgehog signaling in rhabdomyosarcoma. British Journal of Cancer 103, no. 1 (2010): 43–51.

Emile, A., et al. Bioassay-guided isolation of antifungal alkaloids from Melochia odorata. Phytotherapy Research 21, no. 4 (2007): 398–400.

Fisher, J. B., et al. What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology 27, no. 4 (2007): 597–610.

Fu, J. Y. Betulinic acid ameliorates impairment of endothelium-dependent relaxation induced by oxidative stress in rat aorta. Zhejiang Da Xue Xue Bao Yi Xue Ban 39, no. 5 (2010): 523–29.

Giordano, A. A. S., et al. Ceanothus americanus: Its effect on the coagulation time of the blood. Archives of Otolaryngology 7, no. 6 (1928): 618–22.

Groot, J. T., et al. The pharmacology of Ceanothus americanus I. Preliminary studies: Hemodynamics and the effects on coagulation, Journal of Pharmacology and Experimental Therapeutics 30, no. 4 (1926): 275–91.

Klein, F. K., et al. Ceanothus alkaloids. Americine. Journal of the American Chemical Society 90, no. 9 (1968): 2398–404.

Kommera, H., et al. Synthesis and anticancer activity of novel betulinic acid and betulin derivatives. Archiv der Pharmazie (Weinheim, Germany) 343, no. 8 (2010): 449–57.

Laferriere, J. E., et al. Mineral composition of some traditional Mexican teas. Plant Foods for Human Nutrition 41 (1991): 277–82.

Lan, P., et al. Understanding the structure-activity relationship of betulinic acid derivatives as anti-HIV-1 agents by using 3D-QSAR and docking. Journal of Molecular Modeling 17, no. 7 (2011): 1643–59. Published electronically ahead of print October 27, 2010.

Laszczyk, M. N. Pentacytic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Medica 75, no. 15 (2009): 1549–60.

Leal, I. C., et al. Ceanothane and lupane type triterpenes from Zizyphus joazeiro — an anti-staphylococcal evaluation. Planta Medica 76, no. 1 (2010): 47–52.

Lee, S. M., et al. Anti-complementary activity of triterpenoides from fruit of Zizyphus jujuba. Biological & Pharmaceutical Bulletin 27, no. 11 (2004): 1883–86.

Lee, S. S., et al. Preparation and cytotoxic effect of ceanothic acid derivatives. Journal of Natural Products 61, no. 11 (1998): 1343–47.

Li, X. C., et al. Antimicrobial compounds from Ceanothus americanus against oral pathogens. Phytochemistry 46, no. 1 (1997): 97–102.

Li, Y., et al. Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Molecular Carcinogenesis 49, no. 7 (2010): 630–40.

Lo, Y. C. Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: Involvement of BMP/Runx2 and beta-catenin signals. Journal of Agricultural and Food Chemistry 58, no. 11 (2010): 6643–49.

Lucas, Joy. Ceanothus — a nice cup of tea & a piece of ague cake. On the Homeopathic Materia Medica website, updated August 30, 2003, www.web.mac.com/joylucas/iWeb/ Site/Materia%20Medica%20(2)_files/Ceanothus.pdf.

Lucero, M. E., et al. Composition of Ceanothus gregii oil as determined by stream distillation and solid-phase microextraction. Journal of Essential Oil Research 22 (2010): 104–42.

Lynch, T. A., et al. An investigation of the blood coagulation principles from Ceanothus americanus. Journal of the American Pharmaceutical Association 47, no. 11 (1958): 816–19.

McCutcheon, A. R., et al. Antifungal screening of medicinal plants of British Columbian native peoples. Journal of Ethnopharmacology 44, no. 3 (1994): 157–69.

McCutcheon, A. R. et al. Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology 49, no. 2 (1995): 101–10.

Moore, M. Ceanothus: Red root. Folio on the website of the Southwest School of Botanical Medicine, www.swsbm.com/FOLIOS/RedRtFol.pdf, accessed July 12, 2011.

Rooney, R. F., et al. A case of poisoning from Ceanothus velutinus, resembling Rhus poisoning. California State Journal of Medicine 3, no. 9 (1905): 290–91.

Roscoe, C. W., et al. A preliminary study of the alkaloidal principles of Ceanothus americanus and Ceanothus velutinus. Journal of the American Pharmaceutical Association 49, no. 2 (1960): 108–12.

Saaby, L., et al. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytotherapy Research 25, no. 2 (2011): 195–201. Published electronically ahead of print, 2010.

Salazar-Aranda, R., et al. Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evidence-Based Complementary and Alternative Medicine (2011). doi: 10.1093/ecam/nep127.

Servis, Robert, et al. Ceanothus alkaloids. II. Peptide alkaloids from Ceanothus americanus. Journal of the American Chemical Society 91, no. 20 (1969): 5619–24.

Spjut, Richard W. Ceanothus Rhamnacea. On the website of World Botanical Associates, www.worldbotanical.com/ceanothus.htm, accessed December 9, 2010.

Steele, J. C., et al. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytotherapy Research 13, no. 2 (1999): 115–19.

Suksamram, S., et al. Ceanothane- and lupane-type triterpenes with antiplasmodial and antimycobacterial activities from Ziziphus cambodiana. Chemical and Pharmaceutical Bulletin (Tokyo) 54, no. 4 (2006): 535–37.

Takada, Y., et al. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: Abrogation of cyclooxygenase-2 and matrix metalloprotease-9. Journal of Immunology 171, no. 6 (2003): 3278–86.

Theraldsen, C. E., et al. Notes on blood reactions of the alkaloids of Ceanothus americanus. American Journal of Physiology 79, no. 3 (1926): 545–52.

Tortoriello, J., et al. Spasmolytic activity of medicinal plants used to treat gastrointestinal diseases in the Highland of Chiapas. Phytomedicine 2, no. 1 (1995): 57–66.

Tschesche, R., et al. Alkaloids from Rhamnaceae. IV. Integerrin, an additional peptide alkaloid from Ceanothus integgerrimus Hock and Arn. Tetrahedron Letters 11 (1968): 1311–15.

Tschesche, R., et al. Integerressin and integerrenin, two peptide alkaloids from Ceanothus integerrimus Hook. and Arn. Chemische Berichte 100, no. 12 (1967): 3924–36.

Vijayan, V., et al. Betulinic acid inhibits endotoxin stimulated phosphorylation cascade and pro-inflammatory prostaglandin E(2) production in human peripheral blood mononuclear cells. British Journal of Pharmacology 162, no. 6 (2011):1291–303. Published electronically ahead of print, 2010.

Wastle, H. Influence of tea leaves from Ceanothus americanus on blood pressure of hypertensive rats. Federation Proceedings 7, no. 1, pt. 1 (1948): 131.

Wollenweber, E., et al. Exudate flavonoids of eight species of Ceanothus (Rhamnaceae). Zeitschrift für Naturforschung C 59, no. 7–8 (2004): 459–62.

Yi, J. E., Immunomodulatory effects of betulic acid from the bark of white birch on mice. Journal of Veterinary Science 11, no. 4 (2010): 305–13.

Yogeeswari, P., et al. Betulinic acid and its derivatives: A review on their biological properties. Current Medicinal Chemistry 12, no. 6 (2005): 657–66.

Yoon, J. J., et al. Betulinic acid inhibits high glucose-induced vascular smooth muscle cells proliferation and migration. Journal of Cellular Biochemistry 111, no. 6 (2010): 1501–11.

Yun, Y., et al. Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Archives of Pharmacal Research 26, no. 12 (2003): 1087–95.

Rhodiola (Rhodiola spp.)

Abidov, M., et al. Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bulletin of Experimental Biology and Medicine 136, no. 6 (2003): 585–87.

Abidov, M., et al. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bulletin of Experimental Biology and Medicine 138, no. 1 (2004): 63–64.

Abidoff, M., and Z. Ramazanov. Rhodiola rosea: The herbal heavyweight from Russia. Muscle Development, January 2003, www.pdfking.com/images/large/9862-rhodiola-muscle-development.gif.

Akgul, Y., et al. Lotaustralin from Rhodiola rosea roots. Fitoterapia 75, no. 6 (2004): 612–14.

An, F., et al. Determination of salidroside in eight Rhodiola species by TLC-UV spectrometry. Zhongguo Zhong Yao Za Zhi 23, no. 1 (1998): 43–44, 64.

Anonymous. Queen’s crown: Rhodiola rhodantha. Plant profile from Natural Medicinal Herbs, www.naturalmedicinalherbs.net/herbs/r/rhodiola-rhodantha=queen’s-crown.php, accessed December 10, 2010. (Profile drawn from the database of Plants for a Future, www.pfaf.org.)

Anonymous. Rhodiola. Plant profile from Paradise Herbs, www.paradiseherbs.com/media/uploads/research/Rhodiola.pdf, accessed February 1, 2013.

Anonymous. Rhodiola integrifolia Raf. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=RHINI, accessed December 10, 2010.

Anonymous. Rhodiola rhodantha (A. Gray) H. Jacobsen. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=RHRH4, accessed December 10, 2010.

Anonymous. Rhodiola rosea. Entry in Wikipedia, http://en.Wikipedia.org/wiki/Rhodiola_rosea, accessed February 12, 2011.

Anonymous. Rhodiola rosea. Monograph, Alternative Medicine Review 7, no. 5 (2002): 421–23.

Anonymous. Rhodiola rosea L. Entry in the Global Biodiversity Information Facility database, http://data.gbif.org/search/taxa/Rhodiola%20rosea, accessed December 10, 2010.

Anonymous. Rhodiola rosea L. Entry in the U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Database, http://plants.usda.gov/java/profile?symbol=RHRO3, accessed December 10, 2010.

Anonymous. Study on the chemical constituents from Rhodiola bupleuroldes. Master’s thesis, abstract, available via the website of China Papers, http://mt.china-papers.com/2/?p=48858, posted September 8, 2010.

Arora, R., et al. Evaluation of radioprotective activities Rhodiola imbricata Edgew — a high altitude plant. Molecular and Cellular Biochemistry 273, no. 1–2 (2005): 209–23.

Aslanyan, G., et al. Double-blind, placebo-controlled, randomized study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine 17, no. 7 (2010): 494–99.

Battistelli, M., et al. Rhodiola rosea as antioxidant in red blood cells: Ultrastructural and hemolytic behaviour. European Journal of Histochemistry 49, no. 3 (2005): 243–54.

Bocharova, O. A., et al. The effect of a Rhodiola rosea extract on the incidence of recurrences of a superficial bladder cancer (experimental clinical research). Urologiia i nefrologiia (Moscow) 2 (1995): 46–47.

Brown, R. P., et al. Rhodiola rosea: A phytomedicinal overview. HerbalGram 56 (2002): 40–52.

Bystritsky, A., et al. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). Journal of Alternative and Complementary Medicine 14, no. 2 (2008): 175–80.

Calcabrini, C., et al. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Archives of Dermatological Research 302, no. 3 (2010): 191–200.

Cao, L. L., et al. The effect of salidroside on cell damage induced by glutamate and intracellular free calcium in PC12 cells. Journal of Asian Natural Products Research 8, no. 1–2 (2006): 159–65.

Chem, X., et al. Hypoglycemic effect of Rhodiola sachalinensis A. Bor. polysaccharides: Comparison of administration in different ways. Zhongguo Zhong Yao Za Zhi 21, no. 11 (1996): 685–87.

Chen, C. H., et al. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. Molecules 14, no. 8 (2009): 2947–58.

Chen, Q. G., et al. The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine 16, no. 9 (2009): 830–38.

Chen, T. S., et al. Antioxidant evaluation of three adaptogen extracts. American Journal of Chinese Medicine 36, no. 6 (2008): 1209–17.

Chen, X., et al. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Molecular and Cellular Biochemistry 332, no. 1–2 (2009): 85–93.

Cui, S., et al. Determination of p-tyrosol and salidroside in three samples of Rhodiola crenulata and one of Rhodiola kirilowii by capillary zone electrophoresis. Analytical and Bioanalytical Chemistry 377, no. 2 (2003): 370–74.

Darbinyan, V., et al. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nordic Journal of Psychiatry 61, no. 5 (2007): 343–48.

Darbinyan, V., et al. Rhodiola rosea in stress induced fatigue — a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 7, no. 5 (2000): 365–71.

De Bock, K., et al. Acute Rhodiola rosea intake can improve endurance exercise performance. International Journal of Sport Nutrition and Exercise Metabolism 14, no. 3 (2004): 298–307.

De Sanctis, R., et al. In vitro protective effect of Rhodiola rosea extract against hypochlorous acid-induced oxidative damage in human erythrocytes. Biofactors 20, no. 3 (2004): 147–59.

Dieamant, G. C., et al. Neuroimmunomodulatory compound for sensitive skin care: In vitro and clinical assessment. Journal of Cosmetic Dermatology 7, no. 2 (2008): 112–19.

Evdokimov, V. G., et al. Effect of cryopowder Rhodiola rosea L. on cardiorespiratory parameters and physical performance of humans. Aviakosmicheskaia i Ekologicheskaia Meditsina 43, no. 6 (2009): 52–56.

Evstatieva, L., et al. Chemical composition of the essential oils of Rhodiola rosea L. of three different origins. Pharmacognosy Magazine 6, no. 24 (2010): 256–58.

Fan, W., et al. Prolyl endopeptidase inhibitors from the underground part of Rhodiola sachalinensis. Chemical and Pharmaceutical Bulletin (Tokyo) 49, no. 4 (2001): 396–401.

Fintelmann, V., et al. Efficacy and tolerability of a Rhodiola rosea extract in adults with physical and cognitive deficiencies. Advances in Therapy 24, no. 4 (2007): 929–39.

Galambosi, B. Demand and availability of Rhodiola rosea L. raw material. Chapter 16 in Medicinal and Aromatic Plants, ed. R. J. Bogers et al., 223–36. Wageningen UR Frontis series, vol. 17. Springer, 2006.

Gao, D., et al. Antidiabetic potential of Rhodiola sachalinensis root extract in streptozotocin-induced diabetic rats. Methods and Findings in Experimental and Clinical Pharmacology 31, no. 6 (2009): 375–81.

Gauger, K. J., et al. Rhodiola crenulata inhibits the tumorigenic properties of invasive mammary epithelial cells with stem cell characteristics. Journal of Medicinal Plants Research 4, no. 6 (2010): 446–54.

Goel, H. C., et al. Radioprotection by Rhodiola imbricata in mice against whole-body lethal irradiation. Journal of Medicinal Food 9, no. 2 (2006): 154–60.

Grace, M. H., et al. Phytochemical characterization of an adaptogenic preparation from Rhodiola heterodonta. Natural Products Communications 4, no. 8 (2009): 1053–58.

Guest, Heidi. Molecular phylogeography of Rhodiola integrifolia (Crassulaceae) and its postglacial recolonization of north-western North America. Poster presented at the Botany 2006 conference at California State University at Chico, July 28–August 2, 2006, http://2006.botanyconference.org/engine/search/index.php?func=detail&aid=668.

Guest, Heidi. Systematic and phylogeographic implications of molecular variation in the western North American roseroot, Rhodiola integrifolia (Crassulaceae). Master’s thesis, University of Victoria (British Columbia), 2001, http://hdl.handle.net/1828/2812.

Guo, Yibing. Synthesis, biological activity of salidroside and its analogues. Chemical and Pharmaceutical Bulletin (Tokyo) 58, no. 12 (2010): 1627–29.

Gupta, A., et al. Effects of Rhodiola imbricata on dermal wound healing. Planta Medica 73, no. 8 (2007): 774–77.

Gupta, V., et al. Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C-H-R) exposure and post-stress recovery. Food and Chemical Toxicology 48, no. 4 (2010): 1019–25.

Gupta, V., et al. A dose dependent adaptogenic and safety evaluation of Rhodiola imbricata Edgew, a high altitude rhizome. Food and Chemical Toxicology 46, no. 5 (2008): 1645–52.

Gupta, V., et al. Mechanism of action of Rhodiola imbricata Edgew during exposure to cold, hypoxia and restraint (C-H-R) stress induced hypothermia and post stress recovery in rats. Food and Chemical Toxicology 47, no. 6 (2009): 1239–45.

Ha, Z., et al. The effect of rhodiola and acetazolamide on the sleep architecture and blood oxygen saturation in men living at high altitude. Zhonghua Jie He He Hu Xi Za Zhi 25, no. 9 (2002): 527–30.

Hellum, B. H., et al. Potent in vitro inhibition of CYP3A4 and P-glycoprotein by Rhodiola rosea. Planta Medica 76, no. 4 (2010): 331–38.

Huang, S. C., et al. Attenuation of long-term Rhodiola rosea supplementation on exhaustive swimming-evoked oxidative stress in the rat. Chinese Journal of Physiology 52, no. 5 (2009): 316–24.

Hung, S. K., et al. The effectiveness and efficacy of Rhodiola rosea L.: A systematic review of randomized clinical trials. Phytomedicine 18, no. 4 (2011): 235–44. Published electronically ahead of print October 30, 2010.

Ip, Siu-Po, et al. Association of free radicals and the tissue renin-angiotensin system: Prospective effects of Rhodiola, a genus of Chinese herb, on hypoxia-induced pancreatic injury. Journal of the Pancreas 2, no. 1 (2001): 16–25.

Jafari, M., et al. Rhodiola: A promising anti-aging Chinese herb. Rejuvenation Research 10, no. 4 (2007): 587–602.

Jang, S. L. Salidroside from Rhodiola sachalinensis protects neuronal PC12 cells against cytotoxicity induced by amyloid-beta. Immunopharmacology and Immunotoxicology 25, no. 3 (2003): 295–304.

Jeong, H. J., et al. Neuraminidase inhibitory activities of flavonoids isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic & Medicinal Chemistry 17, no. 19 (2009): 6816–23.

Kang, S., et al. Comparative study of the constituents from 10 Rhodiola plants. Zhong Yao Cai 20, no. 12 (1997): 616–18.

Kanupriya, et al. Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. Molecular and Cellular Biochemistry 275, no. 1–2 (2005): 1–6.

Kelly, G. S. Rhodiola rosea: A possible plant adaptogen. Alternative Medicine Review 6, no. 3 (2001): 293–302.

Khanum, F., et al. Rhodiola rosea: A versatile adaptogen. Comprehensive Reviews in Food Science and Food Safety 4 (2005): 55–62.

Kobayashi, K., et al. Constituents of Rhodiola rosea showing inhibitory effect on lipase activity in mouse plasma and alimentary canal. Planta Medica 74, no. 14 (2008): 1716–19.

Kormosh, N., et al. Effect of a combination of extract from several plants on cell-mediated and humoral immunity of patients with advanced ovarian cancer. Phytotherapy Research 20, no. 5 (2006): 424–25.

Kucinskaite, A., et al. Evaluation of biologically active compounds in roots and rhizomes of Rhodiola rosea L. cultivated in Lithuania. Medicina (Kaunas, Lithuania) 43, no. 6 (2007): 487–94.

Kucinskaite, A., et al. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina (Kaunas, Lithuania) 40, no. 7 (2004): 614–19.

Kwon, Y. I., et al. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition 15, no. 3 (2006): 425–32.

Laremiî, I. N., et al. Hepatoprotective properties of liquid extract of Rhodiola rosea. Eksperimental’naia i Klinicheskaia Farmakologiia 65, no. 6 (2002): 57–59.

Lee, F. T., et al. Chronic Rhodiola rosea extract supplementation enforces exhaustive swimming tolerance. American Journal of Chinese Medicine 37, no. 3 (2009): 557–72.

Lee, M. W., et al. Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Archives of Pharmacal Research 23, no. 5 (2000): 455–58.

Lei, Y., et al. Chemical composition of the essential oils of two Rhodiola species from Tibet. Zeitschrift für Naturforschung C 58, no. 3 (2003): 161–64.

Li, C., et al. Study on the extraction process for salidroside and p-tyrosol in Rhodiola crenulata. Zhong Yao Cai 29, no. 11 (2006): 1239–41.

Li, H. B., et al. Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase. European Journal of Pharmacology 588, no. 2–3 (2008): 165–69.

Li, H. X., et al. Production of Th1- and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. Journal of Ethnopharmacology 123, no. 2 (2009): 257–66.

Li, J., et al. Effect of rhodiola on expressions of Flt-1, KDR and Tie-2 in rats with ischemic myocardium. Zhongguo Zhong Xi Yi Jie He Za Zhi 25, no. 5 (2005): 445–48.

Li, T., et al. Identification and comparative determination of rhodionin in traditional Tibetan medicinal plants of fourteen Rhodiola species by high-performance liquid chromatography-photodiode array detection and electrospray ionization-mass spectrometry. Chemical and Pharmaceutical Bulletin (Tokyo) 56, no. 6 (2008): 807–14.

Li, T., et al. Pharmacological studies on the sedative and hypnotic effect of salidroside from the Chinese medicinal plant Rhodiola sachalinensis. Phytomedicine 14, no 9 (2007): 601–4.

Li, X., et al. Bioactive constituents from Chinese natural medicines. XXIX. Monoterpene and monoterpene glycosides from the roots of Rhodiola sachalinensis. Chemical and Pharmaceutical Bulletin (Tokyo) 56, no. 4 (2008): 612–15.

Liu, Q., et al. Phenolic components from Rhodiola dumulosa. Zhongguo Zhong Yao Za Zhi 33, no. 4 (2008): 411–13.

Lovieno, N., et al. Second-tier natural antidepressants: Review and critique. Journal of Affective Disorders 130, no. 3 (2011): 343–57. Published electronically ahead of print June 26, 2010.

Luo, D., et al. Studies on the chemical constituents from Rhodiola dumulosa (I). Zhong Yao Cai 28, no. 2 (2005): 98–99.

Ma, G., et al. Rhodiolosides A-E, monoterpene glycosides from Rhodiola rosea. Chemical and Pharmaceutical Bulletin (Tokyo) 54, no. 8 (2006): 1229–33.

Majewska, A., et al. Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells. Journal of Ethnopharmacology 103, no. 1 (2006): 43–52.

Maslov, L. N., et al. Antiarrhythmic activity of phytoadaptogens in short-term ischemia-reperfusion of the heart and postinfarcation cardiosclerosis. Bulletin of Experimental Biology and Medicine 147, no. 3 (2009): 331–34.

Maslova, L. V., et al. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksperimental’naia i Klinicheskaia Farmakologiia 57, no. 6 (1994): 61–63.

Mattioli, L., et al. Effects of Rhodiola rosea L. extract on behavioural and physiological alterations induced by chronic mild stress in female rats. Journal of Psychopharmacology 23, no. 2 (2009): 130–42. Abstract, online at http://jop.sagepub.com/content/23/2/130.abstract.

Mattioli, L., et al. Rhodiola rosea L. extract reduces stress- and CRF-induced anorexia in rats. Journal of Psychopharmacology 21, no. 7 (2007): 742–50.

Meng, L. Q., et al. Effection of observation Xinnaoxin capsules in treatment of chronic cerebral circulatory insufficiency. Zhongguo Zhong Yao Za Zhi 32, no. 17 (2007): 1798–800.

Ming, D. S., et al. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytotherapy Research 19, no. 9 (2005): 740–43.

Mishra, K. P., et al. Adjuvant effect of aqueous extract of Rhodiola imbricata rhizome on the immune responses to tetanus toxoid and ovalbumin in rats. Immunopharmacology and Immunotoxicology 32, no. 1 (2010): 141–46.

Mishra, K. P., et al. Aqueous extract of Rhodiola imbricata rhizome inhibits proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M phase. Immunobiology 213, no. 2 (2008): 125–31.

Mishra, K. P., et al. Aqueous extract of Rhodiola imbricata rhizome stimulates proinflammatory mediators via phosphorylated IkappaB and transcription factor nuclear factor-kappaB. Immunopharmacology and Immunotoxicology 28, no. 2 (2006): 201–12.

Mishra, K. P., et al. Aqueous extract of Rhodiola imbricata rhizome stimulates Toll-like receptor 4, granzyme-B and Th1 cytokines in vitro. Immunobiology 214, no. 1 (2009): 27–31.

Mook-Jung, I., et al. Neuroprotective effects of constituents of the Oriental crude drugs, Rhodiola sacra, R. sachalinensis and tokaku-joki-to, against beta-amyloid toxicity, oxidative stress and apoptosis. Biological & Pharmaceutical Bulletin 25, no. 8 (2002): 1101–4.

Moran, R. V. Rhodiola integrifolia. In Flora of North America 8, ed. Flora of North America Steering Committee, 164–66. New York and Oxford, 2009. www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=250092043.

Morgan, M., and K. Bone. Rhodiola rosea—Rhodiola. MediHerb Newsletter 47 (2005): 1-4.

Nakamura, S., et al. Bioactive constituents from Chinese natural medicines. XXXVI. Chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis. Chemical and Pharmaceutical Bulletin (Tokyo) 55, no. 10 (2007): 1505–11.

Nakamura, S., et al. Bioactive constituents from Chinese natural medicines. XXXVIII. Chemical structures of acyclic glycosides from the roots of Rhodiola crenulata. Chemical and Pharmaceutical Bulletin (Tokyo) 56, no. 4 (2008): 536–40.

Narimanian, M., et al. Impact of Chisan (ADAPT-232) on the quality-of-life and its efficacy as an adjuvant in the treatment of acute non-specific pneumonia. Phytomedicine 12, no. 10 (2005): 723–29.

Olsson, E. M., et al. A randomized, double-blind, placebo-controlled, parallel-group study of the standardized extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Medica 75, no. 2 (2009): 105–12.

Pae, H. O., et al. Rhodiola sachalinesis induces the expression of inducible nitric oxide synthase gene by murine fetal hepatocytes (BNL CL.2). Immunopharmacology and Immunotoxicology 23, no. 1 (2001): 25–33.

Panossian, A., et al. Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomedicine 15, no. 1–2 (2008): 84–91.

Panossian, A., et al. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Current Clinical Pharmacology 4, no. 3 (2009): 198–219.

Panossian, A., et al. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17, no. 7 (2010): 481–93.

Parisi, A., et al. Effects of chronic Rhodiola rosea supplementation on sport performance and antioxidant capacity in trained male: Preliminary results. Journal of Sports Medicine and Physical Fitness 50, no. 1 (2010): 57–63.

Pashkevich, I. A., et al. Comparative evaluation of effects of p-tyrosol and Rhodiola rosea extract on bone marrow cells in vivo. Eksperimental’naia i Klinicheskaia Farmakologiia 66, no. 4 (2003): 50–52.

Peng, J. N., et al. Chemical constituents of Rhodiola kirilowii (Regel) Regel. Zhongguo Zhong Yao Za Zhi 19, no. 11 (1994): 676–77, 702.

Peng, J. N., et al. Studies on the chemical constituents of Rhodiola fastigita. Yao Xue Xue Bao 31, no. 10 (1996): 798–800.

Pererva, T. P., et al. Interaction of Ungernia victoris, Rhodiola rosea and Polyscias filicifolia plant extracts with bacterial cells. Tsitologiia i Genetika 44, no. 4 (2010): 34–40.

Perfumi, M., et al. Adaptogenic and central nervous sytem effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytotherapy Research 21, no. 1 (2007): 37–43.

Pickut, W. The uses of the Rhodiola integrifolia herb. LIVESTRONG.com, July 13, 2010, www.livestrong.com/article/173782-the-uses-of-the-rhodiola-integrifolia-herb/.

Platikanov, S., et al. Introduction of wild golden root (Rhodiola rosea L.) as a potential economic crop in Bulgaria. Economic Botany 20, no. 10 (2008): 1–7.

Pooja, et al. Anti-inflammatory activity of Rhodiola rosea — “a second-generation adaptogen.” Phytotherapy Research 23, no. 8 (2009): 1099–102.

Qin, Y. J., et al. Effects of Rhodiola rosea on level of 5-hydroxytryptamine, cell proliferation and differentiation, and number of neuron in cerebral hippocampus of rats with depression induced by chronic mild stress. Zhongguo Zhong Yao Za Zhi 33, no. 23 (2008): 2842–46.

Qu, Z. Q., et al. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implications of anti-oxidative and neuroprotective effects. Biomedical and Environmental Sciences 22, no. 4 (2009): 318–26.

Rohloff, J., et al. Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry 59, no. 6 (2002): 655–61.

Ruan, X., et al. Analysis on the trace element and amino acid content in xinjiang 6 series Rhodiola L. plant. Guang Pu Xue Yu Guang Pu Fen Xi 21, no. 4 (2001): 542–44.

Schittko, U., et al. Rhodiola integrifolia: Hybrid origin and medicinal ancestry. Proceedings of the North Dakota Academy of Science, April 1, 2008.

Schriner, S. E., et al. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea. Free Radical Research 43, no. 9 (2009): 836–43.

Schriner, S. E., et al. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic Biology & Medicine 47, no. 5 (2009): 577–84.

Schutgens, F. W., et al. The influence of adaptogens on ultraweak biophoton emission: A pilot-experiment. Phytotherapy Research 23, no. 8 (2009): 1103–8.

Seikou, N., et al. Bioactive constituents from Chinese natural medicines. XXVI. Chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis. Chemical and Pharmaceutical Bulletin (Tokyo) 55, no. 10 (2007): 1505–11.

Seo, W. G., et al. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. Journal of Ethnopharmacology 76, no. 1 (2001): 119–23.

Shen, W., et al. Effects of rhodiola on expression of vascular endothelial cell growth factor and angiogenesis in aortic atherosclerotic plaque of rabbits. Zhongguo Zhong XI Yi Jie He Za Zhi 28, no. 11 (2008): 1022–25.

Shevtsov, V. A., et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine 19, no. 2–3 (2003): 95–105.

Shi, C. D., et al. Automatic nervous system mediates the cardiovascular effects of Rhodiola sacra radix in rats. Journal of Ethnopharmacology 119, no. 2 (2008): 284–90.

Shim, C., et al. Isolation and identification of antimicrobial active substances for Rhodiola sachlinensis. Korean Journal of Food Preservation 11, no. 1 (2004): 63–70.

Skopinska-Rózewska, E., et al. The effect of Rhodiola quadrifida extracts on cellular immunity in mice and rats. Polish Journal of Veterinary Sciences 11, no. 2 (2008): 105–11.

Skopinska-Rózewska, E., et al. The influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in mice. Polish Journal of Veterinary Sciences 11, no. 2 (2008): 97–104.

Smith, H. I. Materia medica of the Bella Coola and neighboring tribes of British Columbia. In Annual Report for 1927, bulletin no. 56 of the Canada Department of Mines National Museum of Canada Bulletin, 47–68. Ottawa: F. A. Acland, 1929. Reproduced online at http://wolf.mind.net/swsbm/Ethnobotany/Bella_Coola_Materia_Medica.pdf.

Spasov, A. A., et al. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 7, no. 2 (2000): 85–89.

Spasov, A. A., et al. The effect of the preparation rodakson on the psychophysiological and physical adaptation of students to an academic load. Eksperimental’naia i Klinicheskaia Farmakologiia 63, no. 1 (2000): 76–78.

Tan, C. B., et al. Protective effect of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32, no. 8 (2009): 1359–63.

Tolonen, A., et al. Phenylpropanoid glycosides from Rhodiola rosea. Chemical and Pharmaceutical Bulletin (Tokyo) 51, no. 4 (2003): 467–70.

Tu, Y., et al. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. Journal of Medicinal Food 11, no. 3 (2008): 413–23.

van Diermen, D., et al. Monoamine oxidase inhibition by Rhodiola rosea L. roots. Journal of Ethnopharmacology 122, no. 2 (2009): 397–401.

Walker, T. B., et al. Does Rhodiola rosea possess ergogenic properties? International Journal of Sport Nutrition and Exercise Metabolism 16, no. 3 (2006): 305–15.

Wang, H., et al. The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against Coxsackievirus B3. Phytomedicine 16, no. 2–3 (2009): 146–55.

Wang, Q., et al. Salidroside protects the hypothalamic-pituitary-gonad axis of male rats undergoing negative psychological stress in experimental navigation and intensive exercise. Zhongua Nan Ke Xue 15, no. 4 (2009): 331–36.

Wiedenfeld, H., et al. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida. Pharmazie 62, no. 4 (2007): 308–11.

Wójcik, R., et al. The effect of Chinese medicinal herb Rhodiola kirilowii extracts on cellular immunity in mice and rats. Polish Journal of Veterinary Sciences 12, no. 3 (2009): 399–405.

Wong, Y. C., et al. Chemical constituents and anti-tuberculosis activity of root of Rhodiola kirilowii. Zhongguo Zhong Yao Za Zhi 33, no. 13 (2008): 1561–65.

Wu, T., et al. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. European Journal of Pharmacology 613, no. 1–3 (2009): 93–99.

Wu, Y. L., et al. Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. Journal of Pharmacy and Pharmacology 61, no. 10 (2009): 1375–82.

Xu, K. J., et al. Preventive and treatment effect of composite Rhodiolae on acute lung injury in patients with severe pulmonary hypertension during extracorporeal circulation. Zhongguo Zhong Xi Yi Jie He Za Zhi 23, no. 9 (2003): 648–50.

Yan, X., et al. Seasonal variations in biomass and salidroside content in roots of Rhodiola sachalinensis as affected by gauze and red film shading. Ying Yong Sheng Tai Xue Bao 15, no. 3 (2004): 382–86.

Yang, Y., et al. Lignans from the root of Rhodiola crenulata. Journal of Agricultural and Food Chemistry 60, no. 4 (2012): 964–72.

Yoshikawa, M., et al. Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and antiallergic activity of rhodiocyanosides A and B from the underground part of Rhodiola quadrifida (Pall.) Fisch. et May. (Crassulaceae). Chemical and Pharmaceutical Bulletin (Tokyo) 44, no. 11 (1996): 2086–91.

Yoshikawa, M., et al. Bioactive constituents of Chinese natural medicines. IV. Rhodiolae radix. (2). On the histamine release inhibitors from the underground part of Rhodiola sacra (Prain ex Hamet) S. H. Fu (Crassulaceae): Chemical structures of rhodiocyanoside D and sacranosides A and B. Chemical and Pharmaceutical Bulletin (Tokyo) 45, no. 9 (1997): 1498–503.

Yoshikawa, M., et al. Rhodiocyanosides A and B, new antiallergic cyanoglycosides from Chinese natural medicine “si lie hong jing tain,” the underground part of Rhodiola quadrifida (Pall.) Fisch. et Mey. Chemical and Pharmaceutical Bulletin (Tokyo) 43, no. 7 (1995): 1245–47.

Yousef, G. G., et al. Comparative phytochemical characterization of three Rhodiola species. Phytochemistry 67 (2006): 2380–91.

Yu, S., et al. Involvement of ERK12 pathway in neuroprotection by salidroside against hydrogen peroxide-induced apoptotic cell death. Journal of Molecular Neuroscience 40, no. 3 (2010): 321–31.

Yu, S., et al. Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cellular and Molecular Neurobiology 28, no. 8 (2008): 1067–78.

Zhang, J., et al. Salidroside protects cardiomyocyte against hypoxia-induced death: A HIF-1alpha-activated and VEGF-mediated pathway. European Journal of Pharmacology 607, no. 1–3 (2009): 6–14.

Zhang, L., et al. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochemistry International 57, no. 5 (2010): 547–55.

Zhang, L., et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. European Journal of Pharmacology 564, no. 1–3 (2007): 18–25.

Zhang, S., et al. Early use of Chinese drug rhodiola compound for patients with post-trauma amd inflammation in prevention of ALI/ARDS. Zhonghua Wai Ke Za Zhi 37, no. 4 (1999): 238–40.

Zhang, S., et al. Extraction of flavonoids from Rhodiola sachalinesis A. Bor by UPE and the antioxidant activity of its extract. Natural Product Research 22, no. 2 (2008): 178–87.

Zhang, W. S., et al. Protective effects of salidroside on injury induced by hypoxia/hypoglycemia in cultured neurons. Zhongguo Zhong Yao Za Zhi 29, no. 5 (2004): 459–62.

Zhang, Z., et al. The effect of Rhodiola capsules on oxygen consumption of myocardium and coronary artery blood flow in dogs. Zhongguo Zhong Yao Za Zhi 23, no. 2 (1998): 104–6.

Zhao, H. W., et al. Rhodiola sacra aqueous extract (RSAE) improves biochemical and sperm characteristics in cryopreserved boar semen. Theriogenology 71, no. 5 (2009): 849–57.

Zhou, X., et al. Rhodiola sachalinensis suppresses T241 fibrosarcoma tumor cells proliferation in vitro and growth in vivo. Zhong Yao Cai 31, no. 9 (2008): 1377–80.

Zhou, X., et al. Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biological & Pharmaceutical Bulletin 30, no. 3 (2007): 439–42.

Zhu, B. W., et al. Reduction of noise-stress-induced physiological damage by radices of Astragali and Rhodiolae: Glycogen, lactic acid and cholesterol contents in liver of the rat. Bioscience, Biotechnology, and Biochemistry 67, no. 9 (2003): 1930–36.

Zhu, B. W., et al. Resistance imparted by traditional Chinese medicines to the acute change of glutamic pyruvic transaminase, alkaline phosphatase and creatine kinase activities in rat blood caused by noise. Bioscience, Biotechnology, and Biochemistry 68, no. 5 (2004): 1160–63.

Zhu, L., et al. Prevention of rhodiola-astragalus membranaceus compounds against simulated plateau hypoxia brain injury in rat. Space Medicine and Medical Engineering (Beijing) 18, no. 4 (2005): 303–5.

Zhuravlev, Y. N., et al. Medicinal plants of the Kurile Islands. Botanical News from the Russian Far East 2 (2005): 1–2.

Zubeldia, J. M., et al. Exploring new applications for Rhodiola rosea: Can we improve the quality of life of patients with short-term hypothyroidism induced by hormone withdrawal? Journal of Medicinal Food 13, no. 6 (2010): 1287–92.

Zuo, G., et al. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Research 76, no. 1 (2007): 86–92.

Index