INDEX

The pagination of this electronic edition does not match the edition from which it was created. To locate a specific passage, please use the search feature of your e-book reader.

abalone 139–42, 152, 159, Fig 6.1

adhesives 4, 7, 78, 79–99;

gecko tape 11, 83, 87–91, 98–9, Fig 4.4;

hook-and-loop fastener 92–6, Fig 4.5;

mussel glue 96–8

aerodynamics 4, 162–4, 167–8, 192–3, Figs 7.1, 8.5

air-conditioning 198–9, 218

air resistance 164

aircraft 4, 19, 162;

aerofoil 163, 174, Fig 7.1;

arrester wires 56, 75;

cracks 68;

fixed-wing 168;

flapping-winged 162;

flight-controls 173–4, 177;

honeycomb-panel construction 191–2;

Stealth 122;

wings 163–4;

see also micro air vehicles

Aizenberg, Joanna 16, 128–31, 153, 157, Fig 5.10

Alamillo Bridge, Seville 213–14

Albers, Joseph 221

albumen 65

American Physical Society 3

amino acids 10, 15, 17, 66, 138, 238n

Ancyluris butterflies 119

anti-counterfeiting devices 118–19

anti-reflection surfaces 121

aphids 53–4

Aphrodita 104, 112–14, 120, 130

aragonite 140–41

architecture 27, 34, 197–230, 232;

arches 201–2, 214;

cable-hanging 212–14;

concrete 204–5, 211–12;

domes 210–12, 216–18, 222–6, 230, Figs 9.10–9.11;

glass 45, 230;

origami-based 195, Fig 8.6;

shell buildings 204–8, 210–12, Fig 9.2, Fig 9.4;

tensegrity 222;

tension and compression 201–4, 208–9, 253n;

ventilation 198–9; see also bridges

Arcidiacono, Steve 70, 74

Aristotle 79

Athens Olympic Stadium 213, 214

atoms 2, 8–9, 15, 25, 137, 158–9, 227, 239n;

atomic theory 8, 21

ATP motor 149–52, Figs 6.4–6.5

Austria 58

Autumn, Kellar 81–6, 87, 89–90, 99

Avogadro’s number 239n

Bachelard, Gaston 237n; The Poetics of Space 54

bacteria 143–4, 150

bacteriophage 143–8, 159, 191, 195, Figs 1.1, 6.2–6.3;

icosahedral structure 216–17;

phage display technique 147–8, 157

bamboo 203

Barfield, Julia 195, 197, 214–16, Figs 8.6, 9.6

Baricco, Alessandro: Silk 61

Barthlott, Wilhelm 32–4, 36–9, 40, 42

Baudelaire, Charles 237n

Bechert, Dietrich 93fn

bee orchids 123

beetles: adhesion 91;

bombardier 21, 239n;

iridescence 104, 109;

Namibian darkling 50–52;

water collection 20–21, 50–52;

wing-folding 181

Belcher, Angela 147–8

Bell Laboratories 16, 128, 129

Berlin, Nikolai-Viertel 42

Bestall, Alfred 186

biodiversity 32, 234–5

bio-inspiration 1, 5, 7, 12, 17–24, 26, 78, 231–3, Fig 7.4;

applications 27, 45, 71, 90–91, 99, 111–12, 232–4;

boundaries 18;

in fiction 158–9;

hybrid technologies 23;

nanotechnology 21, 23, 25;

reverse processes 98; self-assembly 116

biology 4, 15, 232;

molecular 13–14

biomechanics 18, 81, 233

biomimetics 18, 68fn

Biomimetics Conference (2003) 198

biomimicry 122–6

biomineralization 16–17, 128–30, 136

bio-panning 147

Biosteel 63–4, 72

birds 18–19, 162

Birds Portchmouth Russum 197

bistability 181, 183, 186

blood 73

blowfly 165, 171

Bon, Xavier Saint-Hilaire 58, 242n

bones 136, 154;

see also skeleton

Bonn Botanic Garden 36

bridges 200–204, 212–15;

arch 201–2;

cable-stayed 212, 213–14;

cantilever 202–3, Fig 9.1;

Dinosaur 214–15, Fig 9.6;

lintel 200–201;

reinforced concrete 204;

resonance damage 171;

suspension 203

British Origami Society 185–6

brittlestars 17, 126–8, 130–32, 153, 155, Figs 5.9, 5.11

Brooklyn Bridge 203

Brunel, Isambard Kingdom 201

buckling 185, 190–91, 203, 219

buckminsterfullerene 217

Buddhism 30, 38

bulletproof vests, see flak jackets

burrs 93–4, 95, Fig 4.5

butterflies 18, 20, 28, 76fn, 232;

eyes 121;

flight 168;

iridescence 4, 104, 109–12, 114–15, 119, Figs 5.3–5.5;

mimicry 123;

Morpho 4, 104, 110–12, 232, 246–7n, Figs 5.3, 5.5;

Parides sosostris 115, 132, Fig 5.6;

polarized light 119;

wing scales 109–12, 115, 119, Figs 5.3–5.6

cable-hung structures 212–14

cabledomes 222–5, 230, Figs 9.10–9.11

Cairns-Smith, Graham: Seven Clues to the Origin of Life 136fn

Calatrava, Santiago 27, 197, 209, 212–14, 232, Fig 9.5

calcite 130, 131–2, 141, 153

calcium carbonate 16, 136;

abalone shell 140–42, Fig 6.1;

brittlestar lenses 17, 130, Fig 5.11;

mineralization 152–3, 156–7

Calder, Alexander 221

California, University of: Berkeley 11, 18, 80, 83, 85, 91, 173;

Los Angeles 152;

Merced 74;

Santa Barbara 140, 14

Calvert, Paul 142fn

Calvino, Italo 256n;

Six Memos for the Next Millennium 231

Cambrian era 101–2, 131fn

Cambridge Instruments 11

camouflage 115, 121–6, 190;

reflective 121–2

Campbell, David 212, 214, 222–5, 230

Candela, Felix 204, 214

cans, PCCP 190–91, 192, Fig 8.4

cantilevers 202, 215–16, Fig 9.1

capillary forces 85, 86, 87

car design 27–8

carbon 15, 217, 238n, 239n

carbon fibre 173

Carothers, Wallace Hume 242–3n

casein 65

Catseyes 119–20, Fig 5.8

cells 8, 10, 23, 25, 97;

ATP motor 149–50, Fig 6.4;

protein 6;

stem cells 77;

tensegrity structures 220, 228

cellulose 62

cephalopods 124–5

ceramics 142fn

Challenger, HMS 153

Chardonnet, Count Hilaire de 61

Charles, Prince of Wales 25

Chemical Abstracts Service 238n

chemistry 8, 10, 11, 12, 14–16, 23;

compounds 13, 238n;

equations 16;

organic/inorganic 24, 238n

Chilton, John 210–11

Chilton, Steve 195

China: dungheaps 135–6, 198;

silk 58, 60

chitin 15, 110fn, 112, 116, 136, 173

cicadas 123, 248n

clays 136

clothing: electrochromic 125;

stain-resistant 48–9

Coalbrookdale 202

coccoliths 157

Colletia cruciata 34, Fig 2.2

colour 4, 7, 22;

changes 124, 126–7, Fig 5.9;

electrochromic systems 125;

structural 105–13, 133

compliance 89

composites 67–8, 75, 130, 136, 140, 159, 204

compression 201–4, 208–9, 221, 228, 230, 253n

computer 233; optical 102–4, 115, 233;

quantum-dot devices 147–8

computer chips 114, 137–8, 153, Fig 6.3;

nano 6, 142 –3;

photonic 118;

self-assembly Fig 6.3;

templating 147

concrete, reinforced/pre-stressed 204–5, 210, 211–13, 227

Copeland, Tony 211–12

Cott, HB: Adaptive Coloration in Nature 124

cotton 2, 49

cracks 68, 130, 140

Crane, Hart: The Bridge 203

cranes 202, 208, Fig 9.3

Cranfield University 170

creep 74–5

Crichton, Michael: Prey 24, 158, 179

Crick, Francis 11, 64

crumpling 185, 190–91

Crystal Palace 31, 199–200

crystallography, X-ray 10–11

crystals 116;

aragonite 141;

calcium carbonate (calcite) 17, 130–2, 141, 152–3, 157;

crystallization 132;

liquid 66;

see also photonic crystals

Culmann, Karl 208–9, Fig 9.3

curves 205–8, 210

cuticle 33, 34fn, 110fn

cuttlefish 5

Darpa, see US Defense Advanced Research

Projects Agency Dawkins, Richard: Unweaving the Rainbow 232

Defence, Ministry of 17, 51, 76fn, 170

Degussa 37, 42

Democritus 21, 107

deployable structures 181, 189, 193, 229, Fig 9.12

Descartes, René 130

detergents 40, 44, 139

Dickinson, Michael 166–8, 173

Dinosaur Bridge 214–16, Fig 9.6

dinosaurs 215, Fig 9.6

display 126

Dixon, John 222

DNA 2, 3, 14, 23–4, 64, 136, 138–9;

double helical structure 11, 64;

molecule 64, 137

domes 210–12, 222;

cabledomes 222–5, 230, Figs 9.10–9.11;

geodesic 191, 216–18, Fig 6.6

doors, panel 192

DOPA 97–8

double/triple glazing 121

dragonflies 165, 177fn, 193

Drexler, Arthur 222

Drexler, Eric 25;

Engines of Creation 24, 158

Du Pont 63

Eastgate Building, Harare 198

echo-location 19

Eddystone lighthouse 199

Eden Project, Cornwall 218

eggs: shells 210, 212; whites 65, 97

Eiffel Tower 209

electricity 102–3

electrochromic systems 125

electromagnetic spectrum 122, Fig 5.2

electronics, 23, 233;

circuits 11;

computer chips 6, 114, 118, 137–8, 142–3, 147, 153, Fig 6.3;

field-effect transistor 148;

micro 3, 9, 23, 83;

molecular fabrication 137–59;

nanostructured 157;

quantum-dot device 147–8;

templating 143, 147

elements 2, 8, 13

Ellington, Charlie 166, 167, 168

Emmerich, David George 220

energy 148–9, 199

engineering 4–5, 18–19, 23, 85, 93, 208–9;

hybrid 152;

micro 12, 26, 83

Euler, Leonhard 155

Euplectella, see Venus flower basket

Evening Standard 48

evolution 32–3, 92, 216;

anti-evolutionists 131, 239n;

Darwinian 154–5;

eyes 101, 131;

and forces of nature 154–5;

parallel 31fn

experimentation, kitchen-table 18, 74, 139, 219

Expo: 1967 Montreal 216;

1992 Seville 213;

2005 Aichi 27

eyes 101;

cats’ 119;

insects’ 121, 176, 17, Fig 7.7;

optic flow 177

fabrication techniques 17, 135–59

fabrics 7, 68;

iridescent 112;

spider-silk 77;

stain-resistant 48–9

fakir effect 36

Fearing, Ron 11;

gecko work 85–6, 89–90, 98;

MAV work 162–3, 168–73, 175–6, 178–9;

Micromechanical Flying Insect (MFI) 167fn, 170, 173, 178–9, 193, Fig 7.5

Ferro 42 Feynman, Richard 94, 110;

‘There’s Plenty of Room at the Bottom’ 3–4, 5, 11, 137

fibre-optics, see optical fibres

fibreglass 67–8

fibres 7;

biomedical 72;

nanofibres 24, 49, 64;

photonic crystal 113–14

fibrin 73

fibroin 61

fireflies 5, 20

fish 121–2, 124

flak jackets 62, 63, 65, 72, 75, 76–7

Fleming, Alexander 102

flies 19, 22;

adhesion 91, 92;

eyes 121, 176, 177, Fig 7.7;

flight 164, 167, 171–3, 177, 193, Fig 7.2;

halteres 177;

sensory system 176–7

flight 19;

aircraft 163;

control systems 174–7;

flapping 162–3, 164, 168, 170;

indoor 169–70;

insect 4, 18, 19, 161–79;

instability 174, 177;

lift 163–5, 175, Fig 7.1;

manoeuvrability 19, 22, 168, 170, 173–4

flowers 123, 126

folding structures 181–95;

see also origami

food proteins 65

form finding 199, 205–6

Forth Bridge 202–3, 228, Fig 9.1

Foster, Norman 128, 197, 199, 212

Foster-Miller 76–7

Freysinnet, Eugene 204

Full, Bob 18, 19, 138, 206, 234, Fig 4.1;

gecko work 81, 82, 89;

Polypedal Lab 80;

research team 83, 87

Fuller, Buckminster: geodesic domes 191, 216–17, Figs 6.6, 9.7;

tensegrity 218, 220–22, 225, 227

fuzzy logic 93

Galileo Galilei 236, 256n

gall-living aphids 53–4

gases 9fn, 84

gecko adhesion 4, 7, 18, 79–91, 234–5;

bristle arrays 78, 82–92, Figs 1.1, 4.2–4.3;

gloves 99;

movement 89;

robots 81, 89;

synthetic bristles 86–9, Fig 4.3;

tape 11, 83, 87–91, 98–9, Fig 4.4

Gehry, Frank 197, 232

Geiger, David 222, 230, Fig 9.11

Geim, Andrei 26, 87–88, 99, Fig 4.4

gene therapy 233

genetic engineering 5, 24, 97, 138, 159, 233;

Genetically Engineered Proteins for Inorganics 6, 147;

protein motors 151;

spider silk 63, 69, 138

genetic inheritance 13, 14, 15

geodesic domes 191, 216–18, Fig 6.6

Germany 42, 93fn, 234

Ghiradella, Helen 14, 110, 116, 136

Gilson, Pierre 116

glass 67–8; Activ 25–7, 42–7, 230, Fig 2.7;

double glazing 121;

float glass 43;

self-cleaning 7, 26, 27, 42–8, Fig 2.7

Goldsworthy, Andy 211

Goodfellow, George Emery 62

Gordon, James 68fn, 183, 191–2;

Structures…191

gravity 164, 200

Gray, James 166

Greenham Common 71

Grimshaw, Anthony 218

guanine 122

Guest, Simon 189

gyroscopes 177

Haeckel, Ernst 153, Fig 6.6

hair 73, 87;

see also gecko adhesion

Harbin, Robert 186

Hardy, Sir Alistair: The Open Sea 17

Hatfield rail crash 68

hawkmoth 27, 166, Fig 7.3

Heliconius butterflies 119

helicopter, micro- 168–9

Hendler, Gordon 126–8

hexagonal/pentagonal structures 155–6, 200, 216–18, Fig 9.7

hinges 164, 173, 175

Hogarth, William 208fn, 210, 254n

Holbrook, David: ‘The Maverick’ 143

holograms 118

Holub, Miroslav 9, 237n

honey spoon 37, Fig 2.5

honeycombs 13, 155, 191–2, 200

honeydew 53

hook-and-loop fastener 92–6, 120, 185, 233, Fig 4.5

Hooke, Robert 60

housing 198

hoverflies 28

Hunt, Anthony 218

Hurst, Simon 44, 45, 47

Huygens, Christian 130

hybrid engineering 24, 147–52

hydrogen peroxide 21

hydrophilicity 66, 87

hydrophobicity 52, 66–7, 97, Figs 2.3, 2.8;

see also Lotus-Effect

ice sculptures 211

icosahedron 144–5, 216–17, Fig 9.7

identity theft 118

Ingber, Donald 220, 228

inorganic/organic hybrids 24, 136, 147–52

insects 12, 14–15, 28, 101;

flight 4, 18, 161–79;

flight-control systems 176–8;

motion 81;

vision 107;

wingbeat cycle 165, 173, 192, Fig 7.2–7.3;

wing-folding 173, 181, 192;

wings 164–8, 174–5, 177fn, 192–3, Fig 8.5

insulin 5fn, 63

Intelligent Roadstud 120

interference 8, 108–10

International Journal of Space Structures 220

inverse structures 117–18, Fig 5.7

invisibility 125

Iraq 198

iridescence 4, 99, 104–18, 133, Figs 5.2–5.4;

butterflies 109–12, 114–15, 119;

fabrics 111–12;

marine creatures 112–14;

nacre 140;

opals 116–18, Fig 5.7

iRobot 81

Isler, Heinz 205–8, 210–12, Figs 9.2, 9.4

Ispo 39, 42

Japan 44, 191

jellyfish 5, 17

jet engine 19

John, Sajeev 102, 118

Johnson, Barry 218

Kaku, Michio 157

Kaplan, David 69, 70, 75–7

keratin 73, 87

kevlar 55, 62, 63

Kew Gardens 31

Kirkland, David 218

Klug, Aaron 217

Knight, David 63, 70–74, 75, Fig 3.4

Kobayashi, Hidetoshi 183

Komai, Gonnoské 29, 40

Kresling, Biruta 183, 191, Fig 8.1

Kroto, Harry 217

Larkin, Philip 47

leaves 15, 20;

folding 126, 183–4, 190, 191, Figs 8.1–8.2;

ribs 199–200;

surfaces 34–5, Fig 2.1, 2.2

Leeuwenhoek, Antoni van 193

Leigh, Richard: ‘Greatness in Little ’ 22–3, 55, 79, 231

lenses 17, 127–8, 130–32, Fig 5.11

Leucippus 21

Levi, Primo 161, 238n, 256n;

Other People’s Trades 20, 57;

The Periodic Table 14

Lewis, Randy 70

life 2, 6, 136fn, 149

lift 163–5, 166, 169, Fig 7.1

light 8, 99, 101–11, Fig 5.2;

interference 8, 108–10;

polarization 119;

reflection/ anti-reflection 119–21;

refractive index 107–8, 111, 112, 117–18, 121, Fig 5.3;

sensitivity 126–7;

wavelengths 107–8, Fig 5.2

light-emitting diodes 120, 146

Linnaeus, Carolus 112fn

liquid crystal displays 66

lizards 79, 91

locusts 193

Loschmidt, Johann Josef 239n

lotus, sacred (Nelumbo nucifera) 4, 29–32, 36, 49, 54, Figs 2.1, 2.6

Lotus-Effect 18, 20, 29, 54, 85, Figs 2.3–2.5;

discovery of 32–4;

exterior paint 27, 39–42;

ongoing research 48, 52;

patented 38–9;

polypropylene coating 48;

spray-on coating 42

Lotusan 39–42, Fig 2.6

Lucretius 105, 110, 132–3, 144, 256n;

Lucretian Leap 22, 84;

De Rerum Natura 21–2, 101, 135, 231

luminescence 5, 20

Lychnis seed coat 34, 199, Fig 2.2

lycopodium 52, Fig 2.8

Lynch, Gerald 118

McDonald, George 186–8

Madagascar 32

Mahadevan, L. 53–4

Maillart, Robert 204, 205

Manchester University: Institute of Nanotechnology and Mesophysics 87

Mann, Stephen 156–7, Fig 6.6

Mann, Thomas: Dr Faustus 106

map folding 182–3;

leaf-out 189;

Miura-ori 185–6;

Fig 187;

Z Cards 186–8

Marks, David 214

Marks Barfield Architects 195, 197, 214–16, Figs 8.6, 9.6

mast, tensegrity 229, Fig 9.12

Materials Research Society Conference (2004) 74

materials science 7, 18, 27, 135–6, 157, 159, 233;

composites 67–8, 75, 130, 136, 140, 159;

hybrids 24, 147–52;

templating 139

Max Planck Institut, Tübingen 91

Maxwell, James Clerk 102–3

May, George 191

Mayakovsky, Vladimir 203

Mecko Gecko climbing robot 81

medicine 44; biomedical adhesives 98;

biomedical fibres 72;

diagnostic kits 20, 98;

non-stick surfaces 98

Mestral, George de 92, 93–5, 185, 233, Fig 4.5

metals 2, 5, 122;

Lotus-Effect coatings 42;

mussel glue and 96, 98

Meyer, Hermann 208

micro air vehicles (MAVs) 11, 85, 162, 167–79;

flight-control systems 176, 178;

wing-flapping mechanisms 170–73, 175–6, 193

micro-electronics 3, 9, 23, 83

micro-emulsions 156

micro-engineering 12, 26, 83

microscopes 3, 8, 15;

atomic force 11, 87;

atomic tunnelling 12;

Blind Zone 9, 10, 21, 82, 149;

light 8, 10, 12;

scanning electron (SEM) 11–12, 33, 82, 109–10, 111

microtechnology 94

microsurgery 91

microwaves 122

military camouflage 122, 124–5

milk plastic 65

Millbank Millennium Pier, London 195, Fig 8.6

Millennium Bridge, London 171

Millennium Dome, London 212

Milwaukee Art Museum 214, Fig 9.5

mimicry 122–3

minerals 16–17, 24, 136;

synthesis of 141

miniaturization 137

mitochondria 150

Miura, Koryo 183–6, 188, 191;

Miura-ori fold 185–6, 188–91, 193, Fig 8.3;

solar panel arrays 189

molecular biology 13–14

molecular erection 137–8

molecules 8, 9fn, 10; biological 238n;

chemical structure 2, 10;

long-chain 62;

protein 5

Molière: Le Bourgeois Gentilhomme 24

Monier, Joseph 204

Montemagno, Carlo 152

Moore’s Law 137, 148, 158, 249n

Morpho butterflies 4, 104, 110–12, 232, 246–7n, Figs 5.3, 5.5

Morphotex fabric 112

Morrison McConnell 48

Morse, Dan 148

moths 27, 121, 123

motors, miniature, see nanomotors

MRSA 44

mussel glue 96–8, 234

Nabokov, Vladimir: Speak, Memory 12, 123

Nachtigall, Werner 93

nacre 140–41

nanobots 158–9

Nano-Care 48–9

nanochips 6, 142–3

nanofibres 24, 49, 64

nanomachines Fig 6.2

nanomotors 148–50; ATP 150–52, Figs 6.4–6.5

nanoparticles 23, 24–6

nanoscale 3, 7–8, Fig 1.1;

van der Waals force 84–5;

wavelengths 104, Fig 5.2

nanostructures 24–5, 158–9;

self-adhesion 91;

self-assembly 116

nanotechnology 5, 10, 23–5, 26, 151

Nanotex 48, 49

NASA 76, 92, 185, 189

nature 1, 4–5, 13–14, 232;

design in 18–19, 23;

evolution and forces of nature 154–5;

fabrication techniques 135–59;

geometrical order in 144–5;

multiplicity 13, 237–8n;

nanostructures 9, 10, 12;

preferred shapes 155–6

Nature 83, 85, 86

Nervi, Pierre Luigi 204

New Civil Engineer 215

Newton, Sir Isaac 132;

Opticks 105–6

Nexia Biotechologies 63–4, 69–72, 74, 77

Niemeyer, Oscar 204

Nissan Motor Co 112

non-stick surfaces 98

Northwestern University, Illinois 98

Norwich Sports Hall 211

nuclear physics 13–14, 15

nylon 15, 55, 62, 63, 69, 78, 234, 242–3n;

hook-and-loop fasteners 94–5, 233;

iridescent 112

Olympic Games: Athens Stadium 213, 214;

Munich Stadium 225;

Seoul 222, Fig 9.10

opals 105, 116–18, 139, Fig 5.7;

inverse 117, 157;

synthetic 116–17

Ophiocoma wendtii 127–8

optical fibres 16, 129–30;

cables 103, 113–14, 130fn

optical technology 118; computer 102–4, 115

optics 4, 76fn, 99, 101–33, 233

organic/inorganic hybrids 24, 136, 147–52

organicism 26–8

origami 20, 53, 126, 181–95;

Ha-ori (leaf-fold) 183–4, Figs 8.1–8.2;

insect wings 173, 181, 192–3;

leaf in/leaf out 189;

micro air vehicles 193;

Miura-ori 185–6, 188–91, 193, Figs 8.3–8.4;

Z Cards 186–8

Orupa 188

Otto, Frei 225

Oxford University 70–71

oxidization 44

Ozin, Geoffrey 118, 156, 157

ozone 47

paint: degradation 45; self-cleaning 7, 27, 39–42, 50

Panorama (BBC TV) 96

Papua New Guinea 57

Parides sosostris 115, 132, Fig 5.6

Parker, Andrew 20, 51, 113

patents 89–91, 119, 222, Fig 9.8

Pasteur, Louis 61

Paxton, Joseph 31, 199–200, 253n

Peabody Essex Museum, Salem 230

peaches 49

peacock 22, 101, 104, 105–6, 110, 132

Pearce McComish 198

pébrine 61

Pellegrino, Sergio 229

peptides 147

Perrin, Jean Baptiste 239n

phage, see bacteriophage

Pherusa 114

Phoenix, Chris 25

photocatalysis 44–5

photocells 177

photonic crystals 157, 233, Fig 5.1;

in butterflies 104, 109, 112, 114–15, 138, Fig 5.4;

discovery of 19–20, 102–4;

fibres 113–14, 130fn;

3-D 115, 116, Fig 5.6;

inverse 117–18, Fig 5.7;

and iridescence 104–5;

miniaturization 104;

in opals 105, 116;

sea mouse spines as 113–14;

self-assembed 116–18;

two-dimensional 132

photons 107

physics 15, 101;

nuclear 13–14, 15;

particle 15;

solid-state 11

Pilkington, Sir Alastair 43

Pilkington Activ glass 25–6, 27, 42–8, Fig 2.7

Planetary Society 190

plants 12;

stems 203;

surfaces 33–4

plastic, milk 65

polarization 119

pollen 33

pollutants 47

polyesters 69, 242–3n;

iridescent fabrics 112

polyethylene glycol 98

polymers 62; amphiphilic 72

polypropylene 48

polysaccharides 110fn

Protein Polymer Technologies 73

proteins 2, 24;

binding 6, 23, 147–8;

in biomineralization 17, 129–30, 136;

in cell biology 6;

food 65;

Genetically Engineered Proteins for Inorganics 6, 147;

molecule 5, 138;

motors 150–52, Figs 6.4–6.5;

mussel glue 97;

recognition 151;

self-assembly 138;

in shells 140, Fig 6.1;

spider silk 64–5, 69–70;

structure 10, 11, 64;

synthesis 14, 143, 144;

templating 6, 132, 136, 138–43, 146–7 152–3, 157;

water-attraction and repulsion 54, 66–7

Pseudo-Cylindrical Concave Polyhedral 190–91, 192, Fig 8.4

Pugachev, Viktor 173

QinetiQ 51, 76fn, 119

quantum-dot devices 147–8

radar 122

radio 101–2

radiolarians 13, 139, 153–6, 200, 217, Fig 6.6;

artificial 156–7, Fig 6.6

range-finders 62

rayon 62

Reading University 183, 198

Réaumur, René 58

reflection 119–20;

anti-reflection surfaces 121;

reflective camouflage 121–2

refractive index 107–8, 111, 112, 117–18, 121, 132, Fig 5.3

rescue operations 169–70, 179

resilin 164

resonance 171–3

road reflectors 119–20, Fig 5.8

robotics 81, 161, 178, Fig 4.1;

Mecko Gecko climbing robot 81;

microrobots 162;

nanobots 158–9;

wheeled 178fn;

see also micro air vehicles

Royal Academy of Engineering 25

Royal Society 25, 200;

Proceeedings 184

Russell, Philip 113

Rutherford, Sir Ernest 15

Saarinen, Eero 214

Sacks, Oliver: Awakenings 97

Safdie, Moshe 197, 230

Sanderson, Kevin 26, 44, 45, 49

Sarikaya, Mehmet 24, 64, 135, 141–2

scale 12; human 2, 10;

nanoscale 7–8, 22, 94, 158, Fig 1.1;

top-down process 137

Scientific American 143

sculpture 211, 221–2, 227, 300

sea mouse (Aphrodita) 104, 112–14, 120, 130, 232

sea worm (Pherusa) 114

seeds 34, 93, Fig 2.2

self-assembly 156;

ATP motors 151–2, Fig 6.5;

mineral structures 153;

opal formation 116, 118;

and origin of life 136fn;

phages 144–6, 148, Fig 6.3;

protein synthesis 138–9

self-cleaning 4, 18, 20, 29–54;

Activ glass 7, 26, 27, 42–8, Fig 2.7;

Catseyes 120;

fabrics 48–9;

paint 7, 27, 39–42, 50, Fig 2.6;

titanium dioxide 44;

see also Lotus-Effect

self-renewal 44, 49–50

self-replication 24–5, 136, 158–9

sericin 61

Shakespeare, William: As You Like It 183;

Twelfth Night 116

Shaw, Percy 120, Fig 5.8

shell buildings 204–8, 210–12, Fig 9.2

shells 24, 136, 139–41, Fig 6.1

Shin-Gosen 22

sick-building syndrome 47

silica 45, 113, 116–18 129, 153, 156

silicon 143, 152

silicon chips 6, 23, 24, 132, 137–8, 233

silicon dioxide 16, 136, 153

silicones 48, 52

silk 22, 238n;

human 72–3, 74;

iridescence 106;

natural 22, 60–61;

reconstituted 75–6;

silkworm 60–62, 75, 244n;

spinning 69, 70, 71–2, 76, Fig 3.4, 244n;

synthetic 22, 60, 62;

technical 70;

see also spider silk

skeleton 202, 208, 215–16, 220, 228, 230, Figs 9.1, 9.3, 9.6

Slinky 172

Sloane, Sir Hans 57, 242n

Smeaton, John 199

Snelson, Kenneth 220–30, Fig 9.8: Dragon 222, Fig 9.9;

X Piece 221, 222

Soane, David 48

soap bubbles 105, 139, 153, 155–6, 208, 218

solar panel arrays 185, 189, Fig 8.4

solar sails 189–90

sonar 19

space arrays 185, 189–90, 229, Fig 8.4

Space Shuttle 68

spider silk 7, 55–78, 233–4, 242n, Fig 1.1;

affinity for water 74–5;

chemistry 69;

dragline 58, 61, 74;

durability 58;

GM 63–4, 69–72, 97, 138;

hand-spinning 58–9;

industrial 70–77;

molecule 68–9;

resilience 55–6, 75;

strength 55, 67, 68, 74;

stretchiness 55;

structure 15, 54, 66, 68–70, Fig 3.3

Spiderman 88, 98–9, Fig 4.4

spiders 28, 57–8;

adhesion 78, 91;

arachnophobia 57;

black widow 63;

garden 56, 58–60, 63, Fig 3.1;

golden orb-weaver 57, 60;

silking 58–60;

spinnerets 60, 66, 69, 70, 72, Fig 3.2;

webs 4, 14, 22, 55–7, 60, 106, 225, Figs 3.1, 9.10

spinning 69, 70, 71–2, 76, Fig 3.4, 244n

Spinox 70–71, 74

sponges 16, 27 129–30;

Venus flower basket 128–30, Fig 5.10

springs, biological 17, 53

squids 5

stain-resistant fabrics 48–9

Stealth technology 122

steel 201–3

stem cells 77

stereophotography 166

Stevenson, Anne 13

sticking plaster 90

StoLotusan 39

Stoppard, Tom: Jumpers 93fn

subatomic particles 8, 10

superficiality 123–4

superhydrophobicity 20, 48, 49, 50, 52–3, Fig 2.3

superhydrophilicity 48, 50

surveillance, indoor 169

Sussex, University of 217

Swift, Jonathan 143

Swiss Re Tower, London 128, 199

Switzerland 209, 211

Tachi, Susumu 125

Tacoma Narrows bridge, Washington 171

technology 1, 18, 232, 234;

hybrid 23–4;

nanotechnology 5, 10, 23–5, 26, 151;

technology transfer 32

Teijin Corporation 112

telecommunications 118

templating: protein 6, 132, 136–43, 147, 152–3, 157;

synthetic 153, 156–7

Tennekes, Henk: The Simple Science of Flight 161

tensegrity 218–30, Figs 9.8–9.10, 9.12

tension structures 201–4, 208–9, 212, 215–16, 218–20, 253n;

tensile net 225

termites 198

Third Man, The 209

Thompson, D’Arcy Wentworth 154–6, 210, 215–16, 233–4;

on forces of nature 154–5;

influence of 157, 230;

On Growth and Form 154, 199, 200, 202, 206–8;

and soap bubbles 155–6

Thompson, Ruth D’Arcy 154

tiles, self-cleaning 44

tissue replacement 77

titanium dioxide 44–5, 47, 49

top-down process 137

topology 20

Toronto, University of 118, 156

Torroja, Edward 204

Toyo-Seikan Company 191, Fig 8.4

Trade and Industry, Department of 71

transistor, field-effect 148

trees 199

trilobites 131fn

Turner, Jeffrey 63

ultrasound 19

Umbach, Ken 96

umbrella 181, 195

universality 91, 148

US Air Force 76

US Army 63–4, 70, 74

US Defense Advanced Research Projects Agency (Darpa) 81, 162–3, 168–9, 178fn

US Defense Department 76

van der Waals force 84–5, 86, 87

Velcro 40, 92–6, Fig 4.5

Venus flower basket (Euplectella aspergillum) 16–17, 128–30, 199, Fig 5.10

Victoria, Queen 58

Victoria and Albert Museum: Zoomorphic exhibition (2003) 27, 197–9, 214

Victoria regia water lily 31, 199–200

video, high-speed 166

Vincent, Julian 124, 125, 183, 190, 198, 199, 230

Viney, Christopher 74–5

Virola surinamensis 34, Fig 2.2

vitalism 5–6

Vollrath, Fritz 71, 72, 244n

Vorticella 193–5, 228–9, Fig 9.12

Vukusic, Pete 114

water 54;

capillary attraction 85;

collection of 20–21, 50–52, 76fn;

non-stick 52

water repellency 20, 40, 48, 49, 50, 52, 54, Fig 2.3;

contact angles 40, 43, Fig 2.3;

mussel glue 97;

see also Lotus-Effect

waterlilies 31, 199–200

Watson, James 11, 64

waxes 33–4

wettability 35, 43, 47

Which? magazine 47

Whitesides, George 146, 152

Whittle, Frank 19

Williamodendron quadrilocellatum 34, Fig 2.2

wings 20;

aircraft 163–4, Fig 7.1;

flexing/folding mechanisms 173, 181, 192;

insect 164–7, 174–5, 192–3, Fig 8.5;

MAV mechanisms 170–71, 173, 175

wood 2, 14

wool 73

Wordsworth, William 46

Wright brothers 162

X-ray crystallography 10–11, 12

Yablonovitch, Eli 102, 104, 112, 113, 115, 116, 128

Yablonovite 104, 113, Fig 5.1

yo-yo 172

Yoshimura Pattern 185, 191

Z Cards 186–8

Żbikowski, Rafat 161, 162–3, 168–70, 175–8

Zoomorphic, see Victoria and Albert Museum