A
All things by immortal power,
Near or far,
Hiddenly
To each other linked are,
That thou canst not stir a flower
Without troubling of a star.
FRANCIS THOMPSON, in The Mistress of Vision
WHEN I LOOK at a flower, what I see is not the same as what a honey bee sees, who comes to drink its nectar. She sees beautiful patterns of ultraviolet that are invisible to me, and she is blind to the color red. A red poppy is ultraviolet to her. A cinquefoil flower, which looks pure yellow to me, is to her purple, with a yellow center luring her to its nectar. Most white flowers are blue-green to her eye.
When I look upon the night sky, the stars appear as points of color twinkling through earth’s atmosphere. Everywhere else, except for the moon and a few planets, is blackness. But it is the blackness of illusion.
If you could see all the colors in the world, including the ultraviolets that honeybees can see, the infrareds that snakes can see, the low electric frequencies that catfish and salamanders can see, the radio waves, the X-rays, the gamma rays, the slow galactic pulsations, if you could see everything that is really there in its myriad shapes and hues, in all of its blinding glory, instead of blackness you’d see form and motion everywhere, day and night.
Almost all of the matter in the universe is electrically charged, an endless sea of ionized particles called plasma, named after the contents of living cells because of the unpredictable, life-like behavior of electrified matter. The stars we see are made of electrons, protons, bare atomic nuclei, and other charged particles in constant motion. The space between the stars and galaxies, far from being empty, teems with electrically charged subatomic particles, swimming in vast swirling electromagnetic fields, accelerated by those fields to near-light speeds. Plasma is such a good conductor of electricity, far better than any metals, that filaments of plasma—invisible wires billions of light-years long—transport electromagnetic energy in gigantic circuits from one part of the universe to another, shaping the heavens. Under the influence of electromagnetic forces, over billions of years, cosmic whirlpools of matter collect along these filaments, like beads on a string, evolving into the galaxies that decorate our night sky. In addition, thin sheaths of electric current called double layers, like the membranes of biological cells, divide intergalactic space into immense compartments, each of which can have different physical, chemical, electrical, and magnetic properties. There may even, some speculate, be matter on one side of a double layer and antimatter on the other. Enormous electric fields prevent the different regions of space from mixing, just as the integrity of our own cells is preserved by the electric fields of the membranes surrounding them.
Our own Milky Way, in which we live, a medium-sized spiral galaxy one hundred thousand light-years across, rotates around its center once every two hundred and fifty million earth years, generating around itself a galactic-size magnetic field. Filaments of plasma five hundred light-years long, generating additional magnetic fields, have been photographed looping out of our galactic center.
Our sun, also made of plasma, sends out an ocean of electrons, protons, and helium ions in a steady current called the solar wind. Blowing at three hundred miles per second, it bathes the earth and all of the planets before diffusing out into the plasma between the stars.
The earth, with its core of iron, rotates on its axis in the electric fields of the solar system and the galaxy, and as it rotates it generates its own magnetic field that traps and deflects the charged particles of the solar wind. They wrap the earth in an envelope of plasma called the magnetosphere, which stretches out on the night side of the planet into a comet-like tail hundreds of millions of miles long. Some of the particles from the solar wind collect in layers we call the Van Allen belts, where they circulate six hundred to thirty-five thousand miles above our heads. Driven along magnetic lines of force toward the poles, the electrons collide with oxygen and nitrogen atoms in the upper atmosphere. These fluoresce to produce the northern and southern lights, the aurorae borealis and australis, that dance in the long winter nights of the high latitudes.
The sun also bombards our planet with ultraviolet light and X-rays. These strike the air fifty to two hundred and fifty miles above us, ionizing it, freeing the electrons that carry electric currents in the upper atmosphere. This, the earth’s own layer of plasma, is called the ionosphere.
The earth is also showered with charged particles from all directions called cosmic rays. These are atomic nuclei and subatomic particles that travel at velocities approaching the speed of light. From within the earth comes radiation emitted by uranium and other radioactive elements. Cosmic rays from space and radiation from the rocks and soil provide the small ions that carry the electric currents that surround us in the lower atmosphere.
In this electromagnetic environment we evolved.
We all live in a fairly constant vertical electric field averaging 130 volts per meter. In fair weather, the ground beneath us has a negative charge, the ionosphere above us has a positive charge, and the potential difference between ground and sky is about 300,000 volts. The most spectacular reminder that electricity is always playing around and through us, bringing messages from the sun and stars, is, of course, lightning. Electricity courses through the sky far above us, explodes downward in thunderstorms, rushes through the ground beneath us, and flows gently back up through the air in fair weather, carried by small ions. All of this happens continuously, as electricity animates the entire earth; about one hundred bolts of lightning, each delivering a trillion watts of energy, strike the earth every second. During thunderstorms the electric tension in the air around us can reach 4,000 volts per meter and more.
When I first learned about the global electrical circuit, twenty-five years ago, I drew the following sketch to help me think about it.
Living organisms, as the drawing indicates, are part of the global circuit. Each of us generates our own electric fields, which keep us vertically polarized like the atmosphere, with our feet and hands negative with respect to our spine and head. Our negative feet walk on the negative ground, as our positive heads point to the positive sky. The complex electric circuits that course gently through our bodies are completed by ground and sky, and in this very real way the earth and sun, the Great Yin and the Great Yang of the Yellow Emperor’s Classic, are energy sources for life.
It is not widely appreciated that the reverse is also true: not only does life need the earth, but the earth needs life. The atmosphere, for example, exists only because green things have been growing for billions of years. Plants created the oxygen, all of it, and very likely the nitrogen too. Yet we fail to treat our fragile cushion of air as the irreplaceable treasure that it is, more precious than the rarest diamond. Because for every atom of coal or oil that we burn, for every molecule of carbon dioxide that we produce from them, we destroy forever one molecule of oxygen. The burning of fossil fuels, of ancient plants that once breathed life into the future, is really the undoing of creation.
Electrically, too, life is essential. Living trees rise hundreds of feet into the air from the negatively charged ground. And because most raindrops, except in thunderstorms, carry positive charge down to earth, trees attract rain out of the clouds, and the felling of trees contributes electrically towards a loss of rainfall where forests used to stand.
“As for men,” said Loren Eiseley, “those myriad little detached ponds with their own swarming corpuscular life, what were they but a way that water has of going about beyond the reach of rivers?”1 Not only we, but especially trees, are the earth’s way of watering the desert. Trees increase evaporation and lower temperatures, and the currents of life speeding through their sap are continuous with the sky and the rain.
We are all part of a living earth, as the earth is a member of a living solar system and a living universe. The play of electricity across the galaxy, the magnetic rhythms of the planets, the eleven-year cycle of sunspots, the fluctuations in the solar wind, thunder and lightning upon this earth, biological currents within our bodies—the one depends upon all the others. We are like tiny cells in the body of the universe. Events on the other side of the galaxy affect all life here on earth. And it is perhaps not too far-fetched to say that any dramatic change in life on earth will have a small but noticeable effect on the sun and stars.
B
When the City and South London Electric Railway began operating in 1890, it interfered with delicate instruments at the Royal Observatory at Greenwich four and a half miles away.2 Little did the physicists there know that electromagnetic waves from that and every other electric railway were also radiating into space and altering the earth’s magnetosphere, a fact that would not be discovered until decades later. To understand its significance for life, let us return first to the story of lightning.
The house we live in, which is the biosphere, the roughly 55-mile-high space filled with air that wraps around the earth, is a resonant cavity that rings like a gong every time a lightning bolt strikes. In addition to maintaining the static electric field of 130 volts per meter in which we all stand and walk, and in which birds fly, lightning sets the biosphere ringing at particular low frequency tones—8 beats per second (or Hz), 14, 20, 26, 32, and so forth. These tones are named for Winfried Schumann, the German physicist who predicted their existence, and who, with his student Herbert König, proved their constant presence in the atmosphere in 1953.
It so happens that in a state of awake relaxation, our brains tune in to these precise frequencies. The dominant pattern of a human electroencephalogram, from before birth through adulthood—the well-known alpha rhythm, ranging from 8 to 13 Hz, or 7 to 13 Hz in a newborn—is bounded by the first two Schumann resonances. An old part of the brain called the limbic system, which is involved in emotions, and in long-term memory, produces theta waves, of 4 to 7 Hz, which are bounded above by the first Schumann resonance. The theta rhythm is more prominent in young children, and in adults in meditation. These same frequencies, alpha and theta, with surprisingly little variation, pulsate, so far as is known, in all animals. In a state of relaxation, dogs show an alpha rhythm, identical to ours, of 8 to 12 Hz. In cats the range is slightly wider, from 8 to 15 Hz. Rabbits, guinea pigs, goats and cows, frogs, birds, and reptiles all show nearly the same frequencies.3
Schumann’s student König was so impressed by the resemblances these atmospheric waves bear to the electrical oscillations of the brain that he conducted a series of experiments with far-reaching implications. The first Schumann resonance, he wrote, is so completely identical to the alpha rhythm that even an expert is hard pressed to tell the difference between the tracings from the brain and the atmosphere. König did not think this was a coincidence. The first Schumann resonance appears during fair weather, he noted, in calm, balanced conditions, just as the alpha rhythm appears in the brain in a calm, relaxed state. The delta rhythm, on the other hand, which consists of irregular, higher amplitude waves around 3 Hz, appears in the atmosphere under disturbed, unbalanced weather conditions, and in the brain in disturbed or disease states—headaches, spastic conditions, tumors, and so forth.
In an experiment involving nearly fifty thousand people attending a Traffic Exhibition in Munich in 1953, König was able to prove that these latter types of disturbed waves, when present in the atmosphere, significantly slow human reactions times, while the 8 Hz Schumann waves do just the opposite. The larger the Schumann signal in the atmosphere, the quicker people’s reactions were on that day. König then duplicated these effects in the laboratory: an artificial field of 3 Hz (delta range) slowed human reactions, while an artificial field of 10 Hz (alpha range) accelerated them. König also noted that during the 3 Hz exposure some of his subjects complained of headaches, fatigue, tightness in their chest, or sweating from their palms.4
In 1965, James R. Hamer published the results of experiments along these same lines that he had conducted for Northrop Space Laboratories, in an article which he titled “Biological Entrainment of the Human Brain by Low Frequency Radiation.” Like König, he showed that frequencies above 8 Hz quickened reaction times, while lower frequencies had the opposite effect. But he went further. He proved that the human brain could distinguish between frequencies that differed only slightly from each other—but only if the signal was weak enough. When he reduced the signal strength to 0.0038 volts per meter, which is close to the value of the earth’s own fields, 7½ Hz had a significantly different effect than 8½ Hz, and 9½ Hz than 10½ Hz.
Lightning is not yet done with its repertoire. In addition to the static field that we walk in and the low frequencies that speak to our brains, lightning also provides us with a steady symphony of higher frequencies called atmospherics, or just “sferics,” which reach thousands of cycles per second. They sound like twigs snapping if you listen to them on a very low frequency (VLF) radio, and usually originate in thunderstorms that may, however, be thousands of miles away. Other sounds, called whistlers, resembling the descending tones of a slide whistle, often originate in thunderstorms on the opposite end of the earth. Their falling tones are produced during the long journey these waves have taken as they are guided along magnetic field lines into outer space and back to earth in the opposite hemisphere. These waves may even bounce back and forth many times from one end of the earth to another, resulting in trains of whistles that seemed so unworldly when they were first discovered in the 1920s that they generated newspaper articles with not-so-inappropriate titles like “Voices From Outer Space.”5
Among the other sounds one may hear, especially at higher latitudes, originating somewhere in the electrical environment of our planet, are a steady hiss, and a “dawn chorus,” so named because of its resemblance to chirping birds. Both of these sounds rise and fall gently every 10 seconds or so with the slow pulsations of the earth’s magnetic field.
This VLF symphony bathes our nervous system. Its frequencies, ranging roughly from 200 to 30,000 Hz, span the range of our auditory system and also, as König observed, include the frequencies of the impulses that our brains send to our muscles. The effect our VLF environment has on our well-being was resoundingly demonstrated by Reinhold Reiter in 1954 when he tabulated the results of a number of population studies that he and his colleagues had conducted in Germany, involving about one million people. Births, deaths, suicides, rapes, work injuries, traffic accidents, human reaction times, amputees’ pains, and complaints of people with brain injuries all rose significantly on days with strong VLF sferics.6
Our VLF environment regulates biological rhythms in both humans and animals. Golden hamsters, which have been popular pets since the 1930s, live in the wild near Aleppo, Syria where, every winter for about three months, they go in and out of hibernation. But scientists who have tried to use hamsters as a subject for hibernation studies in the laboratory have been puzzled by their inability to trigger hibernation in these animals by exposing them to prolonged cold, reducing hours of daylight, or controlling any other known environmental factor.7
In the mid-1960s, climatologists Wolfgang Ludwig and Reinhard Mecke took a different approach. They kept a hamster during the winter in a Faraday cage, shielded from all natural electromagnetic waves, and without any alteration of temperature or hours of daylight. At the beginning of the fourth week they introduced the natural outdoor atmospheric frequencies by means of an antenna, whereupon the hamster promptly fell asleep. During the following two months, the researchers were able to put the animal into and out of hibernation by introducing, or removing, either the natural outdoor frequencies, or artificial VLF fields that imitated the natural winter pattern. Then, at the beginning of the thirteenth week of the experiment, the frequencies in the enclosure were changed so as to imitate the natural summer pattern, and within half an hour, as if panicked by the sudden change in season, the animal woke up and began a “movement storm,” running day and night for an entire week until the experiment was terminated. In repetitions of this experiment on other hamsters, the researchers found that this high level of activity could not be induced unless the state of hibernation had been triggered first. The artificial fields they used were extremely weak—as small as 10 millivolts per meter for the electric field and 26.5 microamperes per meter for the magnetic field.
One way to find out if the earth’s natural fields are as important to people as to hamsters would be to place human subjects in a completely shielded room for a few weeks and see what happens. Which is exactly what behavioral physiologist Rütger Wever did at the Max Planck Institute in Germany. In 1967 he had an underground building constructed containing two isolation chambers. Both were carefully shielded against outside light and sound, and one was shielded also against electromagnetic fields. During the next two decades hundreds of people had their sleep cycles, body temperature, and other internal rhythms monitored while they lived in one or the other of these rooms, usually for a month at a time. Wever found that even without any variation in light and darkness, and without any clocks or time cues, the body’s sleep cycle and internal rhythms remained close to 24 hours, so long as the earth’s natural electromagnetic fields were present. However, when those fields were excluded, the body’s rhythms usually became longer, erratic, and desynchronized with each other. The average “free-running” sleep cycle was 25 hours, but in individual cases was as short as 12 hours and as long as 65 hours. Variations in body temperature, potassium excretion, speed of mental processes, and other rhythms drifted at their own separate rates, completely different from one another, and no longer coinciding with the sleep-wake cycle at all. But as soon as an artificial 10 Hz signal—close to the first Schumann resonance—was introduced into the shielded room, the body’s rhythms all immediately resynchronized to a 24-hour period.
C
Life, residing between heaven and earth, partakes of both polarities. As we will see in the next chapter, the distribution of electric charge in living beings has been measured and mapped externally. In plants this was done by professor of anatomy Harold Saxton Burr, at Yale University, and in animals by orthopedic surgeon Robert O. Becker, at the State University of New York, Upstate Medical Center, Syracuse. The areas of greatest positive voltage in animals are the center of the head, the heart, and the lower abdomen, and in trees the crown. The places of greatest negative voltage, in trees, are the roots, and in animals, the four feet and the end of the tail. These are the places where the global electrical circuit enters and leaves the body on its way between heaven and earth. And the channels through which the electricity travels inside living beings, distributing the electricity of heaven and earth to every organ, were precisely mapped several thousand years ago, and are part of a body of knowledge that we know today as Chinese acupuncture. It was written down in the Huangdi Neijing, the Yellow Emperor’s Classic of Internal Medicine, between 500 and 300 B.C.
The very names of key acupuncture points reveal an understanding that the circuitry of the body is continuous with that of earth and sky. Kidney 1, for example, the point underneath the foot, in the center of the sole, is known in Chinese as yong quan, meaning “bubbling spring,” because earth energy bubbles up into the feet through these points and climbs up the legs into the rest of the body toward the heavens. Governing Vessel 20, the point on top of the head, in the center, is called bai hui, the “hundred convergences.” This is also the “thousand petal lotus” of Indian traditions, the place where the energy of heaven descends into our body toward the earth, and the flows of our body converge and reach toward the sky.
But not until the 1950s did scientists, beginning with Yoshio Nakatani in Japan and Reinhold Voll in Germany, begin to actually measure the electrical conductivity of acupuncture points and meridians, and to finally translate the word “qi” (formerly spelled “chi”) into modern language: it means “electricity.”
Hsiao-Tsung Lin is a professor of chemical and material science at National Central University in Taiwan. The qi that flows through our meridians, he tells us, is an electrical current that brings both power and information to our cells, current whose source is both internal and external. Every acupuncture point has a double function: as an amplifier for the internal electrical signals, boosting their strength as they travel along the meridians; and as an antenna that receives electromagnetic signals from the environment. The dantians, or energy centers of Chinese medicine, located in the head, heart, and abdomen—equivalent to the chakras of Indian tradition—are electromagnetic oscillators that resonate at particular frequencies, and that communicate with the meridians and regulate their flow. They have capacitance and inductance like oscillators in any electronic circuitry. The body, says Lin, is a super-complex electromagnetic oscillation network, enormously intricate and delicate.
In 1975, Becker and his colleagues at Upstate Medical Center found that, in general, acupuncture points are not only places of low resistance, but of high potential, averaging five millivolts higher than the surrounding skin. They also found that the path of a meridian, at least on the surface of the body, has significantly greater conductivity and lower electrical resistance than nearby skin.
As a result of the work of Nakatani, Voll, Becker, and others, electroacupuncture, using microampere currents, has taken its place alongside traditional acupuncture, and commercial point locators, which find acupuncture points by measuring the electrical conductivity of the skin, have come into use among nontraditional practitioners here in the West.8 In China, electroacupuncture devices have been in use since 1934. They are a tacit acknowledgement that the body is an electrical instrument, and that its health or sickness depends on the proper distribution and balance of the electrical energies that constantly flow around and through us. But ironically they also prevent that scientific knowledge from becoming true knowledge, for to substitute artificial electricity for atmospheric electricity in replenishing the body is to forget that the electricity of the air is there, nourishing us and giving us life.
At the Shanghai University of Traditional Chinese Medicine, the Fujian Institute of Traditional Chinese Medicine, and elsewhere in China, scientists continue to confirm that the substance that flows in our meridians is electricity, and that electricity is not only a force that moves locomotives, but is the incredibly complex and delicate stuff of life. Typically, the electrical resistance of an acupuncture point is two to six times lower than the resistance of the surrounding skin, and its capacitance—its ability to store electrical energy—is five times as great.9 Commercial point locators do not always work, because sometimes—depending on the internal state of the individual—an acupuncture point can have a higher resistance than its surroundings. But the meridians always respond in an active and nonlinear way to electrical stimulation, and they react, say modern researchers, exactly like an electrical circuit.10
The physical structures of the conductive points and meridians have been tentatively identified. In the 1960s, a North Korean physician, Bong Han Kim, published detailed photographs of an entire network of tiny corpuscles, and threadlike structures that connect them, that exist throughout the body in our skin, in our internal organs and nervous system, and in and around our blood vessels. These ducts, he found, were electrically conductive and the fluid within them, surprisingly, contained large amounts of DNA. Their electrical pulsations were considerably slower than the heartbeat: in the skin of a rabbit, the pulsation rate was between 10 and 20 per minute. The pathways of the superficial ducts in the skin matched the classical pathways of the acupuncture meridians. The reason Kim succeeded in identifying this system is that he worked only on living animals, because the ducts and corpuscles, almost transparent to begin with, disappear shortly after death. He stained the living tissue with an unspecified blue dye that was absorbed only by this network of ducts and corpuscles. Kim’s book, On the Kyungrak System, was published in Pyongyang in 1963. The reason his work has been so completely ignored has partly to do with his relations with the North Korean government—Kim was expunged from official records in 1966, and rumor has it that he committed suicide—and partly with the fact that the outside world does not want to find physical proof of our electrical nature. But in the mid-1980s, Jean-Claude Darras, a French physician working in the nuclear medicine department at Necker Hospital in Paris, replicated some of Kim’s experiments. He injected a radioactive dye containing technetium-99 into various acupuncture points on the feet of volunteers, and found that the dye migrated precisely along the meridian pathways of classical acupuncture, just as Kim had found.11
In 2002, Kwang-Sup Soh, who had already been investigating the electromagnetic properties of acupuncture meridians, headed up a team at Seoul National University in South Korea, which looked for and found most of the threadlike duct system described by Kim. A breakthrough came in November 2008 with the discovery that trypan blue, a dye that was previously known to stain only dead cells, if injected into living tissue, will stain only the nearly invisible threads and corpuscles they had painstakingly begun to identify. The “primo vascular system,” as it was now called, suddenly became a subject of research in other centers in South and North Korea, as well as in China, Europe, Japan, and the United States. The ducts and corpuscles of this system were found, just as Kim had described, resting on the surface of and penetrating inside the internal organs, floating inside the large blood and lymphatic vessels, winding along the outside of major blood vessels and nerves, traveling inside the brain and spinal cord, and following the paths of the known meridians within the deep layers of the skin.12 When the surface of the skin was stained with the dye, only points along the meridians absorbed it.13 In September 2010, at the First International Symposium of Primo Vascular System, held in Jecheon, Korea, Satoru Fujiwara, retired professor of anatomy at Osaka City University, Japan, reported tentative success at surgically identifying a superficial primo node—an acupuncture point—in the skin of a rabbit’s abdomen.14 And in 2015, researchers at Seoul National University used a commercially available staining kit to reveal a threadlike vessel running just beneath the abdominal skin of anesthetized living rats.15 The vessel, colored dark blue from the stain, followed the pathway of the acupuncture meridian called the conception vessel, and connected discrete corpuscles corresponding in location to the known acupuncture points on that meridian. The fine structure of this system of nodes and ducts was revealed by electron microscopy. The staining process, they noted, takes less than ten minutes.
D
In the early 1970s, atmospheric physicists finally woke up to the fact that the earth’s magnetic field was highly disturbed. Not all of those whistlers, hiss, chorus, lion roars, and other colorful sounds they had been listening to for half a century were caused by nature! This discovery came about as a result of efforts to deliberately alter the earth’s electromagnetic environment—efforts that have culminated, today, in the operation of Project HAARP, located in Gakona, Alaska (see chapter 16).
Under contract with the Office of Naval Research, scientists at Stanford University’s Radioscience Laboratory had built a 100-kilowatt VLF transmitter at Siple Station, Antarctica, broadcasting in the 1.5 to 16 kHz range. The purposes of the 13-mile-long antenna that stretched over the frozen ice, according to Robert Helliwell, one of the members of the Stanford team, included “control of the ionosphere, control of the radiation belts and new methods of v.l.f. and u.l.f. communication.”16 It had been discovered accidentally in 1958 that VLF transmissions originating on the earth interact with particles in the magnetosphere, stimulating them to emit new VLF waves, which can then be received at the opposite end of the earth. The purpose of the Stanford project was to do this deliberately—to inject sufficient quantities of very low frequency energy into the magnetosphere so that it would not only trigger new waves, but that these triggered waves might in turn cause electrons to rain out of the earth’s radiation belts into the atmosphere, altering the properties of the ionosphere for military purposes. A primary goal of the Department of Defense was to devise a method of stimulating the ionosphere to emit VLF (very low frequency), ELF (extra low frequency), or even ULF (ultra low frequency) waves in order to communicate with submarines submerged beneath the oceans.17 The VLF transmitter at Siple, and a VLF receiver in northern Quebec, at Roberval, were part of this early research.
The data they collected were surprising. First, the signal received in Quebec, immediately after transmission from Antarctica, was larger than expected. The waves broadcast from Antarctica were not only triggering new emissions from particles in the magnetosphere, but were being amplified more than a thousandfold in the magnetosphere before returning to earth and being received in Quebec. Only half a watt of broadcast power was required in order to be detected near the opposite pole of the earth after being relayed from the magnetosphere.18 The second surprise was that Roberval was receiving frequencies that were unrelated to the frequencies that originated at Siple, but that were instead multiples of 60 Hz. The Siple signal had been altered, on its journey through outer space, to bear the imprint of the electric power grid.
Since those first discoveries, scientists have learned a great deal about this form of pollution, now known as “power line harmonic radiation.” It appears that harmonics from all of the world’s power grids leak continuously into the magnetosphere, where they are greatly amplified as they bounce back and forth between the northern and southern hemisphere, generating their own rising and falling whistlers just like radiation from lightning.
But there is a fundamental difference. Before 1889, whistlers and other lightning-triggered sounds played continuously over the entire range of the terrestrial instrument. Today the music is stilted, dulled, often confined to multiples of 50 or 60 Hz. Every component of the natural symphony has been radically altered. The “dawn chorus” is quieter on Sundays than on other days of the week, and the starting frequencies of most chorus emissions are power line harmonics.19 “It seems likely that the entire hiss band is caused by power line radiation,” wrote Helliwell in 1975. And the natural, slow pulsations of the earth’s magnetic field, below 1 Hz, which are also important to all life, are strongest on weekends, evidently because they are being suppressed by radiation from the power grid, and this radiation is stronger on weekdays.20 Antony Fraser-Smith, also at Stanford, by analyzing geomagnetic activity data collected since 1868, showed that this is not a new phenomenon but has been happening since the first use of alternating current, and has been increasing over time.21 Data collected between 1958 and 1992 showed that Pc 1 activity, representing geomagnetic pulsations between 0.2 and 5 Hz, has been fifteen to twenty percent greater on weekends than in the middle of the week.22
The structure of the Van Allen radiation belts seems also to have been altered. What the Department of Defense had wanted to do intentionally was apparently already being done massively by the world’s electric power grids. Why, physicists had long wondered, are there two electron-filled radiation belts around the earth, an inner and an outer, separated by a layer that is virtually empty of electrons? This “electron slot,” some think, is continually drained of its electrons by their interaction with radiation from power lines.23 These electrons, in turn, rain down over the earth, modifying the electrical properties of the atmosphere.24 Not only may this increase the frequency of thunderstorms,25 but it may shift the values of the Schumann resonances to which all living things are attuned.26
In short, the electromagnetic environment of the entire earth is radically different today from what it was before 1889. Satellite observations show that radiation originating from power lines often overwhelms natural radiation from lightning.27 Power line radiation is so intense that atmospheric scientists lament their inability to do fundamental research: there is almost nowhere left on earth, or even in space, where a VLF receiver can be used to study natural phenomena.28
Under natural conditions, as they existed before 1889, intense VLF activity, leading to electron rain and the shifting of the Schumann resonances, occurred only during geomagnetic storms. Today, the magnetic storm never ends.
E
Influenza
If the atmosphere is, at times, electrified beyond the degree which is usual, and necessary to preserve the body in a due state of excitement, the nerves must be too highly excited, and under a continued operation of undue stimulus, become extremely irritable, and subject to debility.
NOAH WEBSTER, A Brief History of Epidemic and Pestilential Diseases, 1799, p. 38
A large, rapid, qualitative change in the earth’s electromagnetic environment has occurred six times in history.
In 1889, power line harmonic radiation began. From that year forward the earth’s magnetic field bore the imprint of power line frequencies and their harmonics. In that year, exactly, the natural magnetic activity of the earth began to be suppressed. This has affected all life on earth. The power line age was ushered in by the 1889 pandemic of influenza.
In 1918, the radio era began. It began with the building of hundreds of powerful radio stations at LF and VLF frequencies, the frequencies guaranteed to most alter the magnetosphere. The radio era was ushered in by the Spanish influenza pandemic of 1918.
In 1957, the radar era began. It began with the building of hundreds of powerful early warning radar stations that littered the high latitudes of the northern hemisphere, hurling millions of watts of microwave energy skyward. Low-frequency components of these waves rode on magnetic field lines to the southern hemisphere, polluting it as well. The radar era was ushered in by the Asian flu pandemic of 1957.
In 1968, the satellite era began. It began with the launch of dozens of satellites whose broadcast power was relatively weak. But since they were already in the magnetosphere, they had as big an effect on it as the small amount of radiation that managed to enter it from sources on the ground. The satellite era was ushered in by the Hong Kong flu pandemic of 1968.
The other two mileposts of technology—the beginning of the wireless era and the activation of the High Frequency Active Auroral Research Program (HAARP)—belong to very recent times and will be discussed later in this book.