[1]C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press (An imprint of Elsevier), 1998.
[2]R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, Third Edition, John Wiley & Sons, Inc. 2000.
[3]K. Chandrasekharan, Classical Fourier Transforms, Springer–Verlag, 1989.
[4]C. G. Denlinger, Elements of Real Analysis, Jones and Bartlett Learning, 2011.
[5]G. de Barra, Measure Theory and Integration, Wiley Eastern, New Delhi, 1981.
[6]G. B. Folland, Real Analysis: Modern Techniques and Their Applications, John Wiley & Sons, Inc., New York, 1999.
[7]S.R. Ghorpade and B.V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006.
[8]W. A. J. Luxemburg, Arzela’s dominated convergence theorem for the Riemann integral, The American Mathematical Monthly, Vol. 78, No. 9 (Nov., 1971), pp. 970–979.
[9]M.T. Nair, Functional Analysis: A First Course, PHI Learning, New Delhi, 2002 (Fourth Print: 2014).
[10]M.T. Nair, Calculus of One Variable, Ane Books Pvt. Ltd., New Delhi, 2015.
[11]M.H. Protter, Basic Elements of Real Analysis, Springer, 1998.
[12]H.L. Royden, Real Analysis, 3rd Edition, Prentice-Hall of India, New Delhi, 1995.
[13]W. Rudin, Principles of Mathematical Analysis (Third Edition), International Student Edition, McGraw-Hill Kogakusha Ltd., Tokyo, 1964.
[14]W. Rudin, Real and Complex Analysis (Third Edition), McGraw-Hill Book Co., Singapore, 1987.