T he spring mud sucked at the hooves of the horses trotting along Lake Street as a shrill whistle pierced the morning air. The sound came from deep within the foundations of the buildings that lined one side of the street. Carriages slowed to watch as a man with a trim goatee and thick black hair combed straight back paced in front of the imposing stone and brick facade of Chicago’s Marine Bank, examining it with the voracious eyes of a twenty-eight-year-old entrepreneur. Eight large brick buildings, including some of the city’s finest stores, stretched off to his right. Across the street a crowd had gathered to watch. Satisfied that everything was ready, George Pullman put his whistle to his lips and blew.
In the damp world hidden beneath the buildings, six hundred men scurried into action. Following Pullman’s elaborate choreography, each man moved among his ten assigned jackscrews, pausing to give each one a quarter turn. Massive wooden support beams groaned and creaked as the jacks dug into their grain. Above them the ornate stone and brick buildings inched their way into the sky. When all six thousand jackscrews had been turned, each man returned to his assigned position and waited for the next pair of whistles. On the street level, bankers managed Chicago’s money and the city’s elite continued to shop unperturbed while above them printers, bookbinders, cobblers, and apothecaries went about their business knowing only that they would have a longer step to the street at the end of the day. In a masterful effort, the house mover from Albion, New York, would succeed in lifting a third of a city block five feet in the air, a tenth of an inch at a time. But Pullman had not come all the way from New York just to raise a few buildings. He had come to help raise an entire city.
The year was 1860. Chicago had just lost six percent of its population to typhoid, cholera, and dysentery. In response the city hired Ellis Sylvester Chesbrough, who had designed Boston’s water distribution system. His assignment was not to design a water supply but, in the spirit of Chadwick and the sanitarians, to design a sewer. After arriving in Chicago and studying the lay of the land, Chesbrough immediately realized that he had been asked to plan a sewer for a swamp. If he dug under the streets and built sewers with enough slope to reach the river, they would enter the river well below its surface and, when the river was high, sewage would fill the basements of Chicago.
Chesbrough had a remarkable knack for bold innovation. After his father’s business failure forced him out of school at the age of nine, he took whatever work he could find, but the job that defined his career was his work for a railroad contractor. There, in a time when such a thing was possible, he became an engineer with nothing more than an elementary-school education and job experience. His real-world education had bred in him an understanding of solutions that worked. With years of experience building railroads, he had no fear of massive engineering projects. So when he was faced with the prospect of building a sewer in a city that defied its proper construction, he came up with a radical plan. He would design and build sewers that worked and then reshape the city to fit the sewers.
In 1855 he began to lay pipes down the center of Chicago’s streets, not by burying them, but by setting them on the surface. Using mud dredged from the Chicago River, he then built the streets up until they were higher than the pipes. This gave building owners a stark choice. They could either hire Pullman or a similarly specialized contractor to raise their buildings four to ten feet in the air or carve entrances into their second floors and watch as their first floors became basements. With the city redefined to meet Chesbrough’s specifications, Chicago’s sewage began to flow into the river.
For Pullman raising Chicago was just a prelude to a career that would earn him a vast fortune in the luxury railcar business and infamy as a ruthless manipulator of workers. Chesbrough and Chicago were also just getting started. The city’s remarkable self-levitation helped clean the city, but Chesbrough’s solution became his challenge. The intake for Chicago’s water supply was six hundred feet out in Lake Michigan at a point about one mile from the mouth of the Chicago River. So the more efficiently Chesbrough drained the streets, the more efficiently the flow from the river contaminated the city’s drinking water. A mile, it soon turned out, was not far enough. Again and again, cholera and typhoid rode out into the lake from the Chicago River, crawled back through the city’s water pipes, found new victims, and slithered back through the sewers into the river to complete their circle of death.
Chesbrough recognized from the start that this could be a problem, but when he was hired, drinking water was not in his job description. That was the province of a separate agency. But after he had succeeded in draining the city, Chesbrough was given control of Chicago’s water supply and charged with the task of providing clean water to the city. One can wonder whether this was a promotion or punishment, but in either case he once again hatched a bold plan.
In the winter of 1866, a team of Irish laborers huddled together as icy water splashed over the bow of their boat nearly two miles out in Lake Michigan. Below the deck a pair of mules struggled to maintain their footing in the rolling seas. Ahead, the men could see waves crashing against an immense stone pentagon, ninety feet across and topped by a forty-foot-tall lighthouse. Above the lighthouse an American flag flapped in the stiff breeze. They sailed up to one side of the man-made island, disembarked, and entered to begin their workday, completing what must stand as the most unique commute in Chicago history.
Inside the immense structure, a winch lowered two of the men and a mule down a narrow steel shaft that passed through thirty feet of lake water and then another forty feet into the lake bed to a brick-lined tunnel. The two men crawled out of the elevator and hunched slightly as they led the mule down the tunnel. They trudged over a quarter of a mile into the darkness, the light of their lanterns swaying with each step. The tunnel ended abruptly at a wall of dense, blue clay. The two men stopped and began to dig. Working in shifts for four dollars a day, the team would fill carts of clay, haul them out of the tunnel with the mule, and send them up on the elevator. After sixteen hours a team of bricklayers would take their place and spend the next eight hours lining the freshly dug tunnel.
At the same time, another elevator on the north side of Chicago carried a team of men to a similar tunnel seventy feet below the shoreline of Lake Michigan where they began to dig in the opposite direction. According to Chesbrough’s plan, both teams would dig until they met in the middle. When the last brick was in place, valves would open within the stone pentagon filling the tunnel with the cold, fresh, and, hopefully, clean water. Steam-powered pumps would pull the water to shore. But first they had to make sure the two blind tunnels would meet.
Chesbrough’s experience in the railroad tunnels of the East proved critical. With no way to tell direction underground, the laborers dug like moles. Engineers and surveyors made constant measurement, nudging the workers left, right, up, and down toward a spot on blueprint. An error of less than a tenth of a degree would send the two teams burrowing past each other. After almost two years of digging, they broke through the clay and the tunnels met. The planners missed by less than half a foot. The trivial error brought great relief to Chesbrough and his staff who had worried that the two tunnels might not meet at all.
Two weeks later a mule left the shore of Lake Michigan pulling a train of six cars laden not with clay, but with dignitaries (three men to a car) as two men pushed from behind. In eerie silence they creaked through the tunnel, staring at the parade of passing bricks in the dim flicker of their kerosene lanterns for almost half an hour. They stopped at a six-inch jog in the tunnel, which marked the spot where workers had met a few weeks earlier. In short order a similar train arrived after traveling east from the crib. There, in the surreal hollow of the tunnel, the men bent down to watch the mayor of Chicago lay the final brick in the tunnel and to listen as the echoes of his mercifully brief commemorative speech scurried off into the endless darkness.
A grander celebration of Chesbrough’s success and a fuller measure of the public thirst for better water would come several months later as cheering crowds gathered to watch finely dressed regiments from the Chicago police, the Ellsworth Zoaves, the Masons, the Knights Templar, and the Dearborn Artillery (complete with horse-drawn brass cannons) march up Clark Street. With the memories of the Chicago Fire still fresh, the link between fire and water was powerful. In the heart of the parade, sixteen teams of powerful horses pulled fire trucks with names like “Liberty,” “Economy,” and “A. D. Titsworth,” all belching steam into an icy March wind.
Halfway to its destination, chaos threatened to consume the parade. At the very spot where Pullman had raised the Marine Bank seven years earlier, a gridlock of wagons, carriages, snorting horses, and angry drivers blocked the parade. High spirits spiraled into nineteenth-century road rage, but a path was cleared and the marchers continued on to the newly constructed water tower.
Water had just begun to flow into the city and every petty bureaucrat who had ever signed a purchase order for a trowel was on hand to receive his due. As cannons fired, city officials droned on through a program that seemed to give every one of those officials, in order of ascending importance, his moment on the podium. Following the mayor’s requisite speech, the crowd demanded to hear from Chesbrough. He rose only to acknowledge the graciousness of the mayor and the providence of the deity. The modest Mr. Chesbrough who had just engineered the longest underwater tunnel ever built had no speech prepared.
Chesbrough may have understood better than his audience that safe water is not an end, but a process, an ongoing struggle in which improvement is always possible and usually necessary. Purity, as it turns out, is fleeting.
At the same time that the unfortunate immigrant laborers were mining mud beneath Lake Michigan to build Chesbrough’s tunnel, America’s railroad barons were spinning a web of tracks across the newly settled west. The port of Chicago, at the center of the web, boomed. It would soon be the busiest port in the United States, serving more ships than New York, San Francisco, New Orleans, Boston, Baltimore, and Philadelphia combined. Manufacturing burgeoned. The population exploded. With each new production line and each immigrant to the city, demand for water grew and production of sewage grew in lockstep. To complicate matters further, a new sort of immigrant had begun arriving in Chicago in numbers never before imagined.
On December 26, 1865, a Burlington train pulled up to unload the first occupants for a vast new complex of buildings that sprawled across the prairie five miles south of Chicago. They clattered out across a wooden road, one of the finest in the city, exhaling clouds into the Midwestern winter. Another train followed, then another, then another. Before the next Christmas, a million and a half cattle, pigs, and sheep had arrived on similar trains to meet their fate in Chicago. By 1870 the annual influx had risen to 3 million and by 1900, 82 percent of the meat in America came from the jungle of meatpackers that grew up around the yards.
This vast city of animals brought with it many of the same problems as the human city to its north including the sewage that poured from the Union Stockyards into the South Fork of the Chicago River. That small tributary became the recipient of all things undesirable from the stockyard and its environs. At times the dried crust of sewage on the river’s surface was thick enough to support a man’s weight. Before long the bubbles of gas that rose from the fermenting accumulation of animal manure, carcasses, and human waste on the river’s bottom gave it a new name. The South Fork of the Chicago River would henceforth be known as Bubbly Creek.
The stage had been set for the next waterborne disaster. It was only a matter of time and weather. As Chicago grew the vile waters of Bubbly Creek and the city’s sewage reached out farther and farther into the lake until they began to choke Chicago’s water supply. In 1873, with water levels low, cholera struck again, but other diseases had already begun to pose a greater threat. Cholera came occasionally and did not stay long. Improvements in Europe’s sanitation and water supply were reducing its chances of crossing the Atlantic. But dysentery and typhoid fever could linger through the winter. These diseases became endemic. They came and stayed. And killed.
By 1891 Chicago had a rate of typhoid higher than any major city in Europe or North America. Afraid that the city’s reputation as a center for endemic typhoid would scare away visitors, the organizers of the Columbian Exposition in 1893 laid a hundred-mile-long pipeline to bring in spring water from rural Wisconsin and installed a plant to distill any city water used on the fairgrounds.
Something had to be done. Chesbrough was gone, but the city fathers hatched a plan worthy of his legacy. Chicago saved its grandest, most audacious trick for last. When this project, at that time the largest civil engineering project ever undertaken, reached completion no dignitaries spoke, no bands played, and no cannons fired. Instead, at the last moment, a select few received hushed invitations to a christening held under the cloak of secrecy and darkness.
In the dim predawn of January 2, 1900, B. A. Ekhart stopped his carriage at the intersection of Kedzie and 35th Street and jumped out into the bitter cold with seven shovels, dropping them on the frozen mud face of a dam. One side of the dam formed part of the bank of the Chicago River. On the other side of the dam, the most remarkable of all the water projects in Chicago’s history was almost ready.
The six other trustees of the Sanitary District soon joined Ekhart and the seven men rushed down the dam with their shovels. After scraping up a few token spades of frozen ground, they turned the task over to Dredge No. 7. The air throbbed with sounds of the powerful steam engine as the massive shovel began to claw through the dam. Eight feet from its goal, the dredge stopped, unable to reach the remaining wall of frozen clay and ice that blocked the path between the river and the Chicago Ship and Sanitary Canal.
The secretive opening ceremony stretched on for anxious hours. When four large charges of dynamite failed to breach the dam, the trustees grabbed their shovels and tried to finish the job by hand. When that failed they set fire to the wooden structures on the dam in hope of melting it open. In the end, workers managed to reposition Dredge No. 7 and the teeth of its huge bucket scratched through the final frozen jumble of ice and earth. Water began to seep into the canal. It would take more than a week for the canal to fill.
Once the vast canal that lay hidden on the far side of the dam was in operation, it would radically redefine the watershed for Chicago, its rivers, and Lake Michigan. The idea had first occurred to the French explorer Louis Joliet soon after he became the first white man to see the region in 1674. He recognized that a barely discernable ridge just ten miles west of Chicago separated two of the most important watersheds in North America. On the east side, all water flowed toward Lake Michigan and ultimately the St. Lawrence River. On the other side, all water flowed west toward the Mississippi. Joliet imagined a canal cut through the ridge that would allow him to travel from Chicago to the Gulf of Mexico. The idea was simple, but 325 years would pass before the convergence of knowledge, ambition, technology, money, and necessity brought it to full fruition.
There had been several efforts to create a canal, but the resulting waterways were small, shallow, and ultimately inadequate. The project that was to be completed at the opening of the new century had no such failings. The Chicago Ship and Sanitary Canal was longer and wider than the Suez. It would redefine the course that the Chicago River had followed since the last ice age, moving it into an entirely new watershed. In an instant the river would begin to flow backward. The lake, which had been fed by water from the river, would now pour water into the river, taking with it the sewage of Chicago and carrying it into the Illinois River, across the state to St. Louis, and down the Mississippi to New Orleans.
The canal would be a great boon for Chicago, not only providing a permanent separation of its sewage and drinking water, but also making the city the connecting point between two great watersheds. Cities on the Illinois such as Joliet, Peoria, and St. Louis would have access to the canal, but they would also find themselves suddenly downstream from Chicago and on the receiving end of its raw sewage. Given that Chicago had recently recorded the highest rate of typhoid fever in the country, these cities were less than delighted at the trade-off. Fears that this displeasure might inspire lawsuits motivated the trustees to embark on their furtive midnight opening of the canal.
But even after they breached the dam, the canal’s future was uncertain. Unless the city received clearance to open the gates at the far end of the canal in Lockport, they would have nothing more than the world’s largest, most expensive, and most polluted swimming pool. As the canal slowly filled, the future recipients of Chicago’s feces rushed to the courthouse. But which courthouse? Missouri courts had no jurisdiction over a canal entirely within the boundaries of Illinois. There was no hope that the courts of Illinois would help them stop the canal. The power brokers from the city of big shoulders could manipulate the Illinois legislature and legal system to their own ends. In a case without precedent, St. Louis could only turn to Washington for help. The trustees of the Chicago Sanitary Commission had no intention of letting that effort succeed.
So just after midnight on January 17, as the attorney general for the state of Missouri sped by train toward Washington to seek an injunction from the U.S. Supreme Court, the trustees of the Sanitary District of Chicago slinked onto a train to Lockport. Once again they hoped that the cover of darkness would shield them from the opposition. In the midst of a midwestern winter night, with the canal full, they opened the gates and Chicago’s wastewater seeped into the Illinois River on its way to the Mississippi. They hoped that it would be far harder to stop the canal once it was in operation.
The legal battle would roll on for decades and would spark an international confrontation with Canada as water levels throughout the Great Lakes dropped almost half a foot, but the gates remained open. Chicago got its canal and with it a clean source of water for years to come. Typhoid, which had killed almost 2,000 people in Chicago in 1891 (far more than the Great Chicago Fire), killed only 322 in 1908 despite a doubling in population. Ultimately Chicago would treat its sewage and would build the largest water treatment plant in the world, but Chicago owes much of its success as a large city to a two-mile-long tunnel in blue mud and a river that runs backward.
Sitting on the largest contiguous body of liquid fresh water in the world, Chicago and other cities on the Great Lakes had alternatives unavailable to most other cities. Few cities could simply stretch intake tunnels miles out into a relatively pure natural body of water and perhaps no other city in the world could exercise such complete control of the sources of contamination that threatened its water.
Far more common was the situation faced by cities like Philadelphia, Washington, D.C., St. Louis, and New Orleans. Drinking from the America’s great rivers, these cities inherited sewage from growing populations upstream. Major European cities on the banks of the Rhine, the Seine, the Danube, and the other grand rivers of the Old World had long faced this challenge and most had long since built filtration plants. On the heels of Robert Koch’s discoveries and the epidemic in Hamburg, those cities that didn’t filter were rushing to do so and many of those that already had filtration plants were improving them.
As American water supplies grew turbid and the consequences of that pollution grew apparent, many cities chose to follow the lead of the Europeans and install huge water filtration plants. Others, however, took a new course. Unlike Chicago, these cities did not have a vast lake of fresh water at their door. Undeterred, they chose to build their own.
The first Europeans in America had found a country laced with pure rivers and streams. Even as the twentieth century approached, that pristine wilderness still existed in the minds of urban Americans. It seemed that if one turned from the city and walked far enough into the forest, one could always find another mountain stream. By 1900 Boston and New York had already undertaken vast engineering projects to build rural reservoirs and pipe the pure water to their burgeoning populations. Other cities made their own plans to redesign watersheds to suit their needs. Most of these projects were steeped in controversy, power politics, and financial sleight of hand. The same powerful thirst that had Chicago digging under lakes and reconfiguring watersheds unleashed powerful, irresistible forces in the search for water. The huge projects that followed rolled over towns and left thousands of workers injured, maimed, or killed in the name of progress. But it was a reservoir in New Jersey that forever redefined the treatment of drinking water.
Bill Hoar pulled a wool hat over his thick red hair, lifted the fifty-pound diving helmet, and lowered it onto his head as if it were little more than a derby hat. His assistant, John Dobson, reached up like an attentive grandfather to tighten the twelve bolts that held the helmet onto Hoar’s rubberized canvas suit. The cool spring sky spit rain as their raft bobbed on the water of the Jersey City Reservoir. Hoar was about to climb down into the water when Dobson grabbed him by the shoulders and stared through the glass faceplate.
“You’d better be careful, Bill,” he warned, shouting so he could be heard through the brass helmet, “this ain’t no jowk.” (Dobson had somehow picked up a cockney accent on the streets around New York’s Fulton Street Market, where he had been born and raised.) In 1904 any dive was dangerous. Dobson had assisted Hoar on hundreds of them, but something about this one worried him. He could see Hoar laughing at him through the glass of his helmet as the hulking Swede sank into the silence of the steel gray water.
The joke in Hoar’s mind as he descended may have been the failed schemes of the dam’s contractor, failures that now brought the two men from New York to the reservoir for the second time. Those problems began when, with the reservoir half full, a valve controlling one of the dam’s sluiceways jammed. Like two giant drains on either end of the dam, the sluiceways allowed the dam operator to control the level of the reservoir as if it were an immense bathtub. Buried deep inside the dam, the gate valve should have allowed him to control flow through the four-foot pipe. Once it jammed, the operator had no way to stop the cataract that screamed through the dam and rushed out its far side in an angry torrent.
The reservoir was leaking, but the surging water in the pipe made it impossible to repair the gate. The contractor could have simply drained the reservoir, but that could take a week or more, and filling it would take two more weeks. The project was already almost two years overdue and every day of delay was costing him a hundred dollars, over two thousand dollars in today’s money.
To avoid further expense, the contractor had designed an enormous two-and-a-half-ton wooden ball to solve the problem. He had to go 140 miles to Troy, New York, just to find someone who could machine a ball five feet in diameter and fill it with lead. He planned to lower the ball onto the pipe like an enormous bathtub plug that would shut off the water. With the pipe empty, a mechanic could easily climb into the sluiceway and fix the gate. But in the damp chill of early April, nothing was going according to plan.
A train had delivered the massive plug just before Easter. The following Monday morning, a steam-powered crane lifted it and swung it out over the water. As the crane began to lower the ball into place, the harness snapped. With a single explosive splash, the reservoir swallowed the plug. It plummeted to the bottom and dug into the mud of what had been, just two weeks before, a farmer’s field.
Hoar and Dobson had made their first trip to the reservoir to rescue the ball from uselessness. Hoar succeeded in reattaching the harness and the crane had raised it to the surface. His job complete, Hoar returned to his small apartment on the Upper East Side of Manhattan. He lived alone, but the work paid well enough that he could support his sister who lived just across the East River in Queens.
The contractor made a second attempt to lower the ball into place. This time the harness held as the crane operator eased the ball onto the sluiceway. The water in the twelve-mile-long reservoir rushed toward the four-foot-wide pipe and sucked the immense ball toward its intended perch. The contractor stared intently at the cable that held the ball. The cable slackened and, sure the plug was now in place, he rushed to the other side of the dam and looked down its face. Below him he could still see a huge jet of water escaping from the sluiceway. He watched, waiting for the flow to stop. When it didn’t, his heart sank. The ball had failed to seal the pipe.
The contractor could only guess why. Perhaps the initial fall had damaged the plug so that it was no longer round. Perhaps the ball had never been perfectly spherical or the pipe itself was misshapen. A stone on the bottom might have kept the great ball from settling properly into place. The answer was only a few hundred feet away, but it might as well have been on the moon. He could only stare at the rising water of the reservoir and guess. To solve the problem, whatever it was, he would need help.
So once again Hoar and Dobson rode the ferry to New Jersey with a pair of trunks laden with hundreds of pounds of equipment. Introduced to diving by his uncle, Hoar had become one of the strongest and finest helmet divers in the city. He enjoyed the close brotherhood that forms among men who share a common danger. He and his colleagues spent their work days walking along the bottom of the murky rivers around New York, searching for the lost, repairing the broken, and assisting in the construction of the bridges and piers that studded the city. With relatively crude equipment made only from wool, cotton, brass, glass, and natural rubber, he had come to feel at home in the crushing darkness of deep water.
After a quick lunch, Hoar and Dobson had rowed out to their raft and prepared to dive into the reservoir, charged once again with rescuing the contractor from his own incompetence. This time the challenge was far more dangerous than just pulling a giant ball out of the muck, but Hoar laughed off Dobson’s warning and dropped into the cold. As he approached the bottom, the waters that were gathering behind the dam extinguished the last bits of sunlight.
Hoar felt his way along the bottom, toward the sluiceway. As he approached the ball once again, he could feel the rush of water escaping through gaps between the plug and the edge of the pipe. The strong current pulled at his legs. Careful not to get swept up in the flow, he searched for the reason the ball had failed to seal the pipe. The hazards that swirled around him in the soundless murky depths concentrated every fiber of his being on the ball and the water that rushed beneath it.
Up above John Dobson waited, wordless. His world had grown as narrow and focused as his partner’s, seventy feet below. He held Hoar’s lifelines as he had on dive after dive over the past eight years, listening with his fingers for any signal from the bottom. The massive granite-faced dam, a hundred feet high and over three thousand feet wide loomed over him. His tiny raft bobbed like a cork as a pair of laborers cranked Hoar’s compressor. They worked in thirty-minute shifts to send air down a narrow rubber tube to Hoar’s helmet. Then Dobson felt it. Four strong tugs. Hoar was ready to return to the surface.
As he climbed up onto the dock, Hoar had a plan. He told Dobson he would need some sandbags and waited while workers on the dam prepared them. Then with the weight of the sandbags and a diving suit that weighed more than a hundred pounds, he climbed back off the raft and plummeted back to the bottom. He stuffed the first set of sandbags into the gap, but the water still rushed around them. When he was done, Dobson pulled him up once again.
Almost no one in Boonton had ever seen a diver at work and a crowd had gathered at the dam to watch. An amateur photographer among the onlookers snapped pictures as Hoar prepared to descend. The crowd craned to see as he gathered more sandbags and climbed back into the water. Once the water closed over him, all that remained were the bubbles that rose steadily to the surface and the constant efforts of those charged with keeping Hoar alive. The crowd watched Dobson waiting by the edge of the raft, his hands gripping the lifeline that ran down to Hoar. They watched the laborers who worked in shifts to turn the huge steel wheel, which in turn drove the pump that sent air through the thick rubber hose down to Hoar’s helmet. They watched the torrent of water rushing from the bottom of the sluiceway for any sign that Hoar was succeeding. They tried to imagine what was happening below the surface, but none of them envisioned the nightmare that was about to unfold.
Out of sight Hoar braced himself against the ferocious flow of water that raced through the narrow opening as he dropped the sandbags into place. Each time he carefully set one of his twenty-pound lead-weighted shoes on the bag and pushed it into the crack. He could feel the remaining current quicken as if the water was growing more desperate to escape as the gap narrowed. He felt his plan was working.
After almost four hours of diving, as he strained to force one of the last bags into place, it broke. His foot slipped and in an instant the torrent of water pulled his entire leg into the hole. As it did the ball shifted slightly. He immediately tried to stand, but could not overcome the tremendous force as 15 billion gallons of water pushed toward the opening. He threw himself against the ball, but even his formidable strength was no match for its overwhelming mass. Up above John Dobson strained to detect the slightest pull on the line, unaware that his partner was trapped in the cold, dark, silent world below.
The people of Jersey City had known for almost twenty years they had a problem. The Passaic River had been pristine in 1854 when the city first began to draw upon it as a source of drinking water. In the years since, Passaic, Patterson, and other communities upstream from them had grown from small villages into busy towns and small cities. They had added sewers that sent an ever-growing stream of infectious wastewater into the river with relentless efficiency. The growth of industry had added sludge acids from the gasworks, washings from the silk and cotton mills, and the effluent from hundreds of small factories into the river. As a final insult, the Jersey City water works sent its own wastewater into the Passaic River at a point just above its intake pipe, the final ingredient for the vile stew that would fill the water pipes of the unfortunate city. Concerns about waterborne disease in Jersey City were so widespread that the Spanish government singled it out, placing a quarantine on all ships sailing from its harbor in 1893. By 1894 a New York Times reporter could state with little risk of hyperbole that the people of Jersey City “are thoroughly satisfied that they have the worst drinking water anywhere in the United States.”
Where could they find pure water? Jersey City could have chosen to filter the Passaic, but the ability of the evolving technology to purify such foul water was uncertain and, far more important, filters were expensive to build and operate. So Jersey City scoured the lands around it in search of a water supply. There were several options to choose from and a massive contract to award once the choice was made. Political intrigue and cries of corruption plagued the process from its inception.
With the scent of money in the water, contractors circled like sharks. After six contentious rounds of bidding, in a strange, New Jersey-esque turn of events, the final round produced only one bid. Patrick H. Flynn, the lone bidder, proposed to dam the Rockaway River and build a twenty-one-mile-long conduit to bring water to the city. He had bid in previous rounds, but this time, as the sole bidder, his price had risen by $400,000. Despite cries of foul and legal challenges, the mayor awarded him the contract.
The awarding of the contract did not end the controversy. Even before the precise location of the dam had been determined, problems and conflicts haunted the construction of the Jersey City Reservoir. By the time the first spade of earth was turned in 1899, the plan had been challenged four times in court.
Still the project moved forward. Even without a dam site, workers began to quarry stone for its face. As they began to pull the huge blocks of granite from the bedrock of New Jersey, a stone broke loose. The foreman screamed out a warning and six men scrambled to safety. James Antonio, a forty-three-year-old immigrant from Naples, was hard at work when, hearing the commotion, he raised his head. At that instant the rolling stone, which would otherwise have passed over him, caught his head and slammed into a second stone just behind him. His head disappeared in an instant so horrible that the hardened quarrymen turned away, unable to watch. After four months in Boonton, Antonio died with a silver watch and $116 in his pocket, almost half of it in Italian lire.
The dam would continue to keep New Jersey’s lawyers and doctors busy. Flynn, who immediately turned the project over to a subcontractor, had defaulted on his contract. Mark Fagan, the new mayor bent on ridding the city of corruption, brought in a new contractor, but problems persisted. Lawyers were busy preparing a new round of lawsuits as the dam approached completion. By the time of Bill Hoar’s dive, more than twenty workers had been seriously injured and eight men had died.
Time and experience had etched John Dobson’s face and hunched his shoulders, further shrinking his short, stocky frame. Even he was not sure how many years he had lived. During those many hard years, he had felt the cold breath of danger many times. As he leaned over Bill Hoar’s lines, he thought he felt it again. His partner had been down for two hours after suggesting he would be done quickly. Then four tugs on the line brought him a moment of relief and he began to pull. He had pulled up just two feet of line when the rope stopped short. Dobson felt a sudden signal to slacken the line and then a signal to pull again. Dobson’s fears returned in a dreadful rush. Something was wrong, but he had no idea what.
He called for help and workers rowed out to the raft to pull with him. As the team of sinewy construction workers pulled, the rope again went tight and Hoar once again signaled for them to stop. Soon it became clear that brute force was not enough. Dobson had to find help for his partner, just seventy feet away but lost in another world. His only hope was to get another diver. The closest one was hours away in New York City.
When the telegram for help reached the office of John S. Bundick, the diving contractor in Manhattan, the call went to William Oleson. As soon as he received word that his friend of seven years was in trouble, Olesen assembled his equipment and rushed to the ferry terminal. He made it across the Hudson just in time to miss the train to Boonton. Desperate, he explained his plight to the stationmaster who arranged for a locomotive and a single car to rush him to Boonton. Riding on a spur line that had been built to bring equipment and supplies to the construction site, Olesen arrived just two hours after the message was sent.
It was seven o’clock. Evening was falling. Olesen found Dobson on a raft crowded with the strongest workers from the dam site, along with the pump and its ceaseless operators. Their collective weight had sunk them waist deep in cold water as they struggled to free Hoar from his underwater prison.
William Hoar was not sure how long he had been down. Under normal circumstances a diver could expect to work for four hours at that depth, but time kept above the surface had ceased to exist. A cold, black vice had squeezed his universe down to the ball, the pipe, and his body. The remorseless ticking of his physiological clocks marked the only time that mattered. The infinite cold crept through his suit, past the layer of wool and into his flesh, driving his body temperature down. The pain in his leg surged through his body. Even the twin vultures of thirst and hunger had started to circle. He had been working hard with nothing to eat since morning. Even if cold, pain, thirst, hunger, or their combined effects did not take him, even if he could make his way to the surface, the nitrogen that lay hidden in his blood might well turn to deadly gas bubbles as he rose, killing him with the bends as the pressure dropped.
Hours passed in the surreal horror. Other than the steady waves of his breathing and the occasional distorted echoes of sounds from the surface, the silence was absolute. He pulled regularly on the lifeline to let Dobson know he was all right. In every sense the lines provided his only link to life.
Then he thought he heard something. Sounds scuttled through the darkness. Was his imagination playing tricks on him? Suddenly he felt a hand and then a mask pressed up tight against his. A voice echoed through his helmet. The words were muffled. “Bill, are you okay? What happened?”
It sounded like Oleson. Oleson was one of the best divers in the business. Hoar’s confidence rose. Shouting so he could be heard, he explained that his foot was caught in the current. Oleson could feel its tremendous force as he bent down, hoping to remove the sandbags around Hoar’s foot.
Oleson worked quickly. By the time he had been able to assemble a new raft and get down to Hoar, it was well past nine P.M., more than eight hours after Hoar’s initial descent. He broke open the sandbags and the sand disappeared down the sluiceway, but Hoar remained pinned by the ball and the current. Then a sudden, horrifying rush of icy, black current grabbed Oleson’s hand and sucked it into the gaping maw of the pipe.
In an instant Oleson found himself next to Hoar, his hand caught between the ball and the steel rim of the sluiceway. The rescuer had become fellow victim. He pulled at his hand with all his strength. After a long moment of terror, he felt a searing pain as his hand popped out of the trap. He fell backward holding his bleeding hand above him.
Oleson returned to the surface to consider his options. They were few and poor. On the other side of the dam, workers had tried to plug the sluiceway. If they succeeded, the water would rise, the current would stop, and Hoar could escape. Despite their efforts, however, water continued to roar through the pipe. Oleson could also try to move the ball. It might be possible with a proper harness and a team of horses on the shore, but the sudden rush of water would be almost certain to take hold of Hoar, pull him down the pipe, and crush him against the broken gate. Oleson even considered an underwater amputation, but did not believe his friend would reach the surface alive with a severed limb. It seemed that his only option was to drag the poor man to freedom.
Despite his own wounds, Oleson worked through the night to free his friend. He brought down a block and tackle so that workers on the surface could apply more force in their effort to pull him loose. When that failed, he rigged a complex compound pulley system with one end connected to weights on the reservoir bottom. Workers on the surface pulled on the rope, but instead of moving Hoar, their combined force simply moved the weights. Oleson added more and more weight, but only succeeded in dragging a 350-pound anvil and a pile of sandbags through the mud. Hoar remained trapped. Somehow Hoar maintained his strength and his wits. Through it all he leaned up against the ball, moving to one side and then the other to assist in his rescue.
Word of the crisis had reached Boonton and the crowd swelled. Many stayed through the night as Oleson dove down again and again into the pitch black. Ten times he descended. Ten times hope rose. But as the moonless night wore on, hope and the crowd slipped off into the gloom.
By the time dawn crept across the reservoir, Oleson was nearing his breaking point. He descended one more time, taking with him the end of a massive rope, which he fastened to Hoar’s waist. Before leaving, he took his friend’s hand, squeezing it to reassure him. Hoar had weakened but managed to squeeze back. Oleson returned to the surface and collapsed. As a doctor attended to him, workers on the shore, nine hundred feet away, attached the other end of the rescue rope to a team of horses.
The teamster called out, the horses pulled, and the rope drew taut. It inched shoreward. A final glimmer of optimism ascended and then collapsed as the rope went slack and the horses stumbled forward. Somewhere below the surface, the rope had snapped.
The pull of the horses jerked Hoar up and his ankle exploded in pain. His suit tore away and he could feel cold water rush up his leg. He felt for an instant as if the force of the horses would rip him to pieces. Then it abruptly stopped, leaving him clinging to life by a thread. The hole in his suit had created a new peril. The air from above, from the men who had pumped life to him all night long, would escape through the hole in his suit if he fell over. If it did black, suffocating water would rush in, bringing certain death. Down to his last ounce of strength, he struggled to stay upright.
At one P.M., twenty-four hours after Bill Hoar’s first descent, John Dobson let out a plaintive cry. He had been there each minute of those twenty-four hours, making sure the pump continued to run, waiting for a signal.
“What is it?” called the workers on the dam.
“I felt a tug on the line,” he replied.
Dobson shook the line in response and was sure he felt Hoar shake the line three times. Perhaps the old man was just imagining things. Or perhaps, with his last bit of strength, Hoar was saying good-bye to an old friend.
Two more days would pass before a diver could bring Hoar’s body to the surface. That was possible only after another diver who was also a mechanic had descended through another shaft in the dam to repair the broken gate. The sluiceway filled, horses pulled the ball to one side, and workers pulled Hoar’s remains up onto the raft. As the helmet was pulled off, surface air seeped in for the first time in almost one hundred hours, and the team of men who had pumped air to him constantly for four long days and nights ceased work. A doctor stood nearby, but the sight of his blood-suffused head confirmed everyone’s worst fears. The men who had gathered around him on the raft could see where the struggle had stripped the skin from his ankle and foot. The following Sunday, four divers carried Hoar’s casket down the steps of Our Lady of Mt. Carmel Church in Astoria, Queens.
Hoar was just one of many casualties in the scramble for pure water. Massive engineering projects to redirect rivers, reshape watersheds, and create vast new lakes relied on new, untested methods and required vast numbers of workers. Workplace safety rules were almost unheard of. Hundreds of men died to slake the rapacious thirst of America’s growing cities. But it was not just individual workers who died. Entire towns perished in the quest for pure water.
The Jersey City Reservoir drowned the village of Old Boonton and part of Parsippany. Katonah * disappeared beneath the waters of New York City’s Croton Reservoir and when that growing metropolis exhausted the waters of Westchester, it stretched north to the Catskills, consuming the towns of West Hurley, Ashton, Glenford, Brown’s Station, Olivebridge, Brodhead, Shokan, West Shokan, and Boiceville beneath a huge reservoir almost ten times the size of Jersey City’s. Boston’s vast Quabbin Reservoir devoured four New England towns when it flooded the Swift River Valley. Even today one can still see the ghost of Dana, Massachusetts, staring up from beneath the waves.
Each town fought back, but few had a chance against the large cities that laid claim to their land. The struggle of Old Boonton was only a minor skirmish in the story of the Jersey City Reservoir. Far greater controversies surrounded the great stone dam through its construction, but the most important one came long after the dam was complete. That story would change the history of drinking water.
In the spring of 1904, the dam operators opened the valves that sent the water from the Rockaway River through twenty-three miles of cast-iron conduit to the taps of Jersey City. After the initial relief that the controversial project was complete and the vile waters of the Passaic no longer violated their faucets, a controversy began to brew. Proponents of the project had carefully ignored the fact that twenty thousand people lived in the Rockaway River watershed above the reservoir, many of them in the town of Dover. The rush of sewage that entered the reservoir during heavy rains made this studied ignorance difficult to maintain.
Mark Fagan, the mayor of Jersey City, had come to power in the midst of the dam controversy by an unprecedented defeat of the local political machine. He had already taken on Patrick H. Flynn, the dam’s unctuous first contractor. He was not about to pay for a reservoir full of dirty water. The son of poor Irish immigrants, Flynn had been raised to view life as “one long fight for what’s right.”
In October 1906, with the controversy at a bitter stalemate, an outbreak of typhoid claimed fifty-three lives in Jersey City in a single month, three times as many as in all of 1905. When the superintendent of the Bureau of Contagious Disease ventured up the Rockaway in search of the outbreak’s source, he found three cases in the town of Dover. When he went to the town hall, however, local officials refused to give him information about the cases. But those officials could not conceal the fact that Dover discharged its sewage into the Rockaway River.
News of typhoid in Dover turned the controversy in Jersey City into a pitched battle. The contractor had powerful friends and they turned on Fagan, insinuating that the outbreak was a fabrication intended to further his position in the fight over the dam. Physicians appeared out of the woodwork to state that the water was untainted. Others suggested that the diagnosed cases of typhoid had been incorrectly identified. “Concerned citizens” appeared outside the city hall protesting the mayor’s irresponsible actions and their negative impact on the city’s image. When the Board of Health prepared flyers for schoolchildren warning them of the typhoid risk, the city’s police chief, a stooge of the machine, served notice that he would arrest any board member who attempted to distribute them.
Seasoned in the rough streets of Jersey City, Fagan feared no one, not even the machine. He refused to back down from a mere contractor. He insisted that the contractor solve the problem by treating the sewage from Dover and Rockaway. The contractor, in an effort to avoid that expense, looked for another solution. He found it in Chicago on the banks of Bubbly Creek.
For most of Chicago, the remarkable reversal of the Chicago River carried off the problems that had faced its water supply. Rates of waterborne diseases dropped dramatically. But for one large segment of its population, the problems got worse.
The reversal had failed to flush out Bubbly Creek. Instead it turned the small fork of the Chicago River into a nightmarish backwater. For people living close to the creek, this meant enduring a terrific stench. For livestock at Union Stockyards, which relied on the creek both as a repository for waste and a source of water, this meant endless waves of disease. The fact that this translated into huge financial losses and threatened the viability of the yards brought George Johnson to Bubbly Creek.
Johnson was a consulting engineer and the owners of the stockyard charged him with the task of providing safe water for the livestock. Cost was, without question, an issue. Using the Chicago River would require a long pipeline, and Chicago’s sewers, which had once been downstream, were now upstream from the yards. Lake Michigan was simply too far away. That left Bubbly Creek as the only available water supply, but it was profoundly polluted. To purify enough water to supply the vast transient herds was far too costly. No conventional option seemed feasible.
Johnson took a radical new approach. Rather than filtering the water, he would disinfect it with chlorine. Chlorine had been tested in a few small plants and had been applied to sewage as a disinfectant, but it had never been used to treat water on this scale. As Johnson supervised the construction of the plant, he got a call from Jersey City. The beleaguered contractor for the Jersey City Reservoir had heard about his project. If Johnson’s system was good enough for cows and pigs in Chicago, he wondered, why wouldn’t if work for the people of New Jersey?
By the summer of 1908, Johnson had built a treatment plant near the outlet of the Jersey City Reservoir unlike any other plant in the country. Inside three tanks, each the size of a small swimming pool, contained 10,500 gallons of a substance then referred to as chloride of lime, the same white substance that the General Board of Health had encouraged communities to spread along the streets of London fifty years earlier to slow the spread of cholera. The contractor turned on the plant and returned to Mayor Fagan, demanding that he be paid.
Jersey City sued, insisting that the contractor was obligated to provide water free from the upstream sewage. The contractor insisted he only needed to supply safe water and had done so. In the end the courts agreed. In December 1908 the New York Times acknowledged what would prove to be one of the most important public health interventions of the twentieth century with four short paragraphs on its back page. Sandwiched in between articles about a threatened boycott of automobiles built in New Jersey and the appointment of a fourth member to the New Jersey Fish and Game Commission, was the paper’s report on the first routine use of chlorine for a municipal water supply.
“So successful has been this experiment,” the article stated, quoting an unspecified source, “that any municipal water plant, no matter how large, can be made as pure as mountain spring water.” The article went on to note that New York had decided to add chlorine to the waters of the immense Ashokan Reservoir which was still under construction in the Catskills. Indeed, water suppliers all over the country had been looking for just such a technology. Those that did not filter leaped on a treatment system that required a small fraction of the capital and space needed to construct a filtration plant. At the same time, operators of filtration plants needed a method to protect against the pathogens that inevitably find their way through a filter bed.
Engineers around the country and in Europe had experimented with other ways to disinfect water including ozone and ultraviolet light, but nothing provided the low cost and ease of use associated with chlorine. Within six years half the water treatment plants in the United States were using chlorine to disinfect some 2 billion gallons of water each day. By 1924 three thousand cities had turned to chlorine (mostly in the form of chlorine gas) to treat almost 4 billion gallons of water.
Employing chlorine together with rural reservoirs, filtration plants, or both, municipal water suppliers around the country soon had systems that routinely provided water free from disease-causing bacteria. Serious waterborne diseases like cholera, typhoid, and amebic dysentery dropped from routine to rare. In 1900 an average American had a 5 percent chance of dying of a gastrointestinal infection before the age of seventy. By 1940 that rate had dropped 0.03 percent and by 1990 it had fallen to about 0.00005 percent.
By 1960 drinking water had disappeared from the national consciousness as an issue of concern. Civil engineering had been the high technology of the nineteenth and early twentieth centuries, but the luster faded. With the opportunity to reengineer watersheds all but gone and the technology of treating water mature, providing drinking water became mundane. The primary goal for those maintaining public water supplies became not innovation, but invisibility. If you did your job right, no one would notice. If you were noticed, it meant the water smelled bad or tasted funny, or, heaven forbid, had caused a detectable disease outbreak. Success bred complacency. Soon complacency drifted into somnolence. Then, as the century wore on, problems began to disturb this slumber.