Bibliography

Andoni, A. and P. Indyk (2006). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp. 459–468. IEEE.

Anscombe, F. J. (1973). Graphs in statistical analysis. American Statistician 27(1), 17–21.

Anton, H. and C. Rorres (2010). Elementary Linear Algebra: Applications Version. John Wiley & Sons.

Ashenfelter, O. (2008). Predicting the quality and prices of bordeaux wine*. The Economic Journal 118(529), F174–F184.

Ashmore, M. (1993). The theatre of the blind: Starring a promethean prankster, a phoney phenomenon, a prism, a pocket, and a piece of wood. Social Studies of Science 23(1), 67–106.

Ayres, I. (2008). Super Crunchers: Why Thinking-By-Numbers is the New Way To Be Smart. Bantam.

Bache, K. and M. Lichman (2013). UCI machine learning repository.

Ball, N. M., J. Loveday, M. Fukugita, O. Nakamura, S. Okamura, J. Brinkmann, and R. J. Brunner (2004). Galaxy types in the sloan digital sky survey using supervised artificial neural networks. Monthly Notices of the Royal Astronomical Society 348(3), 1038–1046.

Banerji, M., O. Lahav, C. J. Lintott, F. B. Abdalla, K. Schawinski, S. P. Bamford, D. Andreescu, P. Murray, M. J. Raddick, A. Slosar, A. Szalay, D. Thomas, and J. Vandenberg (2010). Galaxy zoo: Reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society 406(1), 342–353.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.

Batista, G. E. A. P. A. and M. C. Monard (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17(5-6), 519–533.

Bayes, T. and R. Price (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683-1775), 370–418.

Bejar, J., U. Cortés, and M. Poch (1991). Linneo+: A classification methodology for ill-structured domains. Research report RT-93-10-R, Dept. Llenguatges i Sistemes Informatics. Barcelona.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends in Machine Learning 2(1), 1–127.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517.

Berk, R. A. and J. Bleich (2013). Statistical procedures for forecasting criminal behavior. Criminology & Public Policy 12(3), 513–544.

Bertin, J. (2010). Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press.

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Oxford University Press.

Blondot, R. (1903). Sur une nouvelle action produite par les rayons n et sur plusieurs fait relatifs à ces radiations. Comptes Rendus de l’Académie des Sciences de Paris 137, 166–169.

Breiman, L. (1993). Classification and regression trees. CRC press.

Breiman, L. (1996). Bagging predictors. Machine learning 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine learning 45(1), 5–32.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167.

Caruana, R., N. Karampatziakis, and A. Yessenalina (2008). An empirical evaluation of supervised learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pp. 96–103. ACM.

Caruana, R. and A. Niculescu-Mizil (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning, pp. 161–168. ACM.

Casscells, W., A. Schoenberger, and T. B. Graboys (1978). Interpretation by physicians of clinical laboratory results. The New England Journal of Medicine 299(18), 999–1001.

Chang, W. (2012). R Graphics Cookbook: Practical Recipes for Visualizing Data. O’Reilly Media.

Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth (2000, August). CRISP-DM 1.0 Step-by-step data mining guide. Technical report, The CRISP-DM consortium.

Cleary, D. and R. I. Tax (2011). Predictive analytics in the public sector: Using data mining to assist better target selection for audit. In The Proceedings of the 11th European Conference on EGovernment: Faculty of Administration, University of Ljubljana, Ljubljana, Slovenia, 16-17 June 2011, pp. 168. Academic Conferences Limited.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 34–46.

Cooper, G. F. and E. Herskovits (1992). A bayesian method for the induction of probabilistic networks from data. Machine learning 9(4), 309–347.

Cover, T. and J. Thomas (1991). Elements of information theory. Wiley New York.

Cristianini, N. and J. Shawe-Taylor (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press.

Cunningham, P. (2009). A taxonomy of similarity mechanisms for case-based reasoning. IEEE Transactions on Knowledge and Data Engineering 21(11), 1532–1543.

Daelemans, W. and A. van den Bosch (2005). Memory-based language processing. Studies in natural language processing. Cambridge University Press.

Dalgaard, P. (2008). Introductory Statistics with R. Springer.

Davenport, T. H. (2006, January). Competing on Analytics. Harvard Business Review 84(1), 98–107.

Davenport, T. H. and J. Kim (2013). Keeping Up with the Quants: Your Guide to Understanding and Using Analytics. Harvard Business Press Books.

Davies, E. (2005). Machine vision: theory, algorithms, practicalities (3rd Edition ed.). Elsevier.

De Bruyne, K., B. Slabbinck, W. Waegeman, P. Vauterin, B. De Baets, and P. Vandamme (2011). Bacterial species identification from maldi-tof mass spectra through data analysis and machine learning. Systematic and applied microbiology 34(1), 20–29.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30.

Doctorow, C. (2010). Little Brother. Macmillan.

Eco, U. (1999). Kant and the platypus. Vintage U.K. Random House.

Esposito, F., D. Malerba, and G. Semeraro (1997). A comparative analysis of methods for pruning decision trees. Pattern Analysis and Machine Intelligence, IEEE Transactions on 19(5), 476–491.

Fanaee-T, H. and G. Gama (2014, June). Event labeling combining ensemble detectors and background knowledge. Progress in Artifical Intelligence 2(2-3), 113–127.

Frank, E. (2000). Pruning decision trees and lists. Ph. D. thesis, Department of Computer Science, The University of Waikato.

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). Cambridge Univ Press.

Franklin, J., P. McCullough, and C. Gray (2000). Terrain variables used for predictive mapping of vegetation communities in southern california. In J. C. G. John P. Wilson (Ed.), Terrain analysis: principles and applications. Wiley.

Freund, Y. and R. E. Schapire (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. In Computational learning theory, pp. 23–37. Springer.

Friedman, J., J. Bently, and R. Finkel (1977). An algorithm for finding the best matches in logarithmic expected time. ACM Transactions on Mathematical Software 3(3), 209–226.

Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28(2), 337–407.

Fry, B. (2007). Visualizing Data: Exploring and Explaining Data with the Processing Environment. O’Reilly Media.

G¨adenfors, P. (2004). Conceptual Spaces: The geometry of throught. MIT Press.

Gleick, J. (2011). The information: A history, a theory, a flood. HarperCollins UK.

Gross, P., A. Boulanger, M. Arias, D. L. Waltz, P. M. Long, C. Lawson, R. Anderson, M. Koenig, M. Mastrocinque, W. Fairechio, J. A. Johnson, S. Lee, F. Doherty, and A. Kressner (2006). Predicting electricity distribution feeder failures using machine learning susceptibility analysis. In AAAI, pp. 1705–1711. AAAI Press.

Guisan, A. and N. E. Zimmermann (2000). Predictive habitat distribution models in ecology. Ecological modelling 135(2), 147–186.

Gwiazda, J., E. Ong, R. Held, and F. Thorn (2000, 03). Vision: Myopia and ambient night-time lighting. Nature 404(6774), 144–144.

Hand, D. J. and C. Anagnostopoulos (2013). When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance? Pattern Recognition Letters 34(5), 492–495.

Hart, P. (1968). The condensed nearest neighbor rule. Information Theory, IEEE Transactions on 14(3), 515–516.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. Springer, New York.

Hastie, T., R. Tibshirani, and J. J. H. Friedman (2001). The elements of statistical learning. Springer.

Hinton, G. E. and R. R. Salakhutdinov (2006). Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507.

Hirschowitz, A. (2001). Closing the crm loop: The 21st century marketer’s challenge: Transforming customer insight into customer value. Journal of Targeting, Measurement and Analysis for Marketing 10(2), 168–178.

Hubble, E. (1936). The Realm of the Nebulæ. Yale University Press.

Japkowicz, N. and M. Shah (2011). Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press.

Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge University Press.

Jurafsky, D. and J. H. Martin (2008). Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition (Second Edition). Prentice Hall.

Keri, J. (2007). Baseball Between the Numbers: Why Everything You Know About the Game is Wrong. Basic Books.

Klotz, I. M. (1980). The n-ray affair. Scientific American 242(5), 122–131.

Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD, pp. 202–207.

Kollar, D. and N. Friedman (2009). Probabilistic graphical models: principles and techniques. The MIT Press.

Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms. Wiley.

Kutner, M., C. Nachtsheim, J. Neter, and W. Li (2004). Applied Linear Statistical Models. McGraw-Hill.

Lehmann, T. M., M. O. Güld, D. Keysers, H. Schubert, M. Kohnen, and B. B. Wein (2003). Determining the view of chest radiographs. J. Digital Imaging 16(3), 280–291.

Levitt, Steven, D. and J. Dubner, Stephen (2005). Freakonomics: A Rogue Economist Explores the Hidden Side of Everything. Penguin.

Lewis, M. (2004). Moneyball: The Art of Winning an Unfair Game. W.W. Norton and Company.

Lintott, C., K. Schawinski, S. Bamford, A. Slosar, K. Land, D. Thomas, E. Edmondson, K. Masters, R. C. Nichol, M. J. Raddick, A. Szalay, D. Andreescu, P. Murray, and J. Vandenberg (2011, January). Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies. Monthly Notices of the Royal Astronomical Society 410, 166–178.

Lintott, C. J., K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M. J. Raddick, R. C. Nichol, A. Szalay, D. Andreescu, P. Murray, and J. Vandenberg (2008, September). Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society 389, 1179–1189.

Loh, W.-Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(1), 14–23.

Mac Namee, B., P. Cunningham, S. Byrne, and O. I. Corrigan (2002). The problem of bias in training data in regression problems in medical decision support. Artificial Intelligence in Medicine 24(1), 51–70.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.

McGrayne, S. B. (2011). The Theory that Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy. Yale University Press.

Mingers, J. (1987). Expert systems - rule induction with statistical data. Journal of the Operational Research Society 38, 39–47.

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. Machine learning 3(4), 319–342.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Mitchell, T. M., S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave, R. A. Mason, and M. A. Just (2008, May). Predicting Human Brain Activity Associated with the Meanings of Nouns. Science 320(5880), 1191–1195.

Montgomery, D. (2004). Introduction to Statistical Quality Control. Wiley.

Montgomery, D. C. (2012). Design and Analysis of Experiments. Wiley.

Montgomery, D. C. and G. C. Runger (2010). Applied statistics and probability for engineers. Wiley. com.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. The MIT Press.

Neapolitan, R. E. (2004). Learning bayesian networks. Pearson Prentice Hall Upper Saddle River.

OECD (2013). The OECD Privacy Framework. Organisation for Economic Co-operation and Development.

Osowski, S., L. T. Hoai, and T. Markiewicz (2004, April). Support vector machine-based expert system for reliable heartbeat recognition. Biomedical Engineering, IEEE Transactions on 51(4), 582–589.

Palaniappan, S. and R. Awang (2008). Intelligent heart disease prediction system using data mining techniques. International Journal of Computer Science and Network Security 8(8), 343–350.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: models, reasoning and inference, Volume 29. Cambridge Univ Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning 1(1), 81–106.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies 27(3), 221–234.

Quinlan, J. R. (1993). C4. 5: programs for machine learning. Morgan Kaufmann.

Quinn, G. E., C. H. Shin, M. G. Maguire, and R. A. Stone (1999, 05). Myopia and ambient lighting at night. Nature 399(6732), 113–114.

Rice, J. A. (2006). Mathematical Statistics and Data Analysis. Cengage Learning.

Richter, M. M. and R. O. Weber (2013). Case-Based Reasoning: A Textbook. Springer Berlin Heidelberg.

Samet, H. (1990). The design and analysis of spatial data structures, Volume 199. Addison-Wesley Reading, MA.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning 5(2), 197–227.

Schapire, R. E. (1999). A brief introduction to boosting. In Ijcai, Volume 99, pp. 1401–1406.

Schwartz, P. M. (2010). Data protection law and the ethical use of analytics. Technical report, The Centre for Information Policy Leadership (at Hunton & Williams LLP).

Segata, N., E. Blanzieri, S. J. Delany, and P. Cunningham (2009). Noise reduction for instance-based learning with a local maximal margin approach. Journal of Intelligent Information Systems 35, 301–331.

Shannon, C. E. and W. Weaver (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

Siddiqi, N. (2005). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring. Wiley.

Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die (1st ed.). Wiley Publishing.

Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail — but Some Don’t. The Penguin Press.

Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer (2005). Rocr: visualizing classifier performance in r. Bioinformatics 21(20), 3940–3941.

Smyth, B. and M. Keane (1995). Remembering to forget: A competence preserving case deletion policy for cbr systems. In C. Mellish (Ed.), The Fourteenth International Joint Conference on Artificial Intelligence, pp. 337–382.

Stewart, J. (2012). Calculus (7e ed.). Cengage Learning.

Stoughton, C., R. H. Lupton, M. Bernardi, M. R. Blanton, S. Burles, F. J. Castander, A. J. Connolly, D. J. Eisenstein, J. A. Frieman, G. S. Hennessy, R. B. Hindsley, Ž. Ivezić, S. Kent, P. Z. Kunszt, B. C. Lee, A. Meiksin, J. A. Munn, H. J. Newberg, R. C. Nichol, T. Nicinski, J. R. Pier, G. T. Richards, M. W. Richmond, D. J. Schlegel, J. A. Smith, M. A. Strauss, M. SubbaRao, A. S. Szalay, A. R. Thakar, D. L. Tucker, D. E. V. Berk, B. Yanny, J. K. Adelman, J. John E. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, J. A. Bakken, M. Bartelmann, S. Bastian, A. Bauer, E. Berman, H. Böhringer, W. N. Boroski, S. Bracker, C. Briegel, J. W. Briggs, J. Brinkmann, R. Brunner, L. Carey, M. A. Carr, B. Chen, D. Christian, P. L. Cole-stock, J. H. Crocker, I. Csabai, P. C. Czarapata, J. Dalcanton, A. F. Davidsen, J. E. Davis, W. Dehnen, S. Dodelson, M. Doi, T. Dombeck, M. Donahue, N. Ellman, B. R. Elms, M. L. Evans, L. Eyer, X. Fan, G. R. Federwitz, S. Friedman, M. Fukugita, R. Gal, B. Gillespie, K. Glazebrook, J. Gray, E. K. Grebel, B. Greenawalt, G. Greene, J. E. Gunn, E. de Haas, Z. Haiman, M. Haldeman, P. B. Hall, M. Hamabe, B. Hansen, F. H. Harris, H. Harris, M. Harvanek, S. L. Hawley, J. J. E. Hayes, T. M. Heckman, A. Helmi, A. Henden, C. J. Hogan, D. W. Hogg, D. J. Holmgren, J. Holtzman, C.-H. Huang, C. Hull, S.-I. Ichikawa, T. Ichikawa, D. E. Johnston, G. Kauffmann, R. S. J. Kim, T. Kimball, E. Kinney, M. Klaene, S. J. Kleinman, A. Klypin, G. R. Knapp, J. Korienek, J. Krolik, R. G. Kron, J. Krzesiński, D. Q. Lamb, R. F. Leger, S. Limmongkol, C. Lindenmeyer, D. C. Long, C. Loomis, J. Loveday, B. MacKinnon, E. J. Mannery, P. M. Mantsch, B. Margon, P. McGehee, T. A. McKay, B. McLean, K. Menou, A. Merelli, H. J. Mo, D. G. Monet, O. Nakamura, V. K. Narayanan, T. Nash, J. Eric H. Neilsen, P. R. Newman, A. Nitta, M. Odenkirchen, N. Okada, S. Okamura, J. P. Ostriker, R. Owen, A. G. Pauls, J. Peoples, R. S. Peterson, D. Petravick, A. Pope, R. Pordes, M. Postman, A. Prosapio, T. R. Quinn, R. Rechenmacher, C. H. Rivetta, H.-W. Rix, C. M. Rockosi, R. Rosner, K. Ruthmansdorfer, D. Sandford, D. P. Schneider, R. Scranton, M. Sekiguchi, G. Sergey, R. Sheth, K. Shimasaku, S. Smee, S. A. Snedden, A. Stebbins, C. Stubbs, I. Szapudi, P. Szkody, G. P. Szokoly, S. Tabachnik, Z. Tsvetanov, A. Uomoto, M. S. Vogeley, W. Voges, P. Waddell, R. Walterbos, S. i Wang, M. Watanabe, D. H. Weinberg, R. L. White, S. D. M. White, B. Wilhite, D. Wolfe, N. Yasuda, D. G. York, I. Zehavi, and W. Zheng (2002). Sloan digital sky survey: Early data release. The Astronomical Journal 123(1), 485.

Svolba, G. (2007). Data Preparation for Analytics Using SAS. SAS Institute.

Svolba, G. (2012). Data Quality for Analytics Using SAS. SAS Institute.

Taleb, N. N. (2008). The Black Swan: The Impact of the Highly Improbable. Penguin.

Tempel, E., E. Saar, L. J. Liivam¨agi, A. Tamm, J. Einasto, M. Einasto, and V. Müller (2011). Galaxy morphology, luminosity, and environment in the sdss dr7. A&A 529, A53.

Tene, O. and J. Polonetsky (2013). Big data for all: Privacy and user control in the age of analytics. Northwestern Journal of Technology and Intellectual Property 11(5), 239–247.

Tijms, H. (2012). Understanding probability. Cambridge University Press.

Tsanas, A. and A. Xifara (2012). Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings 49, 560–567.

Tsoumakas, G., M.-L. Zhang, and Z.-H. Zhou (2012). Introduction to the special issue on learning from multi-label data. Machine Learning 88(1-2), 1–4.

Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphics Press.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.

Vapnik, V. (2000). The Nature of Statistical Learning Theory. Springer.

Widdows, D. (2004). Geometry and Meaning. Stanford, CA: Center for the Study of Language and Information.

Wirth, R. and J. Hipp (2000). Crisp-dm: Towards a standard process model for data mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, pp. 29–39. Citeseer.

Wolpert, David, H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation 8(7), 1341–1390.

Wood, R. W. (1904). The n-rays. Nature 70, 530–531.

Woolery, L., J. Grzymala-Busse, S. Summers, and A. Budihardjo (1991). The use of machine learning program lers lb 2.5 in knowledge actuitiion for expert system development in nursing. Computers in Nursing 9, 227–234.

Zadnik, K., L. A. Jones, B. C. Irvin, R. N. Kleinstein, R. E. Manny, J. A. Shin, and D. O. Mutti (2000, 03). Vision: Myopia and ambient night-time lighting. Nature 404(6774), 143–144.

Zhang, N. L. and D. Poole (1994). A simple approach to bayesian network computations. In Proceedings of the Tenth Biennial Canadian Artificial Intelligence Conference, pp. 171–178.

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC Press.