INDEX

abstract surfaces, 147–153

Adiprasito, Karim, 99, 100

admissibility, 10–11

algebraic geometry, 74, 75, 83, 85, 91, 282–283

algebraic topology, 186

Anderson localization, 117, 118

approximation hardness results, 240–241

Aristotle, 255

arithmetic geometry, 181–183

Atiyah, Michael, 201–208

Avila, Artur, 163–171

Banach–Tarski paradox, 255–256

band gaps, 57

Bell, Eric Temple, 157

Bhargava, Manjul, 173–180

billiard ball trajectories, 152–154, 164

binary quadratic forms, 177

Birch and Swinnerton–Dyer conjecture, 180

bird eyes, 51–57

blind-taste-test protocol, 231

Boltzmann’s ergodic hypothesis, 169–170

Brownian map, 64–72

Brownian motion, 63, 64

C*-algebras, 109–111, 114–115

Calabi–Yau spaces, 83

Cantor, Georg, 247, 248, 255, 256, 262–263

cap sets, 129–133

category theory, 223

central limit theorem, 46

chaos, onset of, 167–168

climate change, 40, 159

clock arithmetics, 184–185

cohomology rings, 99, 100

cohomology theories, 75

coin tossing, 24–26

color vision, 51, 52

commutative algebra, 89

complementarity, 85

complexity theory, 229, 233, 264–265

composition laws, 177–179

computer proof assistants, 219–221, 224

constraint satisfaction problems, 239

continuum hypothesis, 245–252, 263–265

Coq, 219–221

corner cases, 213

Cramér, Harald, 25

decision problem, 126

Defense Advanced Research Projects Agency (DARPA), 211, 216

Deligne, Pierre, 13

dependent-type theories, 215

derivatives, 98

distributions, 198, 199

drones, 217

duality, 84, 85

dynamical systems, 152, 166, 169

Dyson, Freeman, 155–161

E8, 139–143

ecosystem stability, 43, 48

Eden model, 65, 66, 67, 70

eigenvalues, 39–41, 44–47, 54

einstein (shape), 125–126

Einstein, Albert, 84

elliptic curves, 173, 179–180, 182

emulsions, 54, 56

equilibrium systems, 54

Eratosthenes, 5, 6, 20

Erdős, Paul, 135

Erdős discrepancy problem, 135–138

Erdős–Szemeredi sunflower conjecture, 133

error-free code, 212

Euclid, 4, 17, 255

Euler’s equation, 204

exact hardness results, 238–240

Fermat’s Last Theorem, 31, 142, 179, 182, 185, 187, 199, 256–258, 271

Feynman, Richard, 73, 81, 82

Feynman diagram, 73–79

Fibonacci sequence, 175

Filoche, Marcel, 118–122

finite–infinite divide, 253–259

forcing axioms, 245–247, 251–252

formal verification/specification, 211–217

Fourier analysis, 131

fractal structures, 181–183

Fractal Wall, 119

Galileo, 81

Galois group, 79

Galois representations, theory of, 271

game theory, 155

gamma distributions, 106

Gauss’ composition law, 177, 178

Gaussian correlation inequality (GCI), 103–107

Gaussian distribution, 44–46, 105–106

gender equality, 279, 280

geodesics, 82, 150

geometry of numbers, 179

Gödel, Kurt, 245, 248–250, 257

Goldbach conjecture, 4, 187

Goldin, Rebecca, 281–286

GPY (Goldston–Pintz–Yıldırım) paper, 5–7, 13–14, 15

graph isomorphism problem, 229–233

graph theory, 96–97

gravitation, 98, 206, 207

Grothendieck, Alexander, 75

hacker-proof code, 211–217

Hairer, Martin, 193–200

Harris–Taylor proof, 181

High-assurance building blocks, 216

High-Assurance Cyber Military Systems (HACMS) project, 211, 216

Hilbert’s program, 254–257

Hironaka, Heisuke, 91, 92, 101

Hodge index theorem, 100

Hodge theory, 98–101

holes, 245, 248

homotopy, 222–226

HoTT community, 226

Huh, June, 89–102

hyperbolic geometry, 147–152, 185

hyperbolic three-space, 185

hyperuniformity, 51–57

ideal class group, 178

identities, 271

index theorem, 202–205

infinity

actual infinity, 247, 252, 255, 259

comparing, 261–265

continuum hypothesis and, 245–252

finite–infinite divide and, 253–259

infinity-groupoids, 223, 224

p, 261–265

potential, 247, 255

t, 261–265

uncountably infinite, 263

inner-model axiom, 245, 246, 250

interaction strength, 44

islands of stability, 167, 168

j-function, 29–35

Johnson graph, 233

K3 surfaces, 30–35

Kac–Moody algebras, 30

Kadison–Singer problem, 109–115

Kähler package, 100

Kardar–Parisi–Zhang equation, 197

Katz, Eric, 99–100

Keisler’s order, 264–265

Kepler’s conjecture, 139

Khot, Subhash, 235–242

knot theory, 286

K-theory, 204–205

k-tuple, 10

L (universe of sets), 249–252

landscape function, 117–122

Langlands program, 185

lattice distributions, 52–54

lattice points, 179

LED lights, 118, 121, 122

Leech lattice, 139–143

Lemke Oliver, Robert, 23–26

Liouville function, 137, 138

Liouville quantum gravity (LQG), 64–72

localization, 117–121

log concavity, 93–100

logistic equation for population growth, 167–168

loops, 77–78, 147, 150

M12 group, 33

Marcus, Adam, 109, 110, 113–115

Martin-Löf type theory (MLTT), 224–226

Martin’s maximum, 246–247, 251

Mathieu 24 (M24) group, 33

Matomäki, Kaisa, 17–21

matrices, 111

matroids, 97–100

Max Cut, 240

Mayboroda, Svitlana, 117–122

Maynard, James, 10, 13–15

MEGASET, 221

Miller, Jason, 59–62, 64–72

Milnor conjecture, 226

Minimum Vertex Cover, 240

mirror symmetry, 82–85

Mirzakhani, Maryam, 147–154

mock theta functions, 34

model theory, 264–265

modular forms, 32–35, 142, 182

moduli space, 150–153

monster group, 29–35

moonshines, 29–35

motives, 74–79

multihyperuniform patterns, 57, 58

multiplicative functions/sequences, 18–20, 136–138

network sparsification, 109

noncommutative algebra, 201

nonequilibrium systems, 54–55

Ono, Ken, 275–280

operational semantics, 215

Orion spaceship, 159

packing, 52, 53

p-adic numbers, 183

palatial twistor theory, 201

particle collisions, 73–79

PCP theorem, 238

Penrose, Roger, 201–203

Penrose tiling, 126

pentagon tiling, 123–127

perfectoid spaces, 181–186

periods, 74–79

periods of motives, 74–77

perturbative expansion, 73, 74

phase transitions, 46–49

pi, 76

Polignac, Alphonse de, 4

Polymath project, 9–13, 14–15, 137

polynomials

characteristic polynomials, 98–99, 113

chromatic polynomials, 93–96

interlacing polynomials, 113

polynomial method, 131–133

potential, 120

Press, William, 155–156

prime k-tuples conjecture, 26

prime numbers

consecutive, 23–26

distribution of, 41

prime gap, 9–13

prime number theorem, 17–21

twin primes conjecture, 3–8, 187–190

primitive recursive arithmetic, 257, 258

prisoner’s dilemma, iterated, 155

P versus NP, 230–233, 237, 238, 240

quadratic reciprocity law, 185

quantitative literacy, 282–285

quantum chaotic systems, 37

quantum electrodynamics, 155, 158

quantum systems, 40–41

quantum theory, 81–85

quantum well, 121

quasicrystals, 169

quasi-periodic Schrödinger operators, 169

quasi-polynomial-time algorithm, 230–233

quintic, 83

racial equality, 280

Radziwill, Maksym, 17–20

Ramanujan, Srinivasa, 34, 35, 269–273

Ramsey’s theorem for pairs (), 253, 254, 257–259

Ramsey’s theorem for triplets, 257

Ramsey theory, 130

random growth, 64–68, 71–72

random matrix theory, 41, 49

randomness, 59–72

random walk, 59, 63, 68

Rao, Michaël, 123–127

Read’s conjecture, 95–101

reciprocity laws, 184–185

regularity structures, 194, 196, 198–200

relativity, 84

renormalization, 158, 169

resolution of singularities in characteristic p, 92

Riemann zeta function, 18, 38, 41, 55, 78

Rota conjecture, 90–100

rough path theory, 197

Royen, Thomas, 103–107

Russell, Bertrand, 221

Sanskrit poetry, 174

Scholze, Peter, 181–186

Set (game), 129–133

SET (type), 221

set theory, 220–222, 227, 246–251, 255, 256, 261–265

Sheffield, Scott, 59–72

Sieve of Eratosthenes, 5–6

sieves, 5–7, 14, 19–20

simultaneous confidence intervals, 105

singularity theory, 92, 96–97, 98, 101

SLE (Schramm–Loewner evolution) curve, 68–71

Socolar–Taylor tile, 126

Soundararajan, Kannan, 23–26

sphere packing, 139–143

Spielman, Daniel, 109, 110, 112–115

STATS, 281–285

stochastic behavior, 167, 168, 193

stochastic partial differential equations (SPDEs), 194–200

string theory, 30–35, 46–47, 63–64, 82, 83, 85, 151, 202

Su, Francis, 275–280

submanifold, 153

Sudoku, 138

supercompacts, 250–251

Sutherland, Andrew, 11–12, 13

symplectic geometry, 84, 85, 282–283

Tao, Terence, 9–11, 44, 110, 131, 135–138

Tate motives, 78

Ten Martini Problem, 169

tessellation, 123–127

third-order phase transitions, 48, 49

tiling proof, 123–127

topology, 222, 282

Tracy–Widom distribution, 43–49

translation surface, 153–154

traveling salesman problem, 110, 114, 237

twin primes conjecture, 3–8, 15, 26, 187–190

twistor theory, 201

two-dimensional random spaces, 59–65, 71

type theory, 221–226

ultimate L conjecture, 251

Umbral Moonshine Conjecture, 30, 31, 35

uncertainty principle, 85, 110

UniMath community, 226

unimodal maps, 168–169

Unique Games Conjecture, 235–241

univalence axiom, 225

univalent foundations, 219–220, 223–227

universality

hyperuniformity and, 53–54

in random matrices, 156

in systems, 37–41

Tracy–Widom distribution and, 43–49

universal optimality, 143

Voevodsky, Vladimir, 219–220, 223–227

V = ultimate L, 245–246, 250–252

Wang tiles, 127

waveguides, 57

wave interference, 118, 119

wavelets, 198–199

Weaver’s conjecture, 112–114

weight (number), 78

weight-monodromy conjecture, 183–184

Wigner, Eugene, 82

Wigner’s hypothesis, 39

Witten, Edward, 35, 48, 151, 202, 205, 207

Witten’s conjecture, 151

worldsheet, 64

zero-knowledge proof, 231

ZFC, 245–252, 263

Zhang, Yitang, 3–10, 13–15, 187–191