1948

The Bit

Claude E. Shannon (1916–2001), John W. Tukey (1915–2000)

It was the German mathematician Gottfried Wilhelm Leibniz (1646–1716) who first established the rules for performing arithmetic with binary numbers. Nearly 250 years later, Claude E. Shannon realized that a binary digit—a 0 or a 1—was the fundamental, indivisible unit of information.

Shannon earned his PhD from MIT in 1940 and then took a position at the Institute for Advanced Study in Princeton, New Jersey, where he met and collaborated with the institute’s leading mathematicians working at the intersection of computing, cryptography, and nuclear weapons, including John von Neumann, Albert Einstein, Kurt Gödel, and, for two months, Alan Turing.

In 1948, Shannon published “A Mathematical Theory of Communication” in the Bell System Technical Journal. The article was inspired in part by classified work that Shannon had done on cryptography during the war. In it, he created a mathematical definition of a generalized communications system, consisting of a message to be sent, a transmitter to convert the message into a signal, a channel through which the signal is sent, a receiver, and a destination, such as a person or a machine “for whom the message is intended.”

Shannon’s paper introduced the word bit, a binary digit, as the basic unit of information. While Shannon attributed the word to American statistician John W. Tukey, and the word had been used previously by other computing pioneers, Shannon provided a mathematical definition of a bit: rather than just a 1 or a 0, it is information that allows the receiver to limit possible decisions in the face of uncertainty. One of the implications of Shannon’s work is that every communications channel has a theoretical upper bound—a maximum number of bits that it can carry per second. As such, Shannon’s theory has been used to analyze practically every communications system ever developed—from handheld radios to satellite communications—as well as data-compression systems and even the stock market.

Shannon’s work illuminates a relationship between information and entropy, thus establishing a connection between computation and physics. Indeed, noted physicist Stephen Hawking framed much of his analysis of black holes in terms of the ability to destroy information and the problems created as a result.

SEE ALSO Vernam Cipher (1917), Error-Correcting Codes (1950)

Mathematician and computer scientist Claude E. Shannon.