Today, the internet needs no introduction. Certainly, millions of desktops, laptops, routers, and servers are connected to the internet and have been for decades. However, billions of additional devices are now connected as well—mobile phones, tablets, gaming systems, vehicles, refrigerators, television sets, industrial machinery, surveillance systems, doorbells, and even light bulbs. The new Internet of Things (IoT) trend has people rushing to connect even more unlikely devices every day.
Over 20 billion devices are estimated to be connected to the internet now. These devices use a wide variety of hardware. They connect over an Ethernet connection, Wi-Fi, cellular, a phone line, fiber optics, and other media, but they likely have one thing in common; they likely use C.
The use of the C programming language is ubiquitous. Almost every network stack is programmed in C. This is true for Windows, Linux, and macOS. If your mobile phone uses Android or iOS, then even though the apps for these were programmed in a different language (Java and Objective C), the kernel and networking code was written in C. It is very likely that the network routers that your internet data goes through are programmed in C. Even if the user interface and higher-level functions of your modem or router are programmed in another language, the networking drivers are still probably implemented in C.
Networking encompasses concerns at many different abstraction levels. The concerns your web browser has with formatting a web page are much different than the concerns your router has with forwarding network packets. For this reason, it is useful to have a theoretical model that helps us to understand communications at these different levels of abstraction. Let's look at these models now.