BIBLIOGRAPHY

ADO, I. D.

[1]   The representation of Lie algebras by matrices. Uspehi Mat. Nauk (N.S.) 2, No. 6(22) (1947), pp. 159–173. Am. Math. Soc. Transi. No. 2 (1949).

ALBERT, A. A., and FRANK, M. S.

[1]   Simple Lie algebras of characteristic p. Univ. e Politecnico Torino. Rend. Sem. Mat. Fis. 14 (1954–1955), pp. 117–139.

ARTIN, E.

[1]   Geometric Algebra. Interscience, 1957.

BLOCK, R.

[1]   New Simple Lie algebras of prime characteristic. Trans. Am. Math. Soc. 89 (1958), pp. 421–449.

[2]   On Lie algebras of classical type. Proc. Am. Math. Soc. 11 (1960), pp. 377–379.

BOREL, A.

[1]   Topology of Lie groups and characteristic classes. Bull. Am. Math. Soc. 61 (1955), pp. 397–432.

[2]   Groupes linéaires algébriques. Ann. Math. 64 (1956), pp. 20–82.

BOREL A., and CHEVALLEY, C.

[1]   The Betti numbers of the exceptional groups. Mem. Am. Math. Soc. No. 14 (1955), pp. 1–9.

BOREL, A., and MOSTOW, G. D.

[1]   On semi-simple automorphisms of Lie algebras. Ann. Math. 61 (1955), pp. 389–504.

BOREL, A., and SERRE, J. P.

[1]   Sur certains sous-groupes des groupes de Lie compacts. Comment. Math. Helv. 27 (1953), pp. 128–139.

CARTAN, E.

[1]   Thèse. Paris, 1894. 2nd ed., Vuibert, Paris, 1933.

[2]   Les groupes réels simples, finis et continus. Ann. Sci. École Norm. Sup. 31 (1914), pp. 263–355.

[3]   Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. Bull. Soc. Math. France 41 (1913), pp. 53–96.

[4]   Les groupes projectifs continus réels qui ne laissent invariante aucune multiplicité plane. J. Math. Pures Appi. 10, (1914), pp. 149–186.

[5]   La géométrie des groupes de transformations. J. Math. Pures Appl. 6, Ser. 9 (1927), pp. 1–119.

CARTAN, H., and EILENBERG, S.

[1]   Homological Algebra. Princeton Univ. Press, 1956.

CARTIER, P.

[1]   Séminaire Sophus Lie, Vol. II. (Hyperalgèbres et groupes de Lie formels) (1957) École Norm. Sup.

[2]   Dualité de Tannaka des groupes et des algèbres de Lie. Comptes Rendus 242 (1956), pp. 322–325.

CARTIER, P. et al.

[1]   Séminaire Sophus Lie. (1954–1955) École Norm. Sup.

CHANG, HO-JUI.

[1]   Über Wittsche Lie-Ringe. Hamburg Abhandl. 14 (1941), pp. 151–184.

CHEVALLEY, C.

[1]   Theory of Lie Groups: Vol. I. Princeton Univ. Press, 1946.

[2]   Théorie des Groupes de Lie: Tome II, Groupes Algébriques. Actualitès Sci. Ind. No. 1152. Paris, 1951.

[3]   The Algebraic Theory of Spinors. Columbia Univ. Press, 1954.

[4]   Théorie des Groupes de Lie: Tome III, Théorèmes Généraux sur les Algébres de Lie. Actualitès. Sci. Ind. No. 1226. Paris, 1955.

[5]   An algebraic proof of a property of Lie groups. Am. J. Math. 63 (1941), pp. 785–793.

[6]   A new kind of relationship between matrices. Am. J. Math. 65 (1943), pp. 521–531.

[7]   Sur certains groupes simples. Tôhoku Math. J. 7–8, Ser. 2, (1955–1956), pp. 14–66.

[8]   Séminaire Chevalley, Vols. I and II. (Classification des groupes de Lie algébriques) (1956–1958) École Norm. Sup.

CHEVALLEY, C. and EILENBERG, S.

[1]   Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63 (1948), pp. 85–124.

CHEVALLEY, C. and SCHAFER, R. D.

[1]   The exceptional simple Lie algebras F4 and E6 Proc. Nat. Acad. Sci. U.S. 36 (1950), pp. 137–141.

COHN, P. M.

[1]   Lie Groups. Cambridge Tracts in Math, and Math. Phys. 46. Cambridge, 1957.

COXETER, H. S. M.

[1]   The product of the generators of a finite group generated by reflections. Duke Math. J. 18 (1951), pp. 765–782.

CURTIS, C. W.

[1]   Modular Lie algebras, I and II. I: Trans. Am. Math. Soc. 82 (1956), pp. 160–179. II: Trans. Am. Math. Soc. 86 (1957), pp. 91–108.

[2]   On the dimensions of the irreducible modules of Lie algebras of classical type. Trans. Am. Math. Soc. 96 (1960), pp. 135–142.

[3]   Representations of Lie algebras of classical type with applications to linear groups. J. Math. Mech. 9 (1960), pp. 307–326.

DICKSON, L. E.

[1]   Algebras and their Arithmetics, Chicago Univ. Press, 1923.

DIEUDONNÉ, J.

[1]   La Géométrie des Groupes Classiques. Ergeb. Math. Berlin, 1955.

[2]   Sur les groupes de Lie algébriques sur un corps de caractéristique p > 0. Rend. Cire. Mat. Palermo (2) 1 (1952), pp. 380–402.

[3]   Sur quelques groupes de Lie abéliens sur un corps de caractéristique p > 0. Arch. Math. 5 (1954), pp. 274–281.

[4]   Lie groups and Lie hyperalgebras over a field of characteristic p > 0, I-VI. I: Comment. Math. Helv. 28 (1954), pp. 87–118. II: Am. J. Math. 77 (1955), pp. 218–244. III: Math. Z. 62 (1955), pp. 53–75. IV: Am. J. Math. 77 (1955), pp. 429–452. V: Bull. Soc. Math. France 84 (1956), pp. 207–239. VI: Am. J. Math. 79 (1957), pp. 331–388.

[5]   Witt groups and hyperexponential groups. Mathematika. 2 (1955), pp. 21–31.

[6]   On simple groups of type Bn. Am. J. Math. 79 (1957), pp. 922–923.

[7]   Les algèbres de Lie simples associées aux groupes, simple algébriques sur un corps de caractéristique p > 0. Rend. Cire. Mat. Palermo (2), 6 (1957), pp. 198–204.

DIXMIER, J.

[1]   Sur un théorème d’Harish-Chandra. Acta Sci. Math. Szeged. 14 (1952), pp. 145–156.

[2]   Sur les algèbres dérivées d’une algèbre de Lie. Proc. Cambridge Phil. Soc. 51 (1955), pp. 541–544.

[3]   Sous-algèbres de Cartan et decompositions de Levi dans les algèbres de Lie. Trans. Roy. Soc. Canada, Sec. III, (3) 50 (1956), pp. 17–21.

[4]   Certaines factorizations canoniques dans l’homologie et la cohomologie des algèbres de Lie. J. Math. Pures Appi. (9) 35 (1956), pp. 77–86.

DIXMIER, J., and LISTER, W. G.

[1]   Derivations of nilpotent Lie algebras. Proc. Am. Math. Soc. 8 (1957), pp. 155–158.

DYNKIN, E.

[1]   The structure of semi-simple Lie algebras. Uspehi Mat. Nauk (N.S.) 2 (1947), pp. 59–127. Am. Math. Soc. Transi. No. 17 (1950).

[2]   On the representation of the series log (exev) for non-commutative x and y by commutators. Mat. Sbornik 25 (1949), pp. 155–162.

[3]   Semi-simple subalgebras of semi-simple Lie algebras. Mat. Sbornik 30 (1952), pp. 349–462. Am. Math. Soc. Transl, Ser. 2, 6 (1957), pp. 111–244.

[4]   Maximal subgroups of the classical groups. Trudy Moskov. Mat. Obshchestva. 1 (1952), pp. 39–166. Am. Math. Soc. Transí., Ser. 2, 6 (1957), pp. 245–378.

FRANK, M. S.

[1]   A new class of simple Lie algebras. Proc. Nat. Acad. Sci. U.S. 40 (1954), pp. 713–719.

FREUDENTHAL, H.

[1]   Oktaven, Ausnahmegruppen und Oktavengeometrie. Mimeographed, Utrecht, 1951.

[2]   Sur le groupe exceptionnel E7. Indag. Math. 15 (1953), pp. 81–89.

[3]   Sur les invariants caractéristiques des groupes semi-simples. Indag. Math. 15 (1953), pp. 90–94.

[4]   Sur le groupe exceptionnel E8 Indag. Math. 15 (1953), pp. 95–98.

[5]   Zur ebenen Oktavengeometrie. Indag Math. 15 (1953), pp. 195–200.

[6]   Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen, I II and III. I: Indag. Math. 16 (1954), pp. 369–376. II: ibid. pp. 487–491. III: ibid. 18 (1956), pp. 511–514.

[7]   Beziehungen der E7 und E8 zur Oktavenebene. I-IX. I: Indag. Math. 16 (1954), pp. 218–230. II: Indag. Math. 16 (1954), pp. 363–368. III: Indag. Math. 17 (1955), pp. 151–157. IV: Indag. Math. 17 (1955), pp. 277–285. V: Indag. Math. 21 (1959), pp. 165–179. VI: Indag. Math. 21 (1959), pp. 180–191. VII: Indag. Math. 21 (1959), pp. 192–201. VIII: Indag. Math. 21 (1959), pp. 447–465. IX: Indag. Math. 21 (1959), pp. 466–474.

GANTMACHER, F.

[1]   Canonical representation of automorphisms of a complex semi-simple Lie group. Mat. Sbornik 5 (1939), pp. 101–146.

[2]   On the classification of real simple Lie groups. Mat. Sbornik 5 (1939), pp. 217–249.

GUREVIĈ, G. B.

[1]   Standard Lie algebras. Mat. Sbornik 35 (1954), pp. 437–460.

HARISH-CHANDRA.

[1]   On representations of Lie algebras. Ann. Math. 50 (1949), pp. 900–915.

[2]   Lie algebras and the Tannaka duality theorem. Ann. Math. 51 (1950), pp. 299–330.

[3]   Some applications of the universal enveloping algebra of a semi-simple Lie algebra, Trans. Am. Math. Soc. 70 (1951), pp. 28–99.

HIGMAN, G.

[1]   Lie ring methods in the theory of finite nilpotent groups. Proceedings of the International Congress of Mathematicians. Edinburgh, 1958. pp. 307–312.

HOCHSCHILD, G.

[1]   Representation Theory of Lie Algebras. Technical Report of the Office of Naval Research. University of Chicago Press, 1959.

[2]   Cohomology of restricted Lie algebras. Am. J. Math. 76 (1954), pp. 555–580.

[3]   Lie algebra kernels and cohomology. Am. J. Math. 76 (1954), pp. 698–716.

[4]   Representations of restricted Lie algebras of characteristic p. Proc. Am. Math. Soc. 5 (1954), pp. 603–605.

[5]   On the algebraic hull of a Lie algebra. Proc. Am. Math. Soc. 11 (1960), pp. 195–199.

HOCHSCHILD, G., and MOSTOW, G. D.

[1]   Extensions of representations of Lie groups and Lie algebras, I. Am. J. Math. 79 (1957), pp. 924–942.

[2]   Representations and representative functions of Lie groups, I and II. I: Ann. Math. 66 (1957), pp. 495–542. II: Ann. Math. 68 (1958), pp. 295–313.

HOCHSCHILD, G., and SERRE, J. P.

[1]   Cohomology of Lie algebras. Ann. Math. 57 (1953), pp. 591–603.

HOOKE, R.

[1]   Linear p-adic groups and their Lie algebras. Ann. Math. 43 (1942), 641–655.

IWAHORI, N.

[1]   On some matrix operators. J. Math. Soc. Japan 6 (1954), pp. 76–105.

[2]   On real irreducible representations of Lie algebras. Nagoya Math. J. 14 (1959), pp. 59–83.

IWASAWA, K.

[1]   On the representations of Lie algebras. Japan. J. Math. 19 (1948), pp. 405–426.

JACOBSON, N.

[1]   Theory of Rings. American Mathematical Society, 1943.

[2]   Lectures in Abstract Algebra. Vols. I and II. I: Van Nostrand, 1951. II: Van Nostrand, 1953.

[3]   Structure of Rings. American Mathematical Society, 1956.

[4]   Abstract derivation and Lie algebras. Trans. Am. Math. Soc. 42 (1937), pp. 206–224.

[5]   Simple Lie algebras over a field of characteristic zero. Duke Math. J. 4 (1938), pp. 534–551.

[6]   Cayley numbers and simple Lie algebras of type G. Duke Math. J. 5 (1939), pp. 775–783.

[7]   Restricted Lie algebras of characteristic p. Trans. Am. Math. Soc. 50 (1941), pp. 15–25.

[8]   Classes of restricted Lie algebras of characteristic p, I and II. I: Am. J. Math. 63 (1941), pp. 481–515. II: Duke Math. J. 10 (1943), pp. 107–121.

[9]   Commutative restricted Lie algebras. Proc. Am. Math. Soc. 6 (1955), pp. 476–481.

[10]   Composition algebras and their automorphisms. Rend. Circ. Mat. Palermo (2) 7 (1958), pp. 55–80.

[11]   Exceptional Lie Algebras. Yale mimeographed notes, 1957.

[12]   Some groups of transformations defined by Jordan algebras, I, II and III. I: J. Reinfe Angew. Math. 201 (1959), pp. 178–195. II: J. Reine Angew. Math. 204 (1960), pp. 74–98. III: J. Reine Angew. Math. 207 (1961), pp. 61–85.

[13]   A note on automorphisms of Lie algebras. Pacific J. Math. 12 (1962).

JENNINGS, S. H., and REE, R.

[1]   On a family of Lie algebras of characteristic p. Trans. Am. Math. Soc. 84 (1957), pp. 192–207.

KAPLANSKY, I.

[1]   Lie algebras of characteristic p. Trans. Am. Math. Soc. 89 (1958), pp. 149–183.

KILLING, W.

[1]   Die Zusammensetzung der stetigen endlichen Transformationsgruppen. I, II, III, and IV. I: Math. Ann. 31 (1888), pp. 252–290. II: Math. Ann. 33 (1889), pp. 1–48. III: Math. Ann. 34 (1889), pp. 57–122. IV: Math. Ann. 36 (1890), pp. 161–189.

KOSTANT, B.

[1]   On the conjugacy of real Cartan subalgebras, I. Proc. Nat. Acad. Sci. U.S. 41 (1955), pp. 967–970.

[2]   A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory. J. Math. Mech. 7 (1958), pp. 237–264.

[3]   The principal three-dimensional subgroups and the Betti numbers of a complex simple Lie group. Am. J. Math. 81 (1959), pp. 973–1032.

[4]   A formula for the multiplicity of a weight. Trans. Am. Math. Soc. 93 (1959), pp. 53–73.

KOSTRIKIN, A. I.

[1]   On Lie rings satisfying the Engel condition. Doklady Akad. Nauk SSSR (N.S.) 108 (1956), pp. 580–582.

[2]   On the connection between periodic groups and Lie rings. Izvest. Akad. Nauk S.S.R., Ser, Mat. 21 (1957), pp. 289–310.

[3]   Lie rings satisfying the Engel condition. Izvest. Akad. Nuk S.S.R., Ser. Mat. 21 (1957), pp. 515–540.

[4]   On local nilpotency of Lie rings that satisfy Engel’s condition. Doklady Akad. Nauk S.S.R. (N.S.) 118 (1958), pp. 1074–1077.

[5]   On a problem of Burnside. Izvest. Akad. Nauk S.S.R., Ser. Mat. 23 (1959), pp. 3–34.

KOSZUL, J. L.

[1]   Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. France 78 (1950), pp. 65–127.

LANDHERR, W.

[1]   Dber einfache Liesche Ringe. Abhandl. Math. Sem. Univ. Hamburg. 11 (1935), pp. 41–64.

[2]   Liesche Ringe vom Typus A. Abhandl. Math. Sem. Univ. Hamburg. 12 (1938), pp. 200–241.

LARDY, P.

[1]   Sur la détermination des structures réelles de groupes simples, finis et continus, au moyen des isomorphies involutives. Comment. Math. Helv. 8 (1935), pp. 189–234.

LAZARD, M.

[1]   Sur les algèbres enveloppantes universelles de certaines algèbres de Lie. Comptes Rendus 234 (1952), pp. 788–791.

[2]   Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. École Norm Sup., Ser. 3., 71 (1954), pp. 101–190.

[3]   Sur les algèbres enveloppantes universelles de certaines algèbres de Lie. Pubi. Sci. Univ. Algérie, Ser. A., 1 (1954), pp. 281–294 (1955).

[4]   Lois de groupes et analyseurs. Ann. Sci. Ecole Norm. Sup. (3) 72 (1955), pp. 299–400.

LEGER, G. F.

[1]   A note on the derivations of Lie algebras. Proc. Am. Math. Soc. 4 (1953), pp. 511–514.

MALCEV, A.

[1]   On semi-simple subgroups of Lie groups. Izvest. Akad. Nauk. Ser. Mat. 8 (1944), pp. 143–174. Am. Math. Soc. Transi. No. 33 (1950).

[2]   On solvable Lie algebras. Izvest. Akad. Nauk S.S.R., Ser. Mat. 9 (1945), pp. 329–356. Am. Math. Soc. Transi No. 27 (1950).

[3]   Commutative subalgebras of semi-simple Lie algebras. Bull. Acad. Sci. URSS, Sév. Math. 9 (1945), pp. 291–300. Am. Math. Soc. Transi. No. 40 (1951).

MILLS, W. H.

[1]   Classical type Lie algebras of characteristic 5 and 7. J. Math. Mech. 6 (1957), pp. 559–566.

MONTGOMERY, D., and ZIPPIN, L.

[1]   Topological Transformation Groups. Interscience, 1955.

MOSTOW, G. D.

[1]   Fully reducible subgroups of algebraic groups. Am. J. Math. 68 (1956), pp. 200–221.

[2]   Extension of representations of Lie groups, II. Am. J. Math. 80 (1958), pp. 331–347.

ONO, T.

[1]   Sur les groupes de Chevalley. J. Math. Soc. Japan. 10 (1958), pp. 307–313.

PONTRJAGIN, L. S.

[1]   Topological Groups. Princeton Univ. Press, 1939.

REE, R.

[1]   On generalized Witt algebras. Trans. Am. Math. Soc. 83 (1956), pp. 510–546.

[2]   On some simple groups defined by C. Chevalley. Trans. Am. Math. Soc. 84 (1957), pp. 392–400.

[3]   Lie elements and an algebra associated with shuffles. Ann. Math. 68 (1958), pp. 210–220.

[4]   Generalized Lie elements. Can. J. Math. 12 (1960), pp. 493–502.

[5]   A family of simple groups associated with the simple Lie algebra of type (G2). Am. J. Math. 83 (1961).

[6]   A family of simple groups associated with the simple Lie algebra of type (F4). Am. J. Math. 83 (1961).

SAMELSON, H.

[1]   Topology of Lie groups. Bull. Am. Math. Soc. 58 (1952), pp. 2–37.

SCHENKMAN, E. V.

[1]   A theory of subinvariant Lie algebras. Am. J. Math. 73 (1951), pp. 453–474.

SELIGMAN G. B.

[1]   On Lie algebras of prime characteristic. Mem. Am. Math. Soc. No. 19, 1956.

[2]   Some remarks on classical Lie algebras. J. Math. Mech. 6 (1957), pp. 549–558.

[3]   Characteristic ideals and the structure of Lie algebras. Proc. Am. Math. Soc. 8 (1957), pp. 159–164.

[4]   On automorphisms of Lie algebras of classical type. I, II and III. I: Trans. Am. Math. Soc. 92 (1959), pp. 430–448. II: Trans. Am. Math. Soc. 94 (1960), pp. 452–482. III: Trans. Am. Math. Soc. 97 (1960), pp. 286–316.

SELIGMAN, G. B., and MILLS, W. H.

[1]   Lie algebras of classical type. J. Math. Mech. 6 (1957), pp. 519–548.

ŠIRŠOV, A. I.

[1]   Unteralgebren freier Liescher Algebren. Mat. Sbornik (2) 33 (1953), pp. 441–452.

STEINBERG, R.

[1]   Prime power representations of finite linear groups, I and II. I: Can. J. Math. 8 (1956), pp. 580–591. II: Can. J. Math. 9 (1957), pp. 347–351.

[2]   Variations on a theme of Chevalley. Pacific J. Math. 9 (1959), pp. 875–891.

[3]   The simplicity of certain groups. Pacific J. Math. 10 (1960), pp. 1039–1041.

[4]   Automorphisms of classical Lie algebras. Pacific J. Math. 11 (1961).

STIEFEL, E.

[1]   Über eine Beziehung zwischen geschlossenen Lieschen Gruppen und diskontinuierlichen Bewegungsgruppen Euklidischer Raume und ihre Anwendung auf die Aufzahlung der einfachen Lieschen Gruppen. Comment. Math. Helv. 14 (1941–42), pp. 350–380.

[2]   Kristallographische Bestimmung der Charaktere der geschlossenen Lieschen Gruppen. Comment. Math. Helv. 17 (1944–45), pp. 165–200.

TITS, J.

[1]   Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’Algèbre. Brussels, (Dec. 1956).

[2]   Les groupes de Lie exceptionnels et leur interpretation géométrique. Bull. Soc. Math. Belg. 8 (1956), pp. 48–81.

[3]   Sur la géométrie des R-espaces. J. Math. Pures Appi. 36 (1957), pp. 17–38.

[4]   Les “formes réelles” des groupes de type E6. Séminaire Bourbaki. (1958), Paris.

[5]   Sur la trialité et certains groupes qui s’en deduisent. Pubis. Math. Inst. des Hautes-Études No. 2 (1959), pp. 14–60.

[6]   Sur la classification des groupes algébriques semi-simples. Comptes Rendus 249 (1959), pp. 1438–1440.

TOMBER, M. L.

[1]   Lie algebras of type F. Proc. Am. Math. Soc. 4 (1953), pp. 759–768.

WEYL, H.

[1]   The Classical Groups. Princeton Univ. Press, 1939.

[2]   Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I, II and III. I: Math. Z. 23 (1925), pp. 271–309. II: Math. Z. 24 (1926), pp. 328–376. III: Math. Z. 24 (1926), pp. 377–395.

WITT, E.

[1]   Treue Darstellung Liescher Ringe. J. Reine Angew. Math. 177 (1937), pp. 152–160.

[2]   Spiegelungsgruppen und Aufzàhlung halbeinfacher Liescher Ringe. Abhandl. Math. Sem. Univ. Hamburg. 14 (1941), pp. 289–337.

[3]   Treue Darstellungen beliebiger Liescher Ringe. Collect. Math. 6 (1953), pp. 107–114.

[4]   Die Unterringe der freien Lieschen Ringe. Math. Z. 64 (1956), pp. 195–216.

ZASSENHAUS, H.

[1]   Über Liesche Ringe mit Primzahlcharakteristik. Abhandl. Math. Sem. Univ. Hamburg. 13 (1939), pp. 1–100.

[2]   Ein Verfahren jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen. Abhandl. Math. Sem. Univ. Hamburg. 13 (1939), pp. 200–207.

[3]   Darstellungstheorie nilpotenter Lie-Ringe bei Charakteristik p > 0. J. Reine Angew. Math. 182 (1940), pp. 150–155.

[4]   Über die Darstellungen der Lie-Algebren bei Charakteristik 0. Comment. Math. Helv. 26 (1952), pp. 252–274.

[5]   The representations of Lie algebras of prime characteristic. Proc. Glasgow Math. Assoc. 2 (1954), pp. 1–36.