1.
The caida as relationships dataset, Aug. 30, 2009.
2.
A. Agaskar and Y. M. Lu. A fast monte carlo algorithm for source localization on graphs. In
SPIE Optical Engineering and Applications
. International Society for Optics and Photonics, 2013.
3.
Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks.
Nature
, 466(7307):761–764, 2010.
4.
R. Albert, I. Albert, and G. L. Nakarado. Structural vulnerability of the north american power grid.
Physical review E
, 69(2):025103, 2004.
5.
R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.
Reviews of modern physics
, 74(1):47, 2002.
MathSciNetzbMATH6.
K. Alintanahin. Cryptolocker: Its spam and zeus/zbot connection, October 21 2013.
7.
F. Altarelli, A. Braunstein, L. DallAsta, A. Lage-Castellanos, and R. Zecchina. Bayesian inference of epidemics on networks via belief propagation.
Physical review letters
, 112(11):118701, 2014.
8.
L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley. Classes of small-world networks.
Proceedings of the National Academy of Sciences
, 97(21):11149–11152, 2000.
9.
C. Anagnostopoulos, S. Hadjiefthymiades, and E. Zervas. Information dissemination between mobile nodes for collaborative context awareness.
Mobile Computing, IEEE Transactions on
, 10(12):1710–1725, 2011.
zbMATH10.
R. M. Anderson, R. M. May, and B. Anderson.
Infectious diseases of humans: dynamics and control
, volume 28. Wiley Online Library, 1992.
11.
N. Antulov-Fantulin, A. Lančić, T. Šmuc, H. Štefančić, and M. Šikić. Identification of patient zero in static and temporal networks: Robustness and limitations.
Physical review letters
, 114(24):248701, 2015.
12.
N. T. Bailey et al.
The mathematical theory of infectious diseases and its applications
. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE., 1975.
13.
E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer: Quantifying influence on twitter. In
Proceedings of the Fourth ACM International Conference on Web Search and Data Mining
, WSDM ’11, pages 65–74, New York, NY, USA, 2011. ACM.
14.
E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer: Quantifying influence on twitter. In
Proceedings of the Fourth ACM International Conference on Web Search and Data Mining
, WSDM ’11, pages 65–74, 2011.
15.
A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
science
, 286(5439):509–512, 1999.
MathSciNetzbMATH16.
A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science
, 286(5439):509–512, 1999.
MathSciNetzbMATH17.
A. Beuhring and K. Salous. Beyond blacklisting: Cyberdefense in the era of advanced persistent threats.
Security & Privacy, IEEE
, 12(5):90–93, 2014.
18.
S. Bhagat, A. Goyal, and L. V. Lakshmanan. Maximizing product adoption in social networks. In
Proceedings of the Fifth ACM International Conference on Web Search and Data Mining
, WSDM ’12, pages 603–612. ACM, 2012.
19.
V. Blue. Cryptolocker’s crimewave: A trail of millions in laundered bitcoin.[en línea] 22 de diciembre de 2013.[citado el: 22 de enero de 2014.].
20.
P. Bonacich. Factoring and weighting approaches to status scores and clique identification.
Journal of Mathematical Sociology
, 2(1):113–120, 1972.
21.
P. Bonacich. Power and centrality: A family of measures.
American journal of sociology
, pages 1170–1182, 1987.
22.
Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. Design and analysis of a social botnet.
Computer Networks
, 57(2):556–578, 2013.
23.
A. Braunstein and A. Ingrosso. Inference of causality in epidemics on temporal contact networks.
Scientific reports
, 6:27538, 2016.
24.
D. Brockmann and D. Helbing. The hidden geometry of complex, network-driven contagion phenomena.
Science
, 342(6164):1337–1342, 2013.
25.
C. Budak, D. Agrawal, and A. El Abbadi. Limiting the spread of misinformation in social networks. In
Proceedings of the 20th international conference on World wide web
, WWW ’11, pages 665–674. ACM, 2011.
26.
S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. From the cover: A model of internet topology using k-shell decomposition.
PNAS, Proceedings of the National Academy of Sciences
, 104(27):11150–11154, 2007.
27.
C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, and A. Vespignani. Dynamics of person-to-person interactions from distributed rfid sensor networks.
PloS one
, 5(7):e11596, 2010.
28.
CFinder. Clusters and communities, 2013.
29.
D. Chakrabarti, J. Leskovec, C. Faloutsos, S. Madden, C. Guestrin, and M. Faloutsos. Information survival threshold in sensor and p2p networks. In
INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE
, pages 1316–1324, 2007.
30.
W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD ’09, pages 199–208. ACM, 2009.
31.
Y. Chen, G. Paul, S. Havlin, F. Liljeros, and H. E. Stanley. Finding a better immunization strategy.
Phys. Rev. Lett.
, 101:058701, Jul 2008.
32.
Z. Chen, K. Zhu, and L. Ying. Detecting multiple information sources in networks under the sir model. In
Information Sciences and Systems (CISS), 2014 48th Annual Conference on
, pages 1–4. IEEE, 2014.
33.
A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks.
Phys. Rev. E
, 70:066111, Dec 2004.
34.
C. H. Comin and L. da Fontoura Costa. Identifying the starting point of a spreading process in complex networks.
Phys. Rev. E
, 84:056105, Nov 2011.
35.
M. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves, F. Menczer, and A. Flammini. Political polarization on twitter. In
ICWSM
, 2011.
36.
K. L. Cooke and P. Van Den Driessche. Analysis of an seirs epidemic model with two delays.
Journal of Mathematical Biology
, 35(2):240–260, 1996.
MathSciNetzbMATH37.
G. Cowan.
Statistical data analysis
. Oxford university press, 1998.
38.
D. Dagon, C. C. Zou, and W. Lee. Modeling botnet propagation using time zones. In
NDSS
, volume 6, pages 2–13, 2006.
39.
D. J. Daley and D. G. Kendall. Epidemics and rumours. 1964.
40.
C. I. Del Genio, T. Gross, and K. E. Bassler. All scale-free networks are sparse.
Phys. Rev. Lett.
, 107:178701, Oct 2011.
41.
Z. Dezső and A.-L. Barabási. Halting viruses in scale-free networks.
Phys. Rev. E
, 65:055103, May 2002.
42.
B. Doerr, M. Fouz, and T. Friedrich. Why rumors spread so quickly in social networks.
Commun. ACM
, 55(6):70–75, June 2012.
43.
P. Domingos and M. Richardson. Mining the network value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD ’01, pages 57–66. ACM, 2001.
44.
W. Dong, W. Zhang, and C. W. Tan. Rooting out the rumor culprit from suspects. In
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
, pages 2671–2675. IEEE, 2013.
45.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks with preferential linking.
Physical review letters
, 85(21):4633, 2000.
46.
N. Eagle and A. Pentland. Reality mining: sensing complex social systems.
Personal and ubiquitous computing
, 10(4):255–268, 2006.
47.
D. Easley and J. Kleinberg.
Networks, crowds, and markets: Reasoning about a highly connected world
. Cambridge University Press, 2010.
zbMATH48.
H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks.
Phys. Rev. E
, 66:035103, Sep 2002.
49.
H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks.
Phys. Rev. E
, 66:035103, Sep 2002.
50.
C. Economics. Malware report: The economic impact of viruses, spyware, adware, botnets, and other malicious code.
Irvine, CA: Computer Economics
, 2007.
51.
Economist. A thing of threads and patches.
Economist
, August 25, 2012.
52.
P. Erd0s. Graph theory and probability.
Canad. J. Math
, 11:34G38, 1959.
53.
P. ERDdS and A. R&WI. On random graphs i.
Publ. Math. Debrecen
, 6:290–297, 1959.
54.
ESET. Virus radar, November 2014.
55.
M. R. Faghani and U. T. Nugyen. Modeling the propagation of trojan malware in online social networks.
arXiv preprint arXiv:1708.00969
, 2017.
56.
M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In
Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication
, SIGCOMM ’99, pages 251–262. ACM, 1999.
57.
X. Fan and Y. Xiang. Modeling the propagation of peer-to-peer worms.
Future Generation Computer Systems
, 26(8):1433–1443, 2010.
58.
V. Fioriti, M. Chinnici, and J. Palomo. Predicting the sources of an outbreak with a spectral technique.
Applied Mathematical Sciences
, 8(135):6775–6782, 2014.
59.
S. Fortunato. Community detection in graphs.
Physics reports
, 486(3):75–174, 2010.
MathSciNet60.
S. Fortunato, A. Flammini, and F. Menczer. Scale-free network growth by ranking.
Physical review letters
, 96(21):218701, 2006.
61.
M. Fossi and J. Blackbird. Symantec internet security threat report 2010. Technical report, Symantec Corporation, March, 2011.
62.
C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, et al. Pandemic potential of a strain of influenza a (h1n1): early findings.
science
, 324(5934):1557–1561, 2009.
63.
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms.
Journal of the ACM (JACM)
, 34(3):596–615, 1987.
MathSciNet64.
L. C. Freeman. A set of measures of centrality based upon betweenness.
Sociometry
, 40:35–41, 1977.
65.
L. C. Freeman. Centrality in social networks conceptual clarification.
Social networks
, 1(3):215–239, 1978.
66.
L. C. Freeman. Centrality in social networks: conceptual clarification.
Social Networks
, 1:215–239, 1979.
67.
L. C. Freeman, S. P. Borgatti, and D. R. White. Centrality in valued graphs: a measure of betweenness based on network flow.
Social Networks
, 13:141–154, 1991.
MathSciNet68.
L. Fu, Z. Shen, W.-X. Wang, Y. Fan, and Z. Di. Multi-source localization on complex networks with limited observers.
EPL (Europhysics Letters)
, 113(1):18006, 2016.
69.
C. Gao and J. Liu. Modeling and restraining mobile virus propagation.
Mobile Computing, IEEE Transactions on
, 12(3):529–541, 2013.
70.
C. Gao, J. Liu, and N. Zhong. Network immunization and virus propagation in email networks: experimental evaluation and analysis.
Knowledge and Information Systems
, 27:253–279, 2011.
71.
C. Gao, J. Liu, and N. Zhong. Network immunization with distributed autonomy-oriented entities.
Parallel and Distributed Systems, IEEE Transactions on
, 22(7):1222–1229, 2011.
72.
M. Girvan and M. E. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences
, 99(12):7821–7826, 2002.
MathSciNetzbMATH73.
W. Goffman and V. Newill. Generalization of epidemic theory.
Nature
, 204(4955):225–228, 1964.
74.
N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E. C. R. Shin, E. Stefanov, E. Shi, and D. Song. Joint link prediction and attribute inference using a social-attribute network.
ACM Transactions on Intelligent Systems and Technology (ACM TIST)
, 2013. Accepted.
75.
P. D. Grünwald.
The minimum description length principle
. MIT press, 2007.
76.
S. L. Hakimi, M. L. Labbé, and E. Schmeichel. The voronoi partition of a network and its implications in location theory.
ORSA journal on computing
, 4(4):412–417, 1992.
MathSciNetzbMATH77.
F. Harary. Graph theory. 1969.
78.
H. W. Hethcote. The mathematics of infectious diseases.
SIAM review
, 42(4):599–653, 2000.
MathSciNetzbMATH79.
P. W. Holland and S. Leinhardt. Transitivity in structural models of small groups.
Comparative group studies
, 2(2):107–124, 1971.
80.
P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack vulnerability of complex networks.
Phys. Rev. E
, 65:056109, May 2002.
81.
C. S. Institute. The fifteenth annual csi computer crime and security survey.
Monroe, WA: Computer Security Institute
, 2010.
82.
H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks.
Nature
, 411(6833):41–42, May 2001.
83.
H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks.
Nature
, 411(6833):41–42, 2001.
84.
J. Jiang, W. Sheng, S. Yu, Y. Xiang, and W. Zhou. Rumor source identification in social networks with time-varying topology.
IEEE Transactions on Dependable and Secure Computing
, 2016.
85.
J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou. K-center: An approach on the multi-source identification of information diffusion.
Information Forensics and Security, IEEE Transactions on
, 17 August 2015.
86.
J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou. K-center: An approach on the multi-source identification of information diffusion.
IEEE Transactions on Information Forensics and Security
, 10(12):2616–2626, 2015.
87.
J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou. Identifying propagation sources in networks: State-of-the-art and comparative studies.
IEEE Communications Surveys and Tutorials
, accepted, in press.
88.
S. Jitesh and A. Jafar. The enron email dataset database schema and brief statistical report. Technical report, University of Southern California, 2009.
89.
N. Karamchandani and M. Franceschetti. Rumor source detection under probabilistic sampling. In
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
, pages 2184–2188, 2013.
90.
B. Karrer and M. E. J. Newman. Message passing approach for general epidemic models.
Phys. Rev. E
, 82:016101, Jul 2010.
91.
M. Karsai, N. Perra, and A. Vespignani. Time varying networks and the weakness of strong ties.
Scientific reports
, 4, 2014.
92.
L. Katz. A new status index derived from sociometric analysis.
Psychometrika
, 18(1):39–43, 1953.
MathSciNetzbMATH93.
M. J. Keeling and K. T. Eames. Networks and epidemic models.
Journal of the Royal Society Interface
, 2(4):295–307, 2005.
94.
M. J. Keeling and P. Rohani.
Modeling infectious diseases in humans and animals
. Princeton University Press, 2008.
zbMATH95.
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining
, KDD ’03, pages 137–146, 2003.
96.
M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. Stanley, and H. Makse. Identification of influential spreaders in complex networks.
Nature Physics
, 6(11):888–893, Aug 2010.
97.
J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The web as a graph: measurements, models, and methods. In
International Computing and Combinatorics Conference
, pages 1–17. Springer, 1999.
98.
D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski. Centrality indices. In
Network analysis
, pages 16–61. Springer, 2005.
99.
P. L. Krapivsky and S. Redner. Organization of growing random networks.
Physical Review E
, 63(6):066123, 2001.
100.
M. J. Krasnow. Hacking, malware, and social engineering—definitions of and statistics about cyber threats contributing to breaches.
Expert Commentary: Cyber and Privacy Risk and Insurance
, January 2012.
101.
R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on
, pages 57–65. IEEE, 2000.
102.
H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In
WWW ’10: Proceedings of the 19th international conference on World wide web
, pages 591–600. ACM, 2010.
103.
K. Labs. Facebook malware poses as flash update, infects 110k users, February 2015.
104.
I. Lawrence and K. Lin. A concordance correlation coefficient to evaluate reproducibility.
Biometrics
, pages 255–268, 1989.
105.
B. Li. An in-depth look into malicious browser extensions, October 2014.
106.
F. Li, Y. Yang, and J. Wu. Cpmc: An efficient proximity malware coping scheme in smartphone-based mobile networks. In
INFOCOM, 2010 Proceedings IEEE
, pages 1–9, 2010.
107.
Y. Li, W. Chen, Y. Wang, and Z.-L. Zhang. Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships. In
Proceedings of the sixth ACM international conference on Web search and data mining
, WSDM ’13, pages 657–666. ACM, 2013.
108.
Y. Li, P. Hui, D. Jin, L. Su, and L. Zeng. Optimal distributed malware defense in mobile networks with heterogeneous devices.
Mobile Computing, IEEE Transactions on
, 2013. Accepted.
109.
Y. Li, B. Zhao, and J.-S. Lui. On modeling product advertisement in large-scale online social networks.
Networking, IEEE/ACM Transactions on
, 20(5):1412–1425, 2012.
110.
Y. Y. Liu, J. J. Slotine, and A. laszlo Barabasi. Controllability of complex networks.
Nature
, 473:167–173, 2011.
111.
A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborová. Inferring the origin of an epidemy with dynamic message-passing algorithm.
arXiv preprint arXiv:1303.5315
, 2013.
112.
A. Louni and K. Subbalakshmi. A two-stage algorithm to estimate the source of information diffusion in social media networks. In
Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on
, pages 329–333. IEEE, 2014.
113.
R. D. Luce and A. D. Perry. A method of matrix analysis of group structure.
Psychometrika
, 14(2):95–116, 1949.
MathSciNet114.
W. Luo and W. P. Tay. Finding an infection source under the sis model. In
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
, pages 2930–2934, 2013.
115.
W. Luo, W. P. Tay, and M. Leng. Identifying infection sources and regions in large networks.
Signal Processing, IEEE Transactions on
, 61(11):2850–2865, 2013.
MathSciNetzbMATH116.
W. Luo, W. P. Tay, and M. Leng. How to identify an infection source with limited observations.
IEEE Journal of Selected Topics in Signal Processing
, 8(4):586–597, 2014.
117.
W. Luo, W. P. Tay, and M. Leng. Rumor spreading and source identification: A hide and seek game.
arXiv preprint arXiv:1504.04796
, 2015.
118.
Y. Ma, X. Jiang, M. Li, X. Shen, Q. Guo, Y. Lei, and Z. Zheng. Identify the diversity of mesoscopic structures in networks: A mixed random walk approach.
EPL (Europhysics Letters)
, 104(1):18006, 2013.
119.
D. MacRae. 5 viruses to be on the alert for in 2014.
120.
H. E. Marano. Our brain’s negative bias. Technical report, Psychology Today, June 20, 2003.
121.
M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. Sparsification of influence networks. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD ’11, pages 529–537. ACM, 2011.
122.
R. M. May and A. L. Lloyd. Infection dynamics on scale-free networks.
Phys. Rev. E
, 64:066112, Nov 2001.
123.
A. R. McLean, R. M. May, J. Pattison, R. A. Weiss, et al.
SARS: A case study in emerging infections.
Oxford University Press, 2005.
124.
S. Meloni, A. Arenas, S. Gómez, J. Borge-Holthoefer, and Y. Moreno. Modeling epidemic spreading in complex networks: concurrency and traffic. In
Handbook of Optimization in Complex Networks
, pages 435–462. Springer, 2012.
125.
S. Milgram. The small world problem.
Psychology today
, 2(1):60–67, 1967.
126.
D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the slammer worm.
IEEE Security and Privacy
, 1(4):33–39, July 2003.
127.
D. Moore, C. Shannon, et al. Code-red: a case study on the spread and victims of an internet worm. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment
, pages 273–284. ACM, 2002.
128.
Y. Moreno, M. Nekovee, and A. F. Pacheco. Dynamics of rumor spreading in complex networks.
Physical Review E
, 69(6):066130, 2004.
129.
T. Nepusz and T. Vicsek. Controlling edge dynamics in complex networks.
Nature
, 8:568–573, 2012.
130.
NetMiner4. Premier software for network analysis, 2013.
131.
M. E. Newman. The structure and function of complex networks.
SIAM review
, 45(2):167–256, 2003.
MathSciNetzbMATH132.
M. E. Newman. A measure of betweenness centrality based on random walks.
Social networks
, 27(1):39–54, 2005.
133.
M. E. Newman. The mathematics of networks.
The new palgrave encyclopedia of economics
, 2:1–12, 2008.
134.
M. E. Newman and J. Park. Why social networks are different from other types of networks.
Physical Review E
, 68(3):036122, 2003.
135.
M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks.
Proceedings of the National Academy of Sciences
, 99(suppl 1):2566–2572, 2002.
zbMATH136.
M. E. J. Newman.
Networks: An Introduction
, chapter 17 Epidemics on networks, pages 700–750. Oxford University Press, 2010.
137.
M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phys. Rev. E
, 69:026113, Feb 2004.
138.
N. P. Nguyen, T. N. Dinh, S. Tokala, and M. T. Thai. Overlapping communities in dynamic networks: their detection and mobile applications. In
Proceedings of the 17th annual international conference on Mobile computing and networking
, MobiCom ’11, pages 85–96. ACM, 2011.
139.
G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society.
Nature
, 435(7043):814–818, 2005.
140.
G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society.
Nature
, 435:814–818, 2005.
141.
R. A. Pande.
Using plant epidemiological methods to track computer network worms
. PhD thesis, Virginia Tech, 2004.
142.
C. Pash. The lure of naked hollywood star photos sent the internet into meltdown in new zealand.
Business Insider Australia
, September 7 2014, 4:21 PM.
143.
F. Peter. ‘bogus’ ap tweet about explosion at the white house wipes billions off us markets, April 23 2013. Washington.
144.
S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted undirected graphs.
SIAM Journal on Computing
, 34(6):1398–1431, 2005.
MathSciNetzbMATH145.
A.-K. Pietilainen. CRAWDAD data set thlab/sigcomm2009 (v. 2012-07-15). Downloaded from
http://crawdad.org/thlab/sigcomm2009/
, July 2012.
146.
P. C. Pinto, P. Thiran, and M. Vetterli. Locating the source of diffusion in large-scale networks.
Phys. Rev. Lett.
, 109, Aug 2012.
147.
B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting culprits in epidemics: How many and which ones? In
Proceedings of the 2012 IEEE 12th International Conference on Data Mining
, ICDM ’12, pages 11–20, Washington, DC, USA, 2012. IEEE Computer Society.
148.
B. A. Prakash, J. Vreeken, and C. Faloutsos. Efficiently spotting the starting points of an epidemic in a large graph.
Knowledge and Information Systems
, 38(1):35–59, 2014.
149.
A. Rapoport. Spread of information through a population with socio-structural bias: I. assumption of transitivity.
The bulletin of mathematical biophysics
, 15(4):523–533, 1953.
MathSciNet150.
J. G. Restrepo, E. Ott, and B. R. Hunt. Characterizing the dynamical importance of network nodes and links.
Phys. Rev. Lett.
, 97:094102, Sep 2006.
151.
B. Ribeiro, N. Perra, and A. Baronchelli. Quantifying the effect of temporal resolution on time-varying networks.
Scientific reports
, 3, 2013.
152.
M. Rosvall and C. T. Bergstrom. An information-theoretic framework for resolving community structure in complex networks.
Proceedings of the National Academy of Sciences
, 104(18):7327–7331, 2007.
153.
M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences
, 105(4):1118–1123, 2008.
154.
G. Sabidussi. The centrality index of a graph.
Psychometrika
, 31(4):581–603, 1966.
MathSciNetzbMATH155.
M. Sales-Pardo, R. Guimera, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex systems.
Proceedings of the National Academy of Sciences
, 104(39):15224–15229, 2007.
156.
S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for ip traceback.
ACM SIGCOMM Computer Communication Review
, 30(4):295–306, 2000.
157.
V. Sekar, Y. Xie, D. A. Maltz, M. K. Reiter, and H. Zhang. Toward a framework for internet forensic analysis. In
ACM HotNets-III
, 2004.
158.
E. Seo, P. Mohapatra, and T. Abdelzaher. Identifying rumors and their sources in social networks. In
SPIE Defense, Security, and Sensing
, volume 8389, 2012.
159.
M. A. Serrano and M. Boguñá. Clustering in complex networks. ii. percolation properties.
Phys. Rev. E
, 74:056115, Nov 2006.
160.
D. Shah and T. Zaman. Detecting sources of computer viruses in networks: Theory and experiment. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
, SIGMETRICS ’10, pages 203–214. ACM, 2010.
161.
D. Shah and T. Zaman. Rumors in a network: Who’s the culprit?
IEEE Transactions on information theory
, 57(8):5163–5181, 2011.
MathSciNetzbMATH162.
D. Shah and T. Zaman. Rumor centrality: A universal source detector.
SIGMETRICS Perform. Eval. Rev.
, 40(1):199–210, June 2012.
163.
Z. Shen, S. Cao, W.-X. Wang, Z. Di, and H. E. Stanley. Locating the source of diffusion in complex networks by time-reversal backward spreading.
Physical Review E
, 93(3):032301, 2016.
164.
J. Shetty and J. Adibi. The enron email dataset database schema and brief statistical report.
Information Sciences Institute Technical Report, University of Southern California
, 4, 2004.
165.
S. Shirazipourazad, B. Bogard, H. Vachhani, A. Sen, and P. Horn. Influence propagation in adversarial setting: how to defeat competition with least amount of investment. In
Proceedings of the 21st ACM international conference on Information and knowledge management
, CIKM ’12, pages 585–594. ACM, 2012.
166.
L.-P. Song, Z. Jin, and G.-Q. Sun. Modeling and analyzing of botnet interactions.
Physica A: Statistical Mechanics and its Applications
, 390(2):347–358, 2011.
167.
Symantec. The 2012 norton cybercrime report.
Mountain View, CA: Symantec
, 2012.
168.
W. E. R. Team. Ebola virus disease in west africathe first 9 months of the epidemic and forward projections.
N Engl J Med
, 371(16):1481–95, 2014.
169.
K. Thomas and D. M. Nicol. The koobface botnet and the rise of social malware. In
Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on
, pages 63–70. IEEE, 2010.
170.
M. P. Viana, D. R. Amancio, and L. d. F. Costa. On time-varying collaboration networks.
Journal of Informetrics
, 7(2):371–378, 2013.
171.
B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in facebook. In
Proceedings of the 2nd ACM workshop on Online social networks
, WOSN ’09, pages 37–42, 2009.
172.
B. Vladimir and M. Andrej. Pajek: analysis and visualization of large networks. In
GRAPH DRAWING SOFTWARE
, pages 77–103. Springer, 2003.
173.
M. Vojnovic, V. Gupta, T. Karagiannis, and C. Gkantsidis. Sampling strategies for epidemic-style information dissemination.
Networking, IEEE/ACM Transactions on
, 18(4):1013–1025, 2010.
174.
K. Wakita and T. Tsurumi. Finding community structure in mega-scale social networks: [extended abstract]. In
Proceedings of the 16th international conference on World Wide Web
, WWW ’07, pages 1275–1276, 2007.
175.
Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD ’10, pages 1039–1048. ACM, 2010.
176.
Y. Wang, S. Wen, Y. Xiang, and W. Zhou. Modeling the propagation of worms in networks: A survey.
Communications Surveys Tutorials, IEEE
, PP(99):1–19, 2013.
177.
Y. Wang, S. Wen, Y. Xiang, and W. Zhou. Modeling the propagation of worms in networks: A survey.
Communications Surveys Tutorials, IEEE
, 16(2):942–960, Second 2014.
178.
Z. Wang, W. Dong, W. Zhang, and C. W. Tan. Rumor source detection with multiple observations: Fundamental limits and algorithms. In
The 2014 ACM International Conference on Measurement and Modeling of Computer Systems
, SIGMETRICS ’14, pages 1–13. ACM, 2014.
179.
D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
nature
, 393(6684):440–442, 1998.
zbMATH180.
D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
nature
, 393(6684):440–442, 1998.
zbMATH181.
N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer worms. In
Proceedings of the 2003 ACM Workshop on Rapid Malcode
, WORM ’03, pages 11–18, 2003.
182.
S. Wen, J. Jiang, B. Liu, Y. Xiang, and W. Zhou. Using epidemic betweenness to measure the influence of users in complex networks.
Journal of Network and Computer Applications
, 78:288–299, 2017.
183.
S. Wen, J. Jiang, Y. Xiang, S. Yu, and W. Zhou. Are the popular users always important for the information dissemination in online social networks?
Network, IEEE
, pages 1–3, October 2014.
184.
S. Wen, J. Jiang, Y. Xiang, S. Yu, W. Zhou, and W. Jia. To shut them up or to clarify: restraining the spread of rumors in online social networks.
Parallel and Distributed Systems, IEEE Transactions on
, 25(12):3306–3316, 2014.
185.
S. Wen, W. Zhou, Y. Wang, W. Zhou, and Y. Xiang. Locating defense positions for thwarting the propagation of topological worms.
Communications Letters, IEEE
, 16(4):560–563, 2012.
186.
S. Wen, W. Zhou, J. Zhang, Y. Xiang, W. Zhou, and W. Jia. Modeling propagation dynamics of social network worms.
Parallel and Distributed Systems, IEEE Transactions on
, 24(8):1633–1643, 2013.
187.
S. Wen, W. Zhou, J. Zhang, Y. Xiang, W. Zhou, W. Jia, and C. Zou. Modeling and analysis on the propagation dynamics of modern email malware.
Dependable and Secure Computing, IEEE Transactions on
, 11(4):361–374, July 2014.
188.
L. Weng, F. Menczer, and Y.-Y. Ahn. Virality prediction and community structure in social networks.
Scientific reports
, 3, 2013.
189.
P. Wood and G. Egan. Symantec internet security threat report 2011. Technical report, Symantec Corporation, April, 2012.
190.
Y. Xiang, X. Fan, and W. T. Zhu. Propagation of active worms: a survey.
International journal of computer systems science & engineering
, 24(3):157–172, 2009.
191.
Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm origin identification using random moonwalks. In
Security and Privacy, 2005 IEEE Symposium on
, pages 242–256. IEEE, 2005.
192.
G. Yan, G. Chen, S. Eidenbenz, and N. Li. Malware propagation in online social networks: nature, dynamics, and defense implications. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security
, ASIACCS’11, pages 196–206, 2011.
193.
G. Yan and S. Eidenbenz. Modeling propagation dynamics of bluetooth worms (extended version).
Mobile Computing, IEEE Transactions on
, 8(3):353–368, 2009.
194.
Y. Yan, Y. Qian, H. Sharif, and D. Tipper. A survey on smart grid communication infrastructures: Motivations, requirements and challenges.
Communications Surveys Tutorials, IEEE
, 15(1):5–20, First 2013.
195.
K. Yang, A. H. Shekhar, D. Oliver, and S. Shekhar. Capacity-constrained network-voronoi diagram: a summary of results. In
International Symposium on Spatial and Temporal Databases
, pages 56–73. Springer, 2013.
196.
Y. Yao, X. Luo, F. Gao, and S. Ai. Research of a potential worm propagation model based on pure p2p principle. In
Communication Technology, 2006. ICCT’06. International Conference on
, pages 1–4. IEEE, 2006.
197.
W. Zang, P. Zhang, C. Zhou, and L. Guo. Discovering multiple diffusion source nodes in social networks.
Procedia Computer Science
, 29:443–452, 2014.
198.
Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In
Security and Privacy (SP), 2012 IEEE Symposium on
, pages 95–109. IEEE, 2012.
199.
G.-M. Zhu, H. Yang, R. Yang, J. Ren, B. Li, and Y.-C. Lai. Uncovering evolutionary ages of nodes in complex networks.
The European Physical Journal B
, 85(3):1–6, 2012.
200.
K. Zhu and L. Ying. Information source detection in the sir model: A sample path based approach.
arXiv preprint arXiv:1206.5421
, 2012.
201.
K. Zhu and L. Ying. Information source detection in the sir model: A sample path based approach. In
Information Theory and Applications Workshop (ITA)
, pages 1–9, 2013.
202.
K. Zhu and L. Ying. A robust information source estimator with sparse observations.
Computational Social Networks
, 1(1):1, 2014.
203.
K. Zhu and L. Ying. Information source detection in the sir model: a sample-path-based approach.
IEEE/ACM Transactions on Networking
, 24(1):408–421, 2016.
204.
Y. Zhu, B. Xu, X. Shi, and Y. Wang. A survey of social-based routing in delay tolerant networks: Positive and negative social effects.
Communications Surveys Tutorials, IEEE
, 15(1):387–401, Jan 2013.
205.
Z. Zhu, G. Lu, Y. Chen, Z. Fu, P. Roberts, and K. Han. Botnet research survey. In
Computer Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE International
, pages 967–972, July 2008.
206.
C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and analysis. In
Proceedings of the 9th ACM Conference on Computer and Communications Security
, CCS ’02, pages 138–147, 2002.
207.
C. C. Zou, D. Towsley, and W. Gong. Modeling and simulation study of the propagation and defense of internet e-mail worms.
IEEE Transactions on dependable and secure computing
, 4(2):105–118, 2007.
208.
C. C. Zou, D. Towsley, and W. Gong. Modeling and simulation study of the propagation and defense of internet e-mail worms.
IEEE Transactions on Dependable and Secure Computing
, 4(2):105–118, 2007.