Bibliography

  1. Abdi, H. and Valentin, D (2007) Multiple correspondence analysis. In: Salkind, N. (ed.), Encyclopedia of Measurement and Statistics. Sage. http://www.utdallas.edu/~herve/Abdi‐MCA2007‐pretty.pdf.
  2. Aerni, M. and Bruhn, M. (2008) Integrierte Kommunikation. Compendio Bildungsmedien.
  3. AGC Internpane, Hildesheim http://www.interpane.de/presse.html.
  4. Ahlemeyer‐Stubbe, A. and Coleman, S.Y. (2014) Practical Guide to Data Mining in Business and Industry. John Wiley.
  5. Ahlemeyer‐Stubbe, A. (2014) Good models out of an assembly line or advances in targeting. Transactions on Machine Learning and Data Mining, 7 (2), 63–70.
  6. Ahlemeyer‐Stubbe, A. (2017) Analyse‐getriebene Unterstützung im Kundenkontakt. In: Henn, H. (ed), Digital Customer Service (e‐book), Marketing Resultant, pp. 59–65.
  7. Ahlemeyer‐Stubbe, A. (2017) Data Mining – Energieschub für Stadtwerke. In: GWF Gas & Energie 1/2017, pp. 48–53.
  8. Ahlemeyer‐Stubbe, A. and Horvath, S. (2016) Intelligent profiles and segments equals pure power for business: Combining profiles, segment and predictive analytics. Applied Marketing Analytics, 2 (1), 73–83.
  9. Ahlemeyer‐Stubbe, A. (2013) Nutzung von Informationen aus Social Media zur Optimierung des Predictive Behavioral Targeting. In: Ceyp, M. and Scupin, J.‐P (eds). Erfolgreiches Social Media Marketing. Springer Fachmedien, pp. 179–187.
  10. Ahlemeyer‐Stubbe, A. (2013) Social media monitoring. In: Ceyp, M. and Scupin, J.‐P. (eds). Erfolgreiches Social Media Marketing. Springer Fachmedien, pp. 189–196.
  11. Ahlemeyer‐Stubbe, A. (2015) Predictive targeting – pure power fürs business. In: Braun, G. and Schwarz, T. (eds), Handbuch Data Driven Marketing. Marketingbörse, pp. 171–185.
  12. Albers, S. and Herrmann, A. (2002) Handbuch Produktmanagement. Strategieentwicklung – Produktplanung – Organisation – Kontrolle. Springer.
  13. Altmetrics Manifesto (2013) http://altmetrics.org/manifesto/.
  14. Amthor, A. and Brommund, T. (2010) Mehr Erfolg durch Web Analytics. Hanser.
  15. Anahory, S. and Murray, D (1997) Data Warehouse, Planung, Implementierung und Administration. Addison‐Wesley‐Longman.
  16. Antony, J., Coleman, S., Montgomery, D.C., Anderson, M.J. and Silvestrini, R.T. (2011) Design of experiments for non‐manufacturing processes: benefits, challenges and some examples. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225 (11), 2078–2087.
  17. Aristotle (2009) Prior Analytics: Book I (transl. Striker, G.). Oxford University Press.
  18. Aßmann, S., Fiege, R,. Zahn, A. et al. (2011) Bundesverband Digitale Wirtschaft (BVDW) – Social Media Monitoring. Bundesverband Digitale Wirtschaft.
  19. Backhaus,K., Erichson, B. and Weiber, B. (2010) Fortgeschrittene Multivariate Analysemethoden: Eine anwendungsorientierte Einführung. Springer.
  20. Bagusat, A. and Hermanns, A. (2008) E‐Marketing‐Management. Grundlagen und Prozesse für Business‐to‐Consumer‐Märkte. Franz Vahlen.
  21. Becker, P. (2012) Twitter to hit 500 million accounts by February. http://wallblog.co.uk/2012/01/16/twitter‐to‐hit‐500‐million‐accounts‐by‐february/.
  22. Berger, J., Betrò, B., Moreno, E., et al. (eds) (1996) Bayesian Robustness. Lecture Notes IMS, vol. 29, Institute of Mathematical Statistics, Hayward.
  23. Bocchetti, D., Lepore, A., Palumbo, B. and Vitiello, L. (2015) A statistical approach to ship fuel consumption monitoring, Journal of Ship Research, 59 (3), 162–171.
  24. Bose, I., Mahapatra, K.R. (2001) Business data mining – A machine learning perspective. Information and Management, 39 (3), 211–225.
  25. Bovas, A. and Ledolter, J. (2005) Statistical Methods for Forecasting, Wiley‐Interscience
  26. Brauckmann, P. (ed) (2010) Web‐Monitoring – Gewinnung und Analyse von Daten über das Kommunikationsverhalten im Internet. UVK.
  27. Breitenstein, R. (2002) Memetik und Ökonomie. Wie die Information die Wirtschaft nach ihrem Interesse lenkt. http://www.heise.de/tp/artikel/13/13649/1.
  28. Breyfogle (1999) Implementing Six Sigma. Wiley.
  29. Bryman, A and Bell, E (2011) Business Research Methods, 3rd edn. Oxford University Press.
  30. Buttle, F (2009) Customer Relationship Management. Concepts and Technologies, 2nd edn. Butterworth‐Heinemann.
  31. Caulcutt, R.(2008) Statistical consultancy. In: Coleman, S.Y., Greenfield, T., Stewardson, D.J. and Montgomery, D. (eds) (2008), Statistical Practice in Business and Industry. Wiley.
  32. Chamoni, P. and Gluchowski, P. (eds) (1998) Analytische Informationssysteme. Springer.
  33. Chatfield, C. (1995) Problem Solving: A Statistician’s Guide, 2nd edn. Chapman & Hall/CRC Press.
  34. Codd, S.B. and Salley, C.T. (1993) Providing OLAP (On‐line analytical processing) to user‐analysts: An IT mandate. White paper, EF Codd & Associates.
  35. Coleman, S.Y. (2016) Data‐mining opportunities for small and medium enterprises with official statistics in the UK. Journal of Official Statistics, 32 (4), 1–17.
  36. Coleman, S.Y. (2007) Kaizen. In: Ruggeri, F., Kenett, R.S. and Faltin, F. (eds) Encyclopaedia of Statistics in Quality and Reliability, Vol. 2. Wiley.
  37. Coleman, S.Y. (2011) Six Sigma in health care. In: Faltin, F., Kenett, R. and Ruggeri, F. (eds) Statistical Methods in Healthcare: Planning, Delivering and Monitoring Care. Wiley.
  38. Coleman, S.Y. and Kenett, R.S. (2017) The information quality framework for evaluating data science programs. Encyclopedia with Semantic Computing and Robotic Intelligence, 1(1), 1730001.
  39. Coleman, S.Y. (2013) Statistical thinking in the quality movement +/−25 years. The TQM Journal, 26 (6), 597–605.
  40. Coleman, S.Y. and Smith, K. (2007) Data mining sales data for Kansei Engineering. In: Pham, D.T., Eldukhri, E.E. and Soroka, A.J. (eds) Innovative Production Machines and Systems, 3rd IPROMS Virtual Conference. CRC Press.
  41. Coleman, S.Y., Greenfield, T., Stewardson, D.J. and Montgomery, D. (eds) (2008) Statistical Practice in Business and Industry. Wiley.
  42. Coleman, S.Y., Gob, R., Manco, G., et al. (2016) How can SMEs benefit from big data? Challenges and a path forward. Journal of Quality and Reliability Engineering International, 32, 2151–2164.
  43. Coscia, C., Fontana, R. and Semeraro, P. (2014) Graphical models to study cultural consumer behaviour: the AMTP card‐holders at EQ(CS)^2. In: 2014 Italian Conference on Excellence in Quality, Statistical Control and Customer Satisfaction, Turin.
  44. Cox, I. (2010) Visual Six Sigma – Making Data Analysis Lean. Wiley.
  45. Crawley, M.J. (2012) The R Book, 2nd edn, Wiley.
  46. Cunha, C.D.A., Agard, E. and Kusiak, A. (2006) Data mining for improvement of product quality. International Journal of Production Research, 44, 4027–4041.
  47. Cyganiak, R. and Jentzsch, A. (2011) The linking open data cloud diagram. http://richard.cyganiak.de/2007/10/lod/
  48. Dahlgaard, J.J., Kristensen, K. and Kanji, K. (1998) Fundamentals of Total Quality Management. Chapman & Hall.
  49. Duermyer, R. (no date) Viral marketing – internet viral marketing. http://homebusiness.about.com/od/homebusinessglossar1/g/viral‐marketing.htm.
  50. Efron, B. and Hastie, T. (2016) Computer‐age Statistical Inference. Cambridge University Press
  51. Ehrlenspiel, K. (2009) Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz, Zusammenarbeit. Carl Hanser.
  52. Erto, P., Lepore, A., Palumbo, B. and Vitiello, L. (2015) A procedure for predicting and controlling the ship fuel consumption: its implementation and test. Quality and Reliability Engineering International, 31 (7), 1177–1184.
  53. Evan, D.S. (2009) The online advertising industry: economics, evolution, and privacy, The Journal of Economic Perspectives, 23 (3), 37–60.
  54. Fayyad, U., Piatetsky‐Shapiro, G., Smyth, P. and Ramasami, U. (1996) Advances in Knowledge Discovery and Data Mining. MIT Press
  55. Fiege, R. (2012) Social Media Balanced Scorecard: Erfolgreiche Social Media –Strategien in der Praxis, Springer‐Verlag.
  56. Floemer, A. (2012) YouTube: Google nennt neue, beeindruckende Zahlen. http://t3n.de/news/youtube‐google‐nennt‐neue‐361320/.
  57. Forrester Research (no date) Website: https://go.forrester.com/.
  58. Gabler Wirtschaftslexikon (no date) Web 2.0. URL: http://wirtschaftslexikon.gabler.de.
  59. Gapminder (no date) Website: www.gapminder.org.
  60. Gartner (no date) Website: http://www.gartner.com/technology/home.jsp.
  61. Gaßmair, D. (2009) Die Wahrheit über Virales Marketing. URL: http://www.viralandbuzzmarketing.de/die‐wahrheit‐ueber‐virales‐marketing/.
  62. Gladwell, M. (2002) The Tipping Point. How Little Things Can Make a Big Difference. Little, Brown & Co.
  63. Gluchowski, P. and Chamoni, P. (Hrsg.) (2016) Analytische Informationssysteme – Business Intelligence Technologien und Anwendungen. Springer.
  64. Gluchowski, P. (1997) Data warehouse. Informatik Spektrum, 20 (1), 48–49.
  65. Gluchowski, P., Gabriel, R. and Chamoni,P. (1997) Management Support Systeme. Computergestützt Informationssysteme für Führungskräfte und Entscheidungsträger. Springer.
  66. Greer, C. (2014) Big data and the internet of things. http://www.nist.gov/el/smartamerica.cfm, http://bigdatawg.nist.gov.
  67. Gu, B., Tang, Q. and Whinston, A.B. (2013) The influence of online word‐of‐mouth on long tail formation. Decision Support Systems, 56, 474–481.
  68. Habermas, J. (2001) Die Zukunft der menschlichen Natur. Auf dem Weg zu einer liberalen Eugenik? Suhrkamp.
  69. Hague, P. (2002) Market Research. A Guide to Planning, Methodology and Evaluation, 3rd edn, Kogan Page.
  70. Hand, D.J., Mannila, H. and Smyth, P. (2001) Principles of Data Mining. MIT Press.
  71. Hartung, B. (2012) Social Media. Nutzerzahlen im Januar 2012. URL: http://birgerh.de/2012/02/03/social‐media‐nutzerzahlen‐im‐januar‐2012/.
  72. Hartung, J., Knapp, G. and Sinha, B.K. (2011) Statistical Meta‐Analysis with Applications. Wiley Series in Probability and Statistics.
  73. Hartung, J., Elpelt, B. and Klösener, K. (2005) Statistik: Lehr‐ und Handbuch der Angewandten Statistik, 14th edn. Oldenbourg.
  74. Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer.
  75. Heller, C. (2009) Klartext: Was ist ein Meme? www.netzpiloten.de/klartext‐was‐ist‐eine‐meme/.
  76. Hinssen, P. (2011) The New Normal: Explore the Limits of the Digital World. Lannoo.
  77. HM Treasury (2015) The Aqua Book: Guidance on Producing Quality Analysis for Government. http://gov.uk/government/publications/the‐aqua‐book‐guidance‐on‐producing‐quality‐analysis‐for‐government.
  78. Homburg, C. and Krohmer, H. (2006) Marketingmanagement. Studienausgabe: Strategie – Instrumente – Umsetzung – Unternehmensführung 2. überarbeitete Auflage. Gabler.
  79. Hotz, A.; Halbach, J. and Schleinhege, M. (2010) Social Media im Handel – Ein Leitfaden für kleine und mittlere Unternehmen. http://www.mittelstand‐digital.de/MD/Redaktion/DE/PDF/social‐media‐im‐handel,property = pdf,bereich = md,sprache = de,rwb = true.pdf.
  80. Inmon, W.H. and Hackathorn, R.D. (1994) Using the Data Warehouse. Wiley.
  81. Inmon, W.H. (1996) Building the Data Warehouse, 2nd edn. Wiley.
  82. Kantrardzic, M. (2003) Data Mining: Concepts, Models, Methods, and Algorithms. IEEE Press.
  83. Kaushik, A. (2007) Web Analytics an Hour a Day. Wiley.
  84. KDD (1998) KDD Cup website: http://www.kdnuggets.com/meetings/kdd98/kdd‐cup‐98.html.
  85. Kenett, R.S. and Shmueli, G. (2016) Information Quality: The Potential of Data and Analytics to Generate Knowledge, Wiley.
  86. Kenett, R.S. and Shmueli, G. (2014) On information quality. Journal of the Royal Statistical Society, Series A: Statistics in Society, 177 (1), 3–38.
  87. Kenett, R. and Raanan, Y. (eds) (2010) Operational Risk Management: a Practical Approach to Intelligent Data Analysis. John Wiley and Sons.
  88. Kenett, R.S., Coleman, S.Y. and Stewardson, D.J. (2003) Statistical efficiency – the practical perspective. Quality and Reliability Engineering International, 19, 265–272.
  89. Kenett, R.S. and Salini, S. (2012) Modern Analysis of Customer Surveys: With Applications using R. Wiley.
  90. Knight, S. and Burn, J. (2005) Developing a framework for assessing information quality on the world wide web. Informing Science Journal, 8, 159–172.
  91. Kum, H.C. Pei, J., Wang, W. and Duncan, D. (2003) ApproxMAP: approximate mining of consensus sequential patterns, SIAM, 311–315.
  92. Kumar,V. and Petersen, J.A. (2012) Statistical Methods in Customer Relationship Management. Wiley.
  93. Langner, S. (2005) Viral Marketing. Wie Sie Mundpropaganda gezielt auslösen und Gewinn bringend nutzen. Gabler.
  94. Li, L. and Memon, N. (2013) Mining groups of common interest: discovering topical communities with network flows. In: Perner, P. (Ed.), Machine Learning and Data Mining in Pattern Recognition. Springer Verlag.
  95. Ligges, U. (2008) Programmieren mit R, 3rd edn. Springer.
  96. Linoff, G. and Berry, M. (2011) Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, 3rd edn. Wiley.
  97. Maaß, C. (2007) ZP‐Stichwort: Semantisches Web. Zeitschrift für Planung & Unternehmenssteuerung, 18 (1), 123–129.
  98. Martin, W. (2013) Performance management and analytics business intelligence meets business process management and big data, Version 9.1. SARL Martin.
  99. Martin, W. (ed) (1998) Data Warehousing. Thomson.
  100. Martin, W. (2012a) Big data. Strategic bulletin, IT‐Verlag für Informationstechnik GmbH
  101. Martin, W. (2012b) Information Governance – Ergebnisse einer Marktbefragung zum Status Quo und zu den Trends 2012. Research note, SARL Martin
  102. Maurice, F. (2007) Web 2.0 Praxis. AJAX, Newsfeeds, Blogs, Microformats. Pearson.
  103. McCollin, C. and Coleman, S.Y. (2014) Historical published maintenance data: What can it tell us about reliability modelling? Quality and Reliability Engineering International, 30 (3), 381–395.
  104. Meffert, H.; Burmann, C. and Kirchgeorg, M. (2008) Marketing – Grundlagen marktorientierter Unternehmensführung Konzepte, Instrumente, Praxisbeispiele. Springer.
  105. Mehanna, W. and Rabe, C.M. (2014) Big Data in der Konsumgüterindustrie:Kunden verstehen, Produkte entwickeln,Marketing steuern. In: Buttkus, M. And Eberenz, R. (eds) Controlling in der Konsumgüterindustrie. Springer.
  106. Mitchell, T.M. (1997) Machine Learning. McGraw‐Hill.
  107. Mitchell, T.M. (2006) Machine learning. http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf.
  108. Montgomery, D.C. (2008) Design and Analysis of Experiments. Wiley
  109. Müller, J. (2000) Transformation operativer Daten zur Nutzung im Data Warehouse. Springer.
  110. Münker, S. (2009) Die sozialen Medien des Web 2.0. In: Michelis, D. and Schildhauer, T. (eds) Social‐Media‐Handbuch. Theorien – Methoden – Modelle. Nomos.
  111. Nielsen (2009) Nielsen Global Online Consumer Survey – Trust, Value and Engagement in Advertising. http://de.nielsen.com/pubs/documents/NielsenTrustAdvertisingGlobalReportJuly09.pdf.
  112. Oetting, M. (2006) Wie das Web 2.0 das Marketing revolutioniert. In:: Schwarz, T. (ed) Leitfaden integrierte Kommunikation. Marketing Börse.
  113. Osterwalder, A. and Pigneur, Y. (2013) Business Model Generation. Wiley
  114. Pappalardo, L., Vanhoof, M., Gabrielli, L., et al. (2016) An analytical framework to nowcast well‐being using mobile phone data. International Journal of Data Science Analytics, 2, 75–92.
  115. Pritchett, R.M., Coleman, S.Y., Campbell, J., and Pabary, S, (2018) DIY: An Introduction to Data Analytics in Dental Practice. In press with Dental Update.
  116. Provost, F. and Fawcett, T. (2013) Data Science for Business What You Need to Know about Data Mining and Data‐Analytic Thinking. O’Reilly Media
  117. Qiu, L., Rui, H. and Whinston, A.B. (2014) Effects of social networks on prediction markets: examination in a controlled experiment. Journal of Management Information Systems, 30 (4), 235–68.
  118. Reif, G. (2006) Semantische Annotation. Semantic Web. In: Pelligrini, T. and Blumauer, A. (eds) Semantic Web. Wege zur vernetzten Wissensgesellschaft. Springer.
  119. Renker, L.C. (2008) Virales Marketing im Web 2.0. Innovative Ansätze einer interaktiven Kommunikation mit dem Konsumenten. IFME.
  120. Rexer Analytics (2015) Data miner survey. http://www.rexreranalytics.com/.
  121. Rios Insua, D. and Ruggeri, F. (eds) (2000) Robust Bayesian Analysis. Springer Verlag.
  122. Rios Insua, D., Ruggeri, F. and Wiper, M.P. (2012) Bayesian Analysis of Stochastic Process Models. Wiley.
  123. Ripley, B.D. (2007) Pattern Recognition and Neural Networks. Cambridge University Press.
  124. Russom, P. (2012) Big data analytics https://tdwi.org/research/2011/09/best‐practices‐report‐q4‐big‐data‐analytics.aspx.
  125. Russom, P (2016) Data warehouse modernization in the age of big data analytics. https://tdwi.org/webcasts/2016/04/data‐warehouse‐modernization‐in‐the‐age‐of‐big‐data‐analytics.aspx.
  126. Russom, P (2017) Data lakes: purposes, practices, patterns, and platforms, http://www.saedsayad.com/docs/multivariate_visualization.pdf
  127. Scheideler, E.M. and Ahlemeyer‐Stubbe, A. (2016) Expert knowledge systems to ensure quality and reliability in direct digital manufacturing environments. In: Villmer, F‐J. and Padano,E (eds) Proceedings 6th International Conference on Production Engineering and Management, 01/2016.
  128. Scheideler, E.M. and Ahlemeyer‐Stubbe, A. (2017) Statistische Modellierung zur Unterstützung von Industrie 4.0 im Glasbau. In: Weller, B. and Tasche,S., Glasbau 2017. Wilhelm Ernst und Sohn.
  129. Schmalen, H. and Xander, H. (2002) Produkteinführung und Diffusion. In: Albers, S. and Hermann, A. (eds) Handbuch Produktmanagement. Strategieentwicklung – Produktplanung – Organisation – Kontrolle. Springer.
  130. Schürg, R. (2008) Studie: Viral Marketing funktioniert nur crossmedial. http://lingner.com/zukunftskommunikation/studie‐viralmarketing‐funktioniert‐nur‐crossmedial.
  131. Scott, M.A. (2011) Affinity models for career sequences. Applied Statistics, 60 (3), 417–436.
  132. SEMPO (no date) SEMPO institute glossary http://www.sempo.org/?page=glossary.
  133. Shi, Z., Lee, G.M. and Whinston, A.B. (2016) Toward a better measure of business proximity: topic modeling for industry intelligence. MIS Quarterly, 40 (4), 1035–1056.
  134. Southwood, K. and Ihrke, J.J. (2016) P&C insurers’ big data aspirations for advanced predictive analytics. Willis Towers Watson 2015 Predictive Modeling and Big Data Survey (US) https://www.towerswatson.com/en‐US/Insights/Newsletters/Americas/americas‐insights/2016/pc‐insurers‐big‐data‐aspirations‐for‐advanced‐predictive‐analytics.
  135. Statista (no date) Website: www.statista.com.
  136. Statistisches Bundesamt (2016) Preise Daten zur Energiepreisentwicklung, – Lange Reihen von Januar 2000 bis September 2016. Artikelnummer: 5619001161094. https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/Energiepreisentwicklung.html.
  137. Statistisches Bundesamt (no date) Website: www.destatis.de.
  138. Toms, S. (no date) Website: http://www.stevetoms.net/glossary.
  139. Stewardson, D.J. and Coleman, S.Y. (2003) Success and failure in helping SMEs, a three year observational study. Industry and Higher Education, April, 125–130.
  140. Stodder, D. (2015) Visual analytics for making smarter decisions faster, TDWI. https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper2/tdwi‐visual‐analytics‐making‐smarter‐decisions‐107939.pdf.
  141. Stodder, D. (2017) Accelerating the path to value with business intelligence and analytics. TDWI. https://tdwi.org/webcasts/2017/07/accelerating‐the‐path‐to‐value‐with‐business‐intelligence‐and‐analytics.aspx.
  142. Stotesbury, N. and Dorling, D. (2015) Understanding income inequality and its implications: why better statistics are needed. Statistics Views, 21 October.
  143. Tsironis, L., Bilalis, N. and Moustakis, V. (2005) Using machine learning to support quality management: Framework and experimental investigation. The TQM Magazine, 17, 237–248.
  144. Van Someren, M. and Urbančič, T. (2006) Applications of machine learning: matching problems to tasks and methods. The Knowledge Engineering Review, 20, 363–402.
  145. Walsh, G., Hass, B. and Kilian, T. (2011) Grundlagen des Web 2.0. In: Walsh, G., Hass, B. and Kilian, T. (eds) Web 2.0. Neue Perspektiven für Marketing und Medien. Springer.
  146. Webster’s New World College Dictionary. http://websters.yourdictionary.com/.
  147. Wheeler, D.J. (2002) Two plus two is only equal to four on the average. http://www.spcpress.com/ink_pdfs/wh_two_plus_two.htm.
  148. Witten, I.H., Frank, E. and Hall, M.A. (2011) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann.
  149. Yabsley, W. and Coleman, S. (2018) Integrating gas demand data with weather and socio‐demographic factors to inform long term business decisions in the UK energy sector. In press with International Journal of Oil, Gas and Coal Technology.
  150. Zaman, I., Pazouki, K., Norman, R., Younessi, S. and Coleman, S.Y. (2017) Development of automatic mode detection system by implementing the statistical analysis of ship data to monitor the performance. International Journal of Maritime Engineering, 159 (A3), A225–A235.
  151. Zerfass, A. and Sandhu, S. (2008) Interaktive Kommunikation, Social Web und Open Innovation: Herausforderungen und Wirkungen im Unternehmenskontext. Halem.
  152. Zideate (no date) Marketing Dictionary http://www.zideate.com/dictionary.
  153. Zoopla (no date) Website: www.zoopla.co.uk.