CHAPTER XIV

MISCELLANEOUS RELATIONS

Numerical, Single-letter, and Two-letter Identities.

Example 1. Prove that cos2θ + cos2(α + θ) – 2 cos α cos θ cos (α + θ) is independent of θ.

First Method. The expression

 

images

Second Method.

If

 

images

Third Method. Take a circle with diameter OD of unit length, and draw chords OB, OA making angles θ, α + θ with that diameter, as in Fig. 79; then OB = cosθ, OA = cos(α + θ), and AB = sin α. The expression

 

images

which is independent of θ.

 

images

FIG. 79.

Fourth Method. Take a triangle ABC having images, and hence C = α; then c2 = a2 + b2 – 2ab cos C;

 

images

It should be noticed that the geometrical methods have to be modified, or interpreted in accordance with certain conventions for some values of α and θ.

EXERCISE XIV. a.

Prove the following :

1. (cos A + sin A) (cot A + tan A) = cosec A + sec A.

2. (2 -cos2B)(2 +tan2B) _=(1 +2 tan2B)(2 -sin2B).

3. tan2C +cot2C = cosec2C sec2C – 2.

4. If sec D + cosec D = images, then cos3D + sin3D = – images.

5. cos2 22images° – cos2 67images° = cos 45°.

6. 2 cos 5° 37′ 30″ = images.

7. 4 cos 24° cos 36° cos 84° = sin 18°.

8. tan 9° – tan 27° – tan 63° + tan 81° = 4.

9. cos 12° + cos 60° + cos 84° = cos 24° + cos 48°.

10. sin 40° sin 50° = sin 30° sin 80°.

11. tan 20° tan 40° = tan 10° tan 60°.

12. If x : y : z : 1 = sin 40° : sin 60° : sin 80° : sin 20°, then

 

images

13. cos2 14° – cos 7° cos 21° = sin2 7°.

14. If tan images = t, then tan θ + sec θ = images.

15. If cot A – tan A = x, then images.

16. If sec 2A = 2 + sec A, then cos 2A +cos 3A = 0.

17. cosec 2θ + cot 4θ = cot θ – cosec 4θ.

18. 4(cos 2θ + cos 6θ)(cos 6θ + cos 8θ) = 1 + sin 150 cosecθ.

19. cot3θ + tan3θ = 8 cosec32θ – 6 cosec 2θ.

20. sin3θ sin 3θ + cos3θ cos 3θ = cos32θ.

21. sin3(60° + 0) + sin3(60° – θ) = images.

22. 3 tan θ – 2 cot θ = cosec 2θ – 5 cot 2θ.

23. If α + β = images, then images.

24. If tan2A = 1 + 2 tan2B, then cos 2B = 1 + 2 cos 2A.

25. If tan 2θ = μ cosec 2α – cot 2α, then images.

26. If images, then

 

images

27. If (1 + e cos α)(l – e cos β) = 1 – e2, and e is not zero, then

 

images

28. If images, then

 

images

29. images.

30. images.

31. If images, then sin 2α + 2 sin (α + β) = 0.

32. If (2 cos α – cos 2α) sin 3β – (2 sin α – sin 2α) cos 3β = 3 sin β and α ≡ 2(β + nπ), then images.

Conditional Identities.

Example 2. If A + B + C = π, prove that

 

images

We have ∑x(y + z)2 ≡ (y + z)(z + x)(x + y) + 4xyz.

Putting b2 + c2a2, c2 + a2b2, a2 + b2c2 for x, y; z, the identity gives

 

images

where A, B, C are the angles of the triangle with sides a, b, c. Since a : b : c = sin A : sin B : sin C, it follows that

 

images

Example 3. If x + y + z = 0, prove that

 

images

The left-hand side may be written

 

images

The first of these terms

 

images

The second term

 

images

EXERCISE XIV. b.

In this Exercise, it is to be assumed that A + B + C = π,. or that A + B + C + D = 2π.

Prove the following :

1. cos2A + cos2B + cos2C + 2 cos A cos B cos C = 1.

2. sin2B +sin2C – 2 sin B sin C cos images is symmetrical.

3. 1 + cos 2A + cos 2B + cos 2C = – 4 cos A cos B cos C.

4. sin 3A +sin 3B +sin 3C = – 4 images.

5. images.

6. images.

7. sin 2A sin2A + sin 2B sin2B + sin 2C sin2C = sin 2A sin 2B sin 2C + 2 sin A sin B sin C.

8. sin4A + sin4B + sin4C = 2 (sin2B sin2C + sin2C sin2A + sin2A sin2B) – 4 sin2A sin2B sin2C.

9. sm 5A +sm 5B +sm 5C = images.

10. 4(cos5A + cos5B + cos5C) = images.

11. sin 2nA + sin 2nB +sin 2nC = – 4 cos nπ sin nA sin nB sin nC.

12. cot A + cot B + cot C = cot A cot B cot C + cosec A cosec B cosec C.

13. (tan A + tan B + tan C)(cot A + cot B + cot C) – sec A sec B sec C is constant.

14. If
cos A = cot β cot γ, cos B = cot γ cot α, and cos C = cot α cot β, then cos2α + cos2 β + cos2γ = 1.

15. If images, then B = C.

Deduce that, if two angle-bisectors of a triangle are equal, then the triangle is isosceles.

16. If (m + n) tan A + (n + l) tan B + (l + m) tan C = 0, then

 

images

17. images.

18. sin A + sin B + sin C + sin D = images.

19. images.

20. images.

21. If images, then images.

22. If images, then images.

23. sin α sin(βγ) + sin β sin (γα) + sin γ sin (αβ) = 0, and deduce that

 

images

24. ∑ sin β sin γ sin (βγ) = – sin(βγ) sin(γα) sin (αβ).

25. images.

26. images.

27. images.

28. ∑ {sin 2α sin(γβ)} = ∑ sin (βγ) . ∑ sin(β + γ).

29. If cos 2α + 2 sin β sin γ = 0 = cos 2β + 2 sin γ sin α, prove that, in general, cos 2γ + 2 sin α sin β = 0.

30. If images, prove that αβ or θϕ is nπ.

31. If sin3θ + sin (A + θ) sin (B + θ) sin (C + θ) = 0, prove that

 

images

32. sin s sin (sα) sin (sb) sin (sc) + cos s cos (sα) cos (sb) cos (sc) = cos a cos b cos c, where a + b + c = 2s.

Miscellaneous Transformations.

Example 4. If tan α = tan3β and tan 2β = 2 tan γ, prove that

 

images

EXERCISE XIV. c.

1. If images, prove that

 

images

where 2s = a + b + c.

2. If tan(B + C – A) + tan(C + A – B) + tan(A + B – C) = tan(A + B + C), prove that A or B or C is images.

3. If sin x + sin y + sin z = images, prove that x + y + z = nπ.

4. If cos 2A + cos 2B + cos 2C + cos (2A + 2B +2C) = 0, prove that

 

images

5. If cos 2A + cos 2B + cos 2C + 1 + 4 cos A cos B cos C =0, prove

 

images

6. If (sin α + sin β + sin γ)2 + (cos α + cos β + cos γ)2 = 1, prove that two of tho angles differ by (2n + 1)π.

7. If images, prove that ∑ sin (β + γ) = 0, and that each fraction = ∑ cos (β + γ).

8. If images and θϕ ≠ 2nπ, prove that ∑ sin θ = – sin (∑θ), and that images.

9. If images and images are equal, and if θϕnπ, prove that images is equal to them.

10. If sin 2x = k tan β and sin 2y = k tan α, and xy = αβ = 0, α + βnπ, prove that sin 2x + sin 2y = – 2 sin (α + β) cos (x + y), and that sin (α + βxy) = k tan (x + y).

11. If images, prove that images.

12. If ∑ cos α = 0 = ∑ sin α for three angles α, β, γ between + π and – π, prove that these are of the form images, and deduce that

 

images

13. Show how to use de Moivre’s Theorem to prove the last two results in No. 12.

14. If ∑ cos α = 0 = ∑ sin α, prove

 

images

15. If images, prove that either A + B + C = nπ or tan A + tan B = 2 tan C.

16. If sin2x + sin2y + sin2z = 1 + 2 sin x sin y sin z, prove that

 

images

17. If a triangle inscribed in an ellipse has its centroid at the centre of the ellipse, show that the eccentric angles of its vertices satisfy ∑ cos α = 0 = ∑ sin α, and conversely.

18. If a triangle inscribed in an ellipse has its centroid at the centre, prove that the tangents at the vertices are parallel to the opposite sides. [Use No. 12 or geometry.]

Elimination. One Variable.

Some easy examples have been given in E.T., p. 266. The following illustrate other methods.

Example 5. Eliminate θ from the equations

 

images

We have

 

images

Example 6. Eliminate θ from the equations

 

images

Each expression

 

images

Also each expression

 

images

From (i) and (ii),

 

images

EXERCISE XIV. d

Eliminate θ from :

1. tan α = cos θ tan β, tan θ sin α = tan γ.

2. α sin α = b, α sin (θα) = c.

3. α cos2θ + b sin2θ = c, (bc) tan2θ + (cα) cot2θ = d.

4. a sin θ = b sin 2θ, c cos θ = d cos 2θ.

5. sin θ + sin 2θ = a, cos θ + cos 2θ = b.

6. sin3θ = a, cos3θ = b; also express the result in a rational form.

7. 3 sin θ + 2 cos θ = a, 2 sin θ + 3 cos θ = b.

8. 3 cos θ + cot θ = a, 4 cos θ – cot θ = b.

9. x + cos θ = sec θ, y + sin θ = cosec θ.

10. a sin θ(4 cos2θ – 1) = x, b cos θ(4 sin2θ – 1) = y.

11. 1 + sin2θ = a sin θ, 1 + cos2θ = b cos θ.

12. x cos θ + y sin θ = α sin 2θ, – x sin θ + y cos θ = 2α cos 2α.

13. x cos θ + y sin θ = α cosec θ, x sin θy cos θ = α cosec θ cot θ.

14. x cos θ + y sin θ = c = x cos (θ + α) + y sin (θ + α).

15. a + b cos θ + c cos 2θ = 0, 2α cos θ + b cos 2θ + c cos 3θ = 0.

16. ax sec θ – by cosec θ = c2, ax sec θ tan θ + by cosec θ cot θ = 0.

17. images, x sin θy cos θ = images.

18. a sin θ + b cos θ = c, a cosec θ + b sec θ = d.

19. tan θ + tan 2θ = c, cot θ + cot 2θ = d.

20. images.

21. (a + b) tan (θa) =(ab) tan (θ + α), a cos 2α + b cos 2θ = c.

22. images.

23. x : a : b = cos θ + e cos α : sin θ : 1 + e cos (θ + α), where b2 = a2(l – e2).

24. x = tan–1 (θ + α) + tan–1 (θα), y = sin–1θ.

Elimination. Two Variables.

Example 7. Eliminate θ and ϕ from the equations,

 

images

given that θ and ϕ are unequal and between 0 and 2π.

 

images

images images and images (being unequal) are the two roots of

 

images

This reduces to xt2 – 2yt + 2ax = 0;

 

images

But

 

images

EXERCISE XIV. e.

Eliminate θ and ϕ in Nos. 1 to 12 :

1. sin θ – sin ϕ = 2a, cos θ – cos ϕ = 2b, θϕ = 2γ.

2. x = a sin (θϕ), y = 2a cos ϕ cos ϕ, θ + ϕ = a.

3. sin θ + sin ϕ = a, cos θ + cos ϕ = b, tan θ – tan ϕ = c sec θ sec ϕ.

4. sin θ + sin ϕ = x, cos θ + cos ϕ = y, imagesimages = z.

5. sin θ + sin ϕ = s, tan θ + tan ϕ = t, sec θ + sec ϕ = k

6. cos θ +cos ϕ = a, cos 2θ + cos 2ϕ = b, cos 3θ + cos 3ϕ = c.

7. y tan θ = x tan2θ + a, y tan ϕ = x tan2ϕ + a, tan θ tan ϕ = – 1.

8. images

9. cos θ = cos α cos β, cos γ = cos β cos γ, images.

10. x cos θ + y sin θ = x cos ϕ + y sin ϕ = 2a, images.

11. images.

12. images.

13. Eliminate A and B from a sin B = b sin A, c = a cos B + b cos A, and d = cos(A + B).

14. Eliminate θ, ϕ, and ψ from

 

images

15. Eliminate θ, ϕ, ψ from

 

images

16. Eliminate α1, α2, α3, β1, β2, β3 from

 

images

17. Eliminate l and m from

 

images

where no two of the angles α, β, γ differ by a multiple of 2π.

Also prove that l = m (cos α + cos β + cos γ).

18. If sin(ϕ + ψ) + sin(ψ + θ) + sin(θ + ϕ) = 0 and

 

images

where sin (θ + ϕ) ≠ 0, prove that λμ + λ + μ = 0.

19. Eliminate x, y, z from

 

images

and express the result in factors.

20. Eliminate m and m′ between

 

images

Inequalities.

Example 8. If θ1 θ2, θ3, θ4, θ5 are five positive acute angles such that their sum is 5α, find the maximum value of images.

Suppose that θ1 is as large as any of the 5 angles and that θ2 is as small as any of the 5 angles, so that θ1 > α > θ2 > 0.

Then

 

images

If then, in images, we replace sin θ1, sin θ2 by sin α, sin (θ1 + θ2α), we have not altered the sum of the angles but we have increased the sum of their sines.

This process can be repeated until each angle is α and this stage is reached after 4 steps at most;  images the maximum value is 5 sin α.

EXERCISE XIV. f.

Discuss the maximum and minimum values of (Nos. 1-5):

1. 4 tan x + 3 cot x.

2. 1 – sin x + sin2x.

3. 5 – 4 sin x + sin2x.

4. 5 sec θ – 3 tan θ.

5. 10 sin2θ + 15 sin θ cos θ + 18 cos2θ.

6. Show that tan 3x cot x is not between 3 and images.

7. Find the least numerical value of images when a > b.

8. Find the maximum and minimum values of tan 3x cot3x.

9. Show that the maximum and minimum values of

 

images

are the roots of (xa) (xc) = b2.

Find the greatest values of the following (Nos. 10-13):

10. a cos θ + b cos ϕ, subject to θ + ϕ = α.

11. tan θ tan ϕ, subject to images, and images.

12. sin θ sin ϕ sin ψ, subject to θ + ϕ + ψ = 3α, and images.

13. cos θ cos ϕ cos ψ, subject to θ + ϕ + ψ = 3α, and images.

14. Find the minimum value of tan2A + tan2B + tan2C, where A, B, C are three acute angles whose sum is a right angle.

15. Find the least values of (i) ∑ tan A, (ii) ∑ cot A, (iii) ∑ cosec A, when A, B, C are positive acute angles with a constant sum 3D.

In a triangle ABC, prove the following results (Nos. 16-22):

16. 1 < cos A + cos B + cos C ≤ images.

17. cos 2A + cos 2B + cos 2C ≥ – images.

18. 8 cos A cos B cos C ≤ 1, and only = 1 if A =B = C.

19. cos2images(B – C) + cos2images(C – A) + cos2images(A – B) > 1.

20. tan A + tan B + tan C ≥ 3 images, if the angles are acute.

21. 8 sin imagesA sin imagesB sin imagesC ≤ 1.

22. x2 + y2 + z2 – 2yz cos A – 2zx cos B – 2xy cos C > 0, unless

 

images

23. Prove that the least value of cos2θ + cos2ϕ + cos2ψ, subject to a cos θ + b cos ϕ + c cos ψ = d, is images.

24. If 0 < (α, β, γ) < images π, prove that

 

images

MISCELLANEOUS EXAMPLES

EXERCISE XIV. g.

1. Prove that sin 16° + sin 20° + sin 92° = sin 52° + sin 56°.

2. Prove that

 

images

3. Prove that images.

4. Express sin (α + β) and cos (α + β) in terms of sin α + sin β( ≡ s) and cos α + cos β (≡ c), and prove that

 

images

5. If images, prove that tan (θϕ) = (n – 1) tan ϕ.

6. If e (sin ϕ – sin ϕ′) = sin(ϕϕ′) and ϕ, ϕ′ do not differ by 2nπ, prove that e2 sin ϕ sin ϕ′ = (e2 – 1) cos2images(ϕϕ′).

7. Prove that images.

8. If images, prove that images.

9. If A + B + C + D = 2π, prove that

 

images

10. If c1, c2, c3, c4 are the cosines of the angles of a quadrilateral, prove that

 

images

11. Prove that

 

images

12. If images prove that α + β + γ + δ = (2n + 1)π, if the angles are essentially distinct

13. If cos α + cos β + cos γ = – cos α cos β cos γ prove that cosec2α + cosec2β + cosec2γ = 1 ± 2 cosec α cosec β cosec γ.

14. If images, prove that each of them is equal to the third similar expression, unless ab = nπ.

15. If a + b + c = 2s, prove that

 

images

16. Prove that

 

images

Eliminate θ in Nos. 17-24.

17. a sin θ + b cos θ = c, a cos θb sin θ = d.

18. 2 cos2θ + sin θ = a, 2 sin2θ + cos θ = b.

19. x cos θ + b sin θ = cos 3θ, x sin θy cos θ = 3 sin 3θ.

20. a sin (θ + α) + b sin (θ + β) + c sin (θ + γ) = 0

 

images

21. cos3θ + a cos θ = b, sin3ϕ + a sin ϕ = c.

22. 16 sin5θ – sin 5θ = 5x, 16 cos5θ – cos 5θ = 5y.

23. sin2θ tan α + sin2α tan θ = p, cos2θ cot α + cos2α cot θ = q.

24. images.

25. Find the greatest possible value of images.

26. Prove that cot θ – cot 4θ > 2, if 0 < θ < imagesπ.

27. Prove that

 

images

28. In any triangle ABC prove that ∑tan2imagesA ≥ 1.

29. Prove that the area of the pedal triangle DEF ≤ imagesΔ.

30. If sin θ = μ sin ϕ, where μ > 1, and θ, ϕ lie between 0 and images, prove that θϕ increases when ϕ increases.