Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Substrate specificity of three recombinant a-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem. Biophys. Res. Commun.. 2010;402:644–650.
Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl. Microbiol. Biotechnol.. 2011;92:1179–1185.
Lagaert S, Van Campenhout S, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert G. Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis. Appl. Environ. Microbiol.. 2007;73:5374–5377.
Langkamp-Henken B, Rowe CC, Ford AL, Christman MC, Nieves Jr C, Khouri L, Specht GJ, Girard SA, Spaiser SJ, Dahl WJ. Bifidobacterium bifidum R0071 results in a greater proportion of healthy days and a lower percentage of academically stressed students reporting a day of cold/flu: a randomized, double-blind, placebo-controlled study. Br. J. Nutr.. 2015;113:426–434.
Lasrado LD, Gudipati M. Purification and characterization of β-d-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydr. Polym.. 2013;92:1978–1983.
Lecerf JM, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, Jacobs H, Lambrey G, Abdelnour AM, Pouillart PR. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr.. 2012;108:1847–1858.
Lee SK, Kim YB, Ji GE. Note: purification of amylase secreted from Bifidobacterium adolescentis. J. Appl. Microbiol.. 1997;83:267–272.
Licht TR, Ebersbach T, Frøkiær H. Prebiotics for prevention of gut infections. Trends Food Sci. Technol.. 2012;23:70–82.
Liu H, Guo X, Li W, Wang X, Lv M, Peng Q, Wang M. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr. Polym.. 2015;132:237–244.
Li Z, Summanen PH, Komoriya T, Finegold SM. In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp. and Lactobacillus spp.. Int. J. Food Sci. Nutr.. 2015;66:919–922.
Maathuis AJ, Van den Heuvel EG, Schoterman MH, Venema K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. J. Nutr.. 2012;142:1205–1212.
Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc. Natl. Acad. Sci. U.S.A.. 2011;108(Suppl. 1):4688–4695.
Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D. Beta-galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol. J.. 2010;5:838–847.
Maki KC, Gibson GR, Dickmann RS, Kendall CW, Chen CY, Costabile A, Comelli EM, McKay DL, Almeida NG, Jenkins D, Zello GA, Blumberg JB. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition. 2012;28:1115–1121.
Makras L, Acker GV, Vuyst LD. Lactobacillus paracasei subsp paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl. Environ. Microbiol.. 2005;71:6531–6537.
Margolles A, De los Reyes-Gavilan CG. Purification and functional characterization of a novel α-l-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol.. 2003;69:5096–5103.
Martel CM, Warrilow AGS, Jackson SJ, Mulins JGL, Togawa RC, Parker JE, Morris MS, Donnison IS, Kelly DE, Kelly SL. Expression, purification and use of the soluble domain of Lactobacillus paracasei β-fructosidase to optimise production of bioethanol from grass fructans. Biores. Technol.. 2010;101:4395–4402.
Meyer TSM, Miguel ASM, Fernández DER, Ortiz GMD. Biotechnological production of oligosaccharides: applications in the food industry. In: Eissa AA, ed. Food Production and Industry. InTech; 2015:25–78.
Michlmayr H, Hell J, Lorenz C, Böhmdorfer S, Rosenau T, Kneifel W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol.. 2013;79:6747–6754.
Michlmayr H, Schümann C, Kulbe KD, del Hierro AM. Heterologously expressed family 51 α-l-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol.. 2011;77:1528–1531.
Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JCN, Lo Leggio L, Svensson B, Abou Hachem M. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol.. 2012;194:4249–4259.
Moller MS, Goh YJ, Viborg AH, Andersen JM, Klaenhammer TR, Svensson B, Hachem MA. Recent insight in α-glucan metabolism in probiotic bacteria. Biologia. 2014;69:713–721.
Murakami T, Miyahara H, Yukisata S. Safety and effect of yoghurt containing Bifidobacterium lactis Bb-12 on improvement of defecation and fecal microflora in healthy volunteers. J. Nutr. Food. 2006;9:15–26.
Muramatsu K, Onodera S, Kikuchi M, Shiomi N. Substrate specificity and subsite affinities of β-fructofuranosidase from Bifidobacterium adolescentis G1. Biosci. Biotechnol. Biochem.. 1994;58:1642–1645.
Mussatto SI, Mancilha IM. Non-digestible oligosaccharides: a review. Carbohydr. Polym.. 2007;68:587–597.
Mutanda T, Mokoena MP, Olaniran AO, Wilhelmi BS, Whiteley CG. Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J. Indus. Microbiol. Biotechnol.. 2014;41:893–906.
Nabarlatz D, Farriol X, Montane D. Autohydrolysis of almond shells for the production of xylooligosaccharides: product characteristics and reaction kinetics. Ind. Eng. Chem. Res.. 2005;44:7746–7755.
Nakai H, Baumann MJ, Petersen BO, Westphal Y, Schols H, Dilokpimoi A, Hachem MA, Lahtinen SJ, Duus JO, Svensson B. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. FEBS J.. 2009;276:7353–7365.
Nanno M, Kato I, Kobayashi T, Shida K. Biological effects of probiotics: what impact does Lactobacillus casei Shirota have on us?. Int. J. Immunopathol. Pharmacol.. 2011;24:45S–50S.
Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80.
Niness KR. Inulin and oligofructose: what are they?. J. Nutr.. 1999;129:1402S–1406S.
Nyquist OL, McLeod A, Brede DA, Snipen L, Aakra A, Nes IF. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Mol. Genet. Genomics. 2011;285:297–311.
O’Connell-Motherway M, Fitzgerald GF, Neirynck S, Ryan S, Steidler L, Van Sinderen D. Characterisation of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol.. 2008;74:6271–6279.
O’Donnell MM, Forde BM, Neville B, Ross PR, O’Toole PW. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Fact.. 2011;10(Suppl. 1):S12.
Okazaki M, Fujikawa S, Mastumoto N. Effects of xylooligosaccharides on growth of Bifidobacteria. Bifidobact. Microfl.. 1990;9:77–86.
Oku T, Nakamura S. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharide in healthy human subjects. Eur. J. Clin. Nutr.. 2003;57:1150–1156.
Omori T, Ueno K, Muramatsu K, Kikuchi M, Onodera S, Shiomi N. Characterization of recombinant beta-fructofuranosidase from Bifidobacterium adolescentis G1. Chem. Cent. J.. 2010;4:9.
Osman A, Tzortzis G, Rastall RA, Charalampopoulos D. A comprehensive investigation of the synthesis of prebiotic galactooligosaccharides by whole cells of Bifidobacterium bifidum NCIMB 41171. J. Biotechnol.. 2010;150:140–148.
Pacifici S, Song J, Zhang CK, Tako E. Evaluating the effect of plant origin prebiotics (raffinose and stachyose) on iron status, intestinal functionality and intestinal bacterial populations in vivo. FASEB J.. 2016;30(Suppl. 692):17.
Paineau D, Carcano D, Leyer G, Darquy S, Alyanakian M-A, Simoneau G, Bergmann JF, Brassart D, Bornet F, Ouwehand AC. Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol. Med. Microbiol.. 2008;53:107–113.
Paludan-Müller C, Gram L, Rattray FP. Purification and characterisation of an extracellular fructan beta-fructosidase from a Lactobacillus pentosus strain isolated from fermented fish. Syst. Appl. Microbiol.. 2002;25:13–20.
Pärtty A, Luoto R, Kalliomäki M, Salminen S, Isolauri E. Effects of early prebiotic and probiotic supplementation on development of gut microbiota and fussing and crying in preterm infants: a randomized, double-blind, placebo-controlled trial. J. Pediatr.. 2013;163:1272–1277.
Patel R, DuPont HJ. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis.. 2015;60(Suppl 2):S108–S121.
Petrova P, Emanuilova M, Petrov K. Amylolytic Lactobacillus strains from Bulgarian fermented beverage Boza. Zeitschrift für Naturforschung C. 2010;65:218–224.
Petrova P, Petrov K. Antimicrobial activity of starch-degrading Lactobacillus strains isolated from Boza. Biotechnol. Biotech. Eq.. 2011;25(Suppl. 1):114–116.
Petrova P, Petrov K. Direct starch conversion into L (+) lactic acid by a novel amylolytic strain of Lactobacillus paracasei B41. Starch. 2012;64:10–17.
Petrova P, Petrov K, Stoyancheva G. Starch-modifying enzymes of lactic acid bacteria: structures, properties, and applications. Starch. 2013;65:34–47.
Petrova P, Velikova P, Popova L, Petrov K. Direct conversion of chicory flour into l(+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour. Technol.. 2015;186:329–333.
Pitkälä KH, Strandberg TE, Finne-Soveri UH, Ouwehand AC, Poussa T, Salminen S. Fermented cereal with specific bifidobacteria normalizes bowel movements in elderly nursing home residents. A randomized, controlled trial. J. Nutr. Health Aging. 2007;11:305–331.
Pokusaeva K, Fitzgerald GF, Van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr.. 2011;6:285–306.
Pokusaeva K, O’Connell-Motherway M, Zomer A, Fitzgerald GF, Van Sinderen D. Characterization of two novel alpha-glucosidases from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol.. 2009;75:1135–1143.
Pontonio E, Mahony J, Di Cagno R, Motherway MO, Lugli GA, O’Callaghan A, De Angelis M, Ventura M, Gobbetti M, van Sinderen D. Cloning, expression, and characterization of a β-d-xylosidase from Lactobacillus rossiae DSM 15814T. Microb. Cell Fact.. 2016;15:72.
Quintero M, Maldonado M, Perez-Munoz M, Jimenez R, Fangman T, Rupnow J, Wittke A, Russell M, Hutkins R. Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr. Microbiol.. 2011;62:1448–1454.
Rabiu BA, Jay AJ, Gibson GR, Rastall RA. Synthesis and fermentation properties of novel galactooligosaccharides by β-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol.. 2001;67:2526–2530.
Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol.. 2015;32:42–46.
Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer T. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol.. 2003;37:105–118.
Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12 and Lactobacillus paracasei ssp. paracasei, L. casei 431 in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br. J. Nutr.. 2012;107:876–884.
Roberfroid M. Prebiotics: the concept revisited. J. Nutr.. 2007;137:830S–8377S.
Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol.. 2005;71:6150–6158.
Rubel IA, Perez EE, Genovese DB, Manrique GD. In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Res. Int.. 2014;162:59–65.
Ryan SM, Fitzgerald GF, Van Sinderen D. Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol.. 2005;71:3475–3482.
Ryan SM, Fitzgerald GF, Van Sinderen D. Screening for and identification of starch-, amylopectin-, and pullulan degrading activities in bifidobacterial strains. Appl. Environ. Microbiol.. 2006;72:5289–5296.
Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P. An overview of the last advances in probiotic and prebiotic field. LWT—Food Sci. Technol.. 2013;50:1–16.
Saha BC. Hemicellulose conversion. J. Ind. Microb. Biotechnol.. 2003;30:279–291.
Saito T. Chemical structure of three neutral trisaccharides isolated in free form from bovine colostrum. Carbohydr. Res.. 1987;165:43–51.
Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch: a review. Comp. Rev. Food Sci. Food Safety. 2006;5:1–17.
Sánchez-Mata MC, Peñuela-Teruel MJ, Cámara-Hurtado M, Diez- Marqués C, Torija-Isasa ME. Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J. Agric. Food Chem.. 1998;46:3648–3652.
Sanders ME. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis.. 2008;46:S58–S61.
Sanders ME, Klaenhammer TR. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci.. 2001;84:319–331.
Sangwan V, Tomar SK, Singh RR, Singh AK, Ali B. Galactooligosaccharides: novel components of designer foods. J. Food Sci. 2011;76:R103–R111.
Sarbini SR, Rastall RA. Prebiotics: metabolism, structure, and function. Funct. Food Rev.. 2011;3:93–106.
Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl. Environ. Microbiol.. 2007;73:1753–1765.
Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen M-C, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A.. 2002;99:14422–14427.
Searle LE, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, Dugdale AH, Tzortzis G, Collins JW, Woodward MJ, La Ragione RM. Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo. J. Med. Microbiol.. 2010;59:1428–1439.
Sears CL. A dynamic partnership: celebrating our gut flora. Anaerobe. 2005;11:247–251.
Shin H-Y, Lee J-H, Lee J-Y, Han Y-O, Han MJ, Kim D-H. Purification and characterization of ginsenoside Ra-hydrolyzing β-d-Xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol. Pharm. Bull.. 2003;26:1170–1173.
Shin H-Y, Park S-Y, Sung JH, Kim D-H. Purification and characterization of α-l-arabinopyranosidase and α-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol.. 2003;69:7116–7123.
Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR. Perspectives on the biotechnological production and potential applications of lactosucrose: a review. J. Funct. Foods. 2015;19:74–90.
Simpson HL, Campbell BJ. Review article: dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther.. 2015;42:158–179.
Smith TJ, Rigassio-Radler D, Denmark R, Haley T, Touger-Decker R. Effect of Lactobacillus rhamnosus LGG® and Bifidobacterium animalis ssp. lactis BB-12® on health-related quality of life in college students affected by upper respiratory infections. Br. J. Nutr.. 2013;109:1999–2007.
Steed H, Macfarlane GT, Blackett KL, Bahrami B, Reynolds N, Walsh SV, Cummings JH, Macfarlane S. Clinical trial: the microbiological and immunological effects of synbiotic consumption—a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment. Pharmacol. Ther.. 2010;32:872–883.
Su P, Henriksson A, Mitchell H. Selected prebiotics support the growth of probiotic mono-cultures in vitro. Anaerobe. 2007;13:134–139.
Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Jakki C, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, Ross RP, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O’Toole PW. Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun.. 2015;6:8322.
Švejstil R, Musilová Š, Rada V. Raffinose-series oligosaccharides in soybean products. Sci. Agric. Bohem.. 2015;46:73–77.
Szajewska H, Chmielewska A. Growth of infants fed formula supplemented with Bifidobacterium lactis Bb12 or Lactobacillus GG: a systematic review of randomized controlled trials. BMC Pediatr.. 2013;13:185.
Tabasco R, Paarup T, Janer C, Peláez C, Requena T. Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. Int. Dairy J.. 2007;17:1107–1114.
Teixeira JS, McNeill V, Gänzle MG. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by Lactobacilli. Food Microbiol.. 2012;31:278–284.
Thompson J, Jakubovics N, Abraham B, Hess S, Pikis A. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J. Bacteriol.. 2008;190:3362–3373.
Torres DPM, Gonçalves MF, Teixeira JA, Rodrigues LR. Galactooligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Safety. 2010;9:438–454.
Trindade MI, Abratt VR, Reid SJ. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Appl. Environ. Microbiol.. 2003;69:24–32.
Turpin W, Humblot C, Guyot JP. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol.. 2011;77:8722–8734.
Urbańska M, Gieruszczak-Białek D, Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment. Pharm. Ther.. 2016;43:1025–1034.
Van den Broek LA, Struijs K, Verdoes JC, Beldman G, Voragen AG. Cloning and characterization of two alpha-glucosidases from Bifidobacterium adolescentis DSM20083. Appl. Microbiol. Biotechnol.. 2003;61:55–60.
Van den Broek LAM, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AGL. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl. Microbiol. Biotechnol.. 2005;67:641–647.
Van Laere KM, Abee T, Schols HA, Beldman G, Voragen AG. Characterization of a novel beta-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides. Appl. Environ. Microbiol.. 2000;66:1379–1384.
Van Laere KMG, Beldman G, Voragen AGJ. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl. Microbiol. Biotechnol.. 1997;47:231–235.
Van Laere KMG, Voragen CHL, Kroef T, Van den Broek LAM, Beldman G, Voragen AGJ. Purifcation and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Appl. Microbiol. Biotechnol.. 1999;51:606–613.
Van Laere KMJ, Hartemink R, Bosveld M, Schols HA, Voragen AGJ. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J. Agric. Food Chem.. 2000;48:1644–1652.
Vazquez MJ, Alonso JL, Dominguez H, Parajo JC. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol.. 2000;11:387–393.
Velikova P, Stoyanov A, Blagoeva G, Popova L, Petrov K, Gotcheva V, Angelov A, Petrova P. Starch utilization routes in lactic acid bacteria: new insight by gene expression assay. Starch. 2016;68:953–960.
Vernazza CL, Gibson GR, Rastall RA. Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J. Appl. Microbiol.. 2006;100:846–853.
Waitzberg DL, Logullo LC, Bittencourt AF, Torrinhas RS, Shiroma GM, Paulino NP, Teixeira-da-Silva ML. Effect of synbiotic in constipated adult women: a randomized, double-blind, placebo-controlled study of clinical response. Clin. Nutr.. 2013;32:27–33.
Wang Y, Chen C, Ai L, Zhou F, Zhou Z, Wang L, Zhang H, Chen W, Guo B. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. J. Bacteriol.. 2011;193:313–314.
Warchol M, Perrin S, Grill JP, Schneider F. Characterization of a purified beta-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett. Appl. Microbiol.. 2002;35:462–467.
Watson DM, O’Connell-Motherway M, Schoterman MH, Joost van Neerven RJ, Nauta A, van Sinderen D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol.. 2013;114:1132–1146.
West NP, Pyne DB, Cripps AW, Hopkins WG, Eskesen DC, Jairath A, Christophersen CT, Conlon MA, Fricker PA. Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr. J.. 2011; .
Yen CH, Kuo YW, Tseng YH, Lee MC, Chen HL. Beneficial effects of fructooligosaccharides supplementation on fecal bifidobacteria and index of peroxidation status in constipated nursing-home residents: a placebo-controlled, diet-controlled trial. Nutrition. 2011;27:323–328.
Yuan QP, Zhang H, Qian ZM, Yang XJ. Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. J. Chem. Technol. Biotechnol.. 2004;79:1073–1079.
Zeng H, Xue Y, Peng T, Shao W. Properties of xylanolytic enzyme system in bifidobacteria and their effects on the utilization of xylooligosaccharides. Food Chem.. 2007;101:1172–1177.
Zhang L, Su Y, Zheng Y, Jiang Z, Shi J, Zhu Y, Jiang Y. Sandwich structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides. Bioresour. Technol.. 2010;101:9144–9149.
Zhou Y, Ruan Z, Zhou X, Huang X, Li H, Wang L, Zhang C, Deng Z, Wu G, Yin Y. Lactosucrose attenuates intestinal inflammation by promoting Th2 cytokine production and enhancing CD86 expression in colitic rats. Biosci. Biotechnol. Biochem.. 2015;79:643–651.
Ziemer CJ, Gibson GR. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J.. 1998;8:473–479.