Index

administrative data 156–7

advertising 125

al-Qaeda 93, 101

alchemy 181, 182, 183, 184–5

algorithms 157–8, 159, 161–94, 280

biased datasets, training on 174, 176

effectiveness, testing 179, 186–9, 191, 193

fallibility 169–71, 172–3, 175–6, 179, 180

false positive issue 169–70, 187, 188

pattern-recognising 162, 164, 166, 168, 169, 193

racial bias 187–8

‘winter detector’ problem 164

Amazon (retailer) 156, 175, 185, 192

Anderson, Chris 165

Angwin, Julia 186

antidepressant medications 131–2

Apple 147, 185

Argentina, inflation 205–6, 223

art forgeries 19–23, 30–3, 45–7

Asch, Solomon 142, 143, 145, 154, 275

Atkinson, Sir Tony 88

Attenborough, David 292

autism 56

Avogadro’s number 260

Babbage, Charles 233

Babcock, Linda 28

Babson, Roger 278

‘backfire effect’ 135

bail decisions 178–9

current offence bias 178

Bangladesh 64

Bank for International Settlements 106

Bannon, Steve 14

Bargh, John 126–7

barometer 182

base rates 267–8

basketball 121–2

Battistella, Annabelle (Fanne Foxe) 196, 197, 225

Baumeister, Roy 126, 127

Bell, Vanessa 271

Bem, Daryl 115–17, 118–19, 121, 126, 127, 128

Berti, Gasparo 181

Bevacqua, Graciela 205, 206, 207, 225

Beyth, Ruth 262, 263, 264, 268

Bi Hua 65

biased assimilation of information 36–8, 137

biases 14, 113, 114, 160

optimism bias 101

publication bias 118, 119, 120, 121, 123, 125, 127, 128, 131, 133

racial bias 187, 188

sampling bias 152, 155, 156

selective attention 114

survivorship bias 115, 117, 118, 128–9, 130–1, 132

unconscious 41

big data 156–9, 160, 161–94, 280

accountability and transparency 190, 191, 192, 193

administrative data 156–7

algorithms see algorithms

found data 157, 162–3

missing data 157, 158–9, 173–4

N = All assumptions 158–9, 160

privacy issues 192

secrecy 185, 192, 193

sinister aspects of 166–7

traps 171–2

trustworthiness 189–90, 193–4

Big Duck graphics 230–1, 243

big numbers 98–100

Bird, Sheila 72

‘bird’s eye view’ 49, 64, 65, 67–8, 279

Blastland, Michael 11, 72–3, 98, 226

Bloomberg TV 93

body count metric 61, 120

body temperature 174–5

Boon, Gerard 19–20, 31–2

Borges, Jorge Luis 123

Boyle, Robert 182, 183, 184

Bredius, Abraham 19–20, 21, 22, 23, 30–3, 36, 45, 47, 83, 255, 277

Brettschneider, Brian 237–8

British Medical Journal 71

Brown, Derren 120

Brown, Zack 112–13

Buchanan, Larry 243

Buffett, Warren 274

business writing 128–9

Butoyi, Imelda 65, 66

Cairo, Alberto 241

Cambridge Analytica 166–7, 171

Cameron, David 154

Campbell, Donald T. 62

Campbell Collaboration 141

Canadian statistical agency 208, 224

cancers 3–7, 12–13, 16–17, 24–5, 41, 54, 293

capital punishment 36–7

Caravaggio 31, 32

cardiac surgery 60

Carter, Jimmy 198

cash-and-mentor schemes 64

censuses 155–6, 200, 208, 214

cost-benefit analysis 210–11

response rates 155–6

sample bias 156

sample error 156

Chalmers, Sir Iain 139

Chambers, David 274

child benefit payments 149

child mortality 69–72, 95, 97, 104

child neglect or abuse 179–80

China 62–4, 65, 96

Covid-19 pandemic 8

economic data 214

economic growth 62, 63, 96

famine 214

Gini coefficient 97

choice 109–11, 262

demotivating 110, 111, 118

jam experiment 109–11, 115, 118, 129

navigating 111

cigarettes, and lung cancer 3–7, 12–13, 16–17, 41, 54, 293

clickbait headlines 112

climate change 35–6, 38–41, 94–5, 105, 283, 284

denialism 14, 40–1

clinical outcomes 60

clinical trials 64, 125, 131–2, 133–4, 136, 139, 147–8, 191

preregistration 133–4

randomised controlled trials (RCTs) 5fn, 55, 64, 131, 139, 191

sex-dependant effects 147–8

under-representation of women 147

Clinton, Bill 199

Clinton, Hillary 155, 201

Cochrane, Archie 138–9

Cochrane Collaboration 138–9

Cochrane Library 139, 140–1

cognitive reflection test 43

coin-tossing 120–1, 135–6

Colbert, Stephen 289–90

Cold War 94

college rankings 61

common-sense principles 12

COMPAS algorithm 186–9

conformity pressure 142–5

context and perspective 91–108, 279

news content analysis 91–6, 100–7

scale 98–100, 108

time 93–6

Corbett-Davies, Sam 187

Corbyn, Jeremy 15

cortisol 126

Cotgreave, Andy 246

Covid-19 pandemic 7–9, 10, 27, 30, 72, 125fn, 159, 240fn

data deficit 8–9, 11, 30

gendered effects 148

misinformation 27

mortality figures 72

news coverage 107

selective attention bias 114

wishful thinking and 30

Cowperthwaite, Sir John 212, 214–15, 216

Crawford, Kate 158

Credit Suisse 83, 85

credulity 10, 15, 21, 173

see also wishful thinking

crime

bail decisions 178–9

convictions and sentencing 177–8, 179

re-offending risk 186–7

trends 151

Crimean War 226–7, 233–4, 239, 240, 249, 250

crowdfunding see Kickstarter

Cruz, Ted 238

Cuban missile crisis 94

Cuddy, Amy 126, 127

Cukier, Kenn 166

curiosity 279–94

incremental change 285

information gap theory of 286, 287

scientific curiosity 283–4

situational 285–6

sparking 285, 286, 288–9, 291, 292, 293

currency markets 272

cynicism 9–10, 18, 281

dark data 154–5

data gathering and analysis 109–41, 279

‘backfire effect’ 135

disbelief 127

‘the garden of forking paths’ 123–4, 127, 133

‘interestingness’ filter 128

missing data see missing data

standard statistical methods 123, 124, 125, 135–6

statistical significance concept 135, 136

see also research practices and publications

data science code of ethics 190

data visualisation 226–51, 280

Big Duck graphics 230–1, 243

data density 243

decorative function 229–31, 235–7

ease of sharing 237–8

emotional responses 246, 251

exploratory function 241–2

misinformation 26–7, 237–8

tone 246–7

understanding the basics 251

visual arguments 241, 242–3, 251

dazzle camouflage 231–2, 249

De Meyer, Kris 40–1

death penalty, deterrent effect 36–7

debt and derivatives markets 105–6

Debtris 235–6, 237, 249

decision-trees 176

Degas, Edgar 270, 271

denialism 24, 25, 29, 37, 38, 40–1, 261–2, 283

Descartes, René 181, 183

Deutsch, Morton 275

diabetes 58

Dilnot, Sir Andrew 11, 98

Dimson, Elroy 274

divorce rates 267–8

Dobelli, Rolf 106

Doll, Richard 3–7, 10, 12–13, 16–17, 239, 293

Dollar Street 65–7

doubt

manufacturing 13, 14

power of 16, 37

Draeger’s 110

Dressel, Julia 188

Du Bois, W.E.B. 218

Duhigg, Charles 167, 168, 170, 172

Earth’s circumference 99

Eco, Umberto 1

economic forecasts 199–200

see also forecasting industry

The Economist 93

education 36, 39

literacy 215–16

Edwards, Kari 13, 34

elections 57, 151–2, 154–5

campaign finance 289–90

electric shock experiments 145–6

Elliott, Andrew 98–9

emotional response 19–48

biased assimilation 36–8, 137

cognitive reflection test 43

motivated reasoning and 29, 30, 33, 34–5, 36, 39, 40, 137, 282

noticing and reflecting on 26, 27, 42, 47–8, 107, 279

ostrich effect 25–6

trap of 23, 24, 26–7, 35, 36, 42, 82–3

wishful thinking 27–30, 33, 38, 42, 47

Empire State Building 99

The Empire Strikes Back (movie) 19

Eurostat 203, 204, 205

Facebook 12, 27, 58, 158, 166, 185, 192, 237

fake news 15, 42, 43, 46

Farid, Hany 188, 189

Farr, William 227–8, 234–5, 239–40, 247

fast statistics 59, 62, 63, 65

Feller, Avi 187

Fernbach, Philip 287

Festinger, Leon 252

Feynman, Richard 259

filtering information 260–2, 263, 283

financial news media 93, 105–6

Financial Times 93, 106, 149–50

Finland

Gini coefficient 97

infant mortality rate 70, 71

First World War 95, 270–1

Fischhoff, Baruch 262, 263, 264, 268

Fisher, Irving 252–6, 257–8, 263, 266, 269, 272, 274–7, 278

Fletcher, Harvey 259

folic acid supplements 168, 170

‘fooled by randomness’ 129

football games 29

forecasting industry 256, 263–78

base rates 267–8

Good Judgment Project 266

Intelligence Advanced Research Projects Activity 265–6

misremembering forecasts 262–3, 264, 268

open-mindedness 269

outside and inside views 268

public commitments 275

recording predictions 268, 275

superforecasters 266, 268–9, 275

training 266–7

updating forecasts 268–9, 277

found data 157, 159, 162–3

Frank, Anne 44

Franklin, Benjamin 33, 34

Frederick, Shane 43

French Academy of Sciences 184

Friedman, Milton 212, 253

Frisch, Ragnar 252

Fry, Hannah 169, 176

Fuentes, Ricardo 81

Full Fact 150

Fung, Kaiser 169–70

‘fuzzy’ data 192

Galileo Galilei 17, 183

Gallup, George 152–3

Galtung, Johan 93, 94

‘the garden of forking paths’ 123–4, 127, 133

Gelman, Andrew 123, 133, 181

gender data gap 145, 146–9, 154, 160, 175

Georgiou, Andreas 202, 204–5, 206, 207, 225

Gerard, Harold 275

Germany

crime statistics 202

Nazi statistical system 214

refugees in 201–2

Gini, Corrado 96

Gini coefficient 89fn, 96–8

global financial crisis (2007–08) 88, 89, 106, 203, 236

global populations 99

Global Wealth Report 85

Goel, Sharad 187

Goldacre, Ben 2, 128, 134

Goldin, Rebecca 74

Goldman Sachs 203

Goldstein, Jacob 120

Goodhart, Charles 62

Google 159, 165, 185, 192–3

Google Flu Trends 161–2, 163–4, 173–4

Göring, Hermann 22, 45, 46

Gould, Stephen Jay 25, 26

Gove, Michael 292fn

graduate earnings 2–3

Grant, Duncan 271

graphs see data visualisation

Great Depression 257, 276

Greece 202–5, 206–7

budget deficit 203–4, 207

ELSTAT statistical agency 202–3, 204, 206

Greenpeace 44

Greifeneder, Rainer 111

Guangzhou 63, 64

Guardian 71, 78, 79, 81, 82, 106

gun deaths 76–8

Hand, David 154

HAR King (Hypothesising After Results Known) 123

Harper, Stephen 208

Hawking, Stephen 292

Hayek, Friedrich 61

hedge funds 271

height, adult 97, 98

Herbert, Sidney 233, 241, 250

herpes 25

Hewlett Packard 159

Hill, Austin Bradford 3–7, 10, 12–13, 16–17, 239, 293

Hillsborough football stadium disaster 77

Hitchhiker’s Guide to the Galaxy (Douglas Adams) 69

Hitler, Adolf 4, 44, 46, 213

HIV/AIDS 29, 30, 38, 40

Hobbes, Thomas 183

Holmes, Nigel 231

Holocaust 44–5

homicides 58, 76–8, 91–3

Hong Kong 63

economic growth 212, 215

‘hot sauce paradigm’ 74

household income 149–50, 160

How to Lie with Statistics (Darrell Huff) 2–3, 6, 125

Huff, Darrell 2–3, 6, 9, 10, 16, 18, 76, 125, 281, 293

Hurricane Sandy 158

illusion of explanatory depth 287

immigration policies 75

IMPACT algorithm 172–3

In Search of Excellence (Peters and Waterman) 128–9

income inequality 65–7, 81–9, 243–5

50/10 ratio 87, 96

Gini coefficient 96–7

highest-earning 1 per cent 87, 88, 96

Independent 81, 82–3

Index Number Institute 255–6

India 96

unemployment statistics 207–8

inequality 81–9, 90

income inequality 86–9

wealth inequality 81–6

World Inequality Database 88

infant and child mortality 69–72, 95, 97, 104

inflammatory memes 44

influenza

Google Flu Trends 161–2, 163–4, 165, 166

pandemic 95

infographics see data visualisation

innovation, rate of 12

insider trading 222

Instagram 158

intelligently open decisions 190

International Monetary Fund (IMF) 204, 277

Inuit 144

investment funds 130–1, 132

see also forecasting industry

Ioannidis, John 7, 125, 126, 127, 136

Ipsos Mori 57–8

Iraq 245–6

Iraq war 235, 236

Iyengar, Sheena 109, 110, 111, 112, 118

jam experiment 109–11, 115, 118, 129

Jamieson, Kathleen Hall 290

Japan 231fn

Johnson, Richard 177, 179

judges and their judgements 177–8, 179

Kahan, Dan 281, 282–3, 285–6, 290

Kahneman, Daniel 43, 59, 64fn, 101, 126, 127, 137, 268

Keil, Frank 286, 287

Kestenbaum, David 120

Keynes, John Maynard 253, 269–74, 276, 277

Kickended 113, 115, 116, 128

Kickstarter 112–14, 115, 117, 128

failures 113, 114

‘killer facts’ 81, 86

King’s College, Cambridge 269, 270, 272, 273, 274

Kirchner, Cristina Fernández de 205

Kirchner, Néstor 205

Korean War 94

Kosara, Robert 241

Kunda, Ziva 24

Kurov, Alexander 222

Kvitkin, Olimpiy 214

landmark numbers 98–100

Landon, Alfred 151, 152, 153

Leave Means Leave 75

LePan, Douglas 269

Lepper, Mark 37, 109, 110, 111, 112, 118

Lewin, Kurt 275

Lewis, Martyn 104

Lewis, Michael 14

Lievesley, Denise 207

life expectancy 97, 98, 227, 250

Life Extension Institute 254

Limeburner, Shannon 113

LinkedIn 158

literacy 215–16

Literary Digest 151–2, 153, 173

Lodge, Milton 34–5, 39

Loewenstein, George 28, 286, 287

London Olympic Games (2012) 151

London Underground 49–50, 52, 53

Lord, Charles 37

Lorusso, Silvio 113, 115

Lovelace, Ada 233

Lundberg, Shelly 149

McCandless, David 235, 236–7

McDonald, Lynn 228fn

McGregor, David 113

Mackowiak, Dr Philip 174, 175

McMaster, General H. R. 61

McNamara, Robert 61

mad cow disease 13

Madison, James 216–17

Malkiel, Burton 131

management metrics 60

Mao Zedong 213, 262

Mars, planet 2–4

Martineau, Harriet 250

mass shootings 76–7

mathematical risk models 76

May, Theresa 15

Mayer-Schönberger, Viktor 156, 166

Mayraz, Guy 27–8

medical appointment waiting times 60–1

medical diagnoses 176

medical journals 6, 71, 133–4

Meegeren, Han van 22, 23, 31, 32, 33, 44, 45–7, 48, 255

Teekeningen 1 44, 46

Meehl, Paul 176

Mellers, Barbara 266

Merkel, Angela 201

Mersenne, Marin 183–4

meta-research 125

microcredit schemes 64

Microsoft 185

Milgram, Stanley 145–6, 154

Millikan, Robert 258–9, 274

Mills, Wilbur 196

mindfulness meditation 141

miscarriage 70, 71

misinformation 26–7, 43, 237–8

missing data 115, 125, 130, 132, 134, 142–60, 279, 280

big data and 157, 158–9, 173–4

dark data 154–5

gender data gap 145, 146–9, 154, 160, 175

see also censuses; opinion polls

MMR vaccine 56–7

Modi, Narendra 207

Molière 33, 34

Moore, Alan 109

Moore, Don 266

More or Less (BBC radio programme) 11, 12, 49, 76, 98, 106, 281, 291

Mosteller, Frederick 16fn

motivated reasoning 29, 30, 33, 34–5, 36, 39, 40, 137, 282

see also wishful thinking

movie audiences 156

Moy, Will 150–1

Mullainathan, Sendhil 178

Muller, Jerry Z. 60

N = All 156, 157, 158, 160, 163

see also big data

naive realism 57–8

Nasar, Sylvia 276–7

Nazism 44, 47

negativity instinct 100–1, 104

Nelson, Leif 124

net wealth 83–4

Netflix 156, 157, 191, 192

recommendation algorithm 192

New Yorker 243

New Zealand census 210–11

news media 59, 91–6, 100–7

context and perspective 93–5, 100

financial news 93, 105–6

frequency of engagement with 100–1

good news stories 104–5

negativity instinct 100–1, 104

news junkies 107, 268

rolling news 106, 107

surprising or dramatic news 101–2

Newton, Isaac 183, 184, 185

Nightingale, Florence 226–9, 232–5, 239–41, 247, 249, 250–1

Nikon 159

Nixon, Richard 197, 198, 262

Nosek, Brian 118–19, 120, 126, 127, 137

nuclear weapons 94

nurses’ pay 90

Nyhan, Brendan 135

official statistics 195–225, 280

censuses see censuses

cost-benefit analysis 210–11

data bedrock 200, 224–5

fiddling the figures 201, 202, 203–4, 205–6, 219, 224

financial sensitivity 220, 221–2

government assertion of ownership 216–17, 219, 220

government misuse of 213–14, 219

managerial tools 217

partisan political issue 208

political sensitivity 220

pre-release access 220–3

private sector use of 217–19

public availability of 218–19

statisticians, undermining independence of 204–5, 206, 207, 208

trust in, undermining 201, 206, 219, 222–3

oil drop experiment 258

O’Neil, Cathy 166, 172, 190

O’Neill, Onora 189, 190, 281

open mind 252–78, 280

changing one’s mind 273, 277

filtering information 260–2, 263, 283

superforecasting 269

opinion polls 57, 151–5

dark data 154–5

representative sampling 153

response rates 153–4

sampling bias 152, 155, 156

sampling error 152

opioid crisis 12

optimism bias 101

ostrich effect 25–6

Oxfam 81–2, 83, 85, 86, 103, 112

Pac-Man 74

partisanship 35, 39, 42

Pascal, Blaise 181, 182, 183, 184

pensions 85

Perez, Caroline Criado 146–7

performance targets 60

perinatal health 139

personal experience 49–68, 107, 279

‘bird’s eye view’ 49, 64, 65, 67–8, 279

naive realism 57–8

statistics in combination with 65, 67

statistics in conflict with 51, 52–3, 54, 56, 57, 58

‘worm’s eye view’ 49, 64, 65, 67–8, 279

Peter, Tom 128–9

Phillips Curve 231fn

Picasso, Pablo 231

Pierson, Emma 187

Piketty, Thomas 88

Pinker, Steven 76, 101

Planck’s constant 260

Planet Money (podcast) 290–1

polarisation 36, 282, 283, 287–8, 292

potato salad 112, 118

pothole-detecting app 159, 174

poverty 95–6

reduction in global poverty 103, 104, 105

World Bank definition 95

see also income inequality

Powell-Smith, Anna 142

power posing 126, 127, 128

Pratchett, Terry 91

precognition 116–18, 119, 126, 128, 134–5

see also forecasting industry

pregnancy 167–8, 170, 171

premature enumeration 73, 75–6, 78, 84–5

priming experiment 126–7

prisoner population 58

Proctor, Robert 14

ProPublica 186–7, 188

psychological experiments 142–5

public transport occupancy rates 49–54

publication bias 118, 119, 120, 121, 123, 125, 127, 128, 131, 133

Puerto Rico

hurricane 209

statistical agency 209–10, 211

Quetelet, Adolphe 233

racial bias 187, 188

randomised controlled trials (RCTs) 5fn, 55, 64, 131, 139, 191

Rapid Safety Feedback 180

Rayner, Sir Derek 217, 219, 220

Reagan, Ronald 199, 263

redistributive taxation 88

Reifler, Jason 135

Reischauer, Robert 197

Reiter, Jonathan 113

Rembrandt van Rijn 19

Remington Rand 257–8

reproducibility problem 111, 117, 118, 119, 127, 135, 137, 184, 185

research practices and publications

fluke results 116, 119, 121, 123, 128

fudged research practices 120, 121, 122, 123, 124–5, 132, 134, 258–9, 260

HARKing (Hypothesising After Results Known) 123

publication bias 118, 119, 120, 121, 123, 125, 127, 128, 131, 133

reproducibility problem 111, 117, 118, 119, 127, 135, 137, 184, 185

second opinions on 138

self-regulation 134

survivorship bias 115, 117, 118, 128–9, 130–1, 132

transparency 132–3

see also clinical trials

Riecken, Henry 252

Rivlin, Alice 197, 198, 199, 225

Robinson, Nicholas 177, 179

rolling news coverage 93

Rolodex 255

Rönnlund, Anna Rosling 65, 66, 67

Roosevelt, Franklin Delano 151, 152, 153

rose diagram 228, 247, 248, 249–50

Roser, Max 94

Rosling, Hans 67, 100–1, 195

Ross, Lee 37

Royal Society 14, 184

Royal Statistical Society 223, 227, 233

Rozenblit, Leonid 286, 287

Ruge, Marie 93, 94

same-sex marriage 26–7

sampling bias 152, 155, 156

sampling error 73, 152

Samuelson, Paul 252

Santos, Alexis 209

Scarr, Simon 245–6

scepticism, healthy 10

Schachter, Stanley 252

Scheibehenne, Benjamin 110–11, 115, 119, 126

science journalism see research practices and publications

Scientific American 107

scientific curiosity 283–4

Scott, James C. 212, 213, 214

Scott Brown, Denise 230

screen time, well-being and 122–3

Second World War 44

Seehofer, Horst 202

self-control 126, 127

self-harming 78–80, 90

self-reported data 3

sexual activity 97–8

Shane, Janelle 164

Sharot, Tali 101

Sheikh, Munir 208

Shenzhen 63

sick building syndrome 13

sildenafil 147

Simmons, Joseph 124

Simon, Dr John 240, 247

Simonsohn, Uri 124

Singh, Sameer 164

situational understanding 61

see also personal experience

Sloman, Steven 287

slow statistics 59, 60, 62, 63, 65

Small, Hugh 227, 248

Smith, Adam 253

Smith, Edward 13–14, 34

Smith, Dr Lucy 69–70

Smith, Wayne 208

smoking-related diseases 3–7, 12–13, 16–17, 41, 54, 101, 105, 293

Somerfeld, Eric 39

Soviet Union 214, 262, 263, 264

Space Invaders 74

species extinction 12

Spicer, Sean 201

Spiegelhalter, Sir David 171, 172

Stalin, Joseph 78, 213, 214

standard statistical methods 123, 124, 125, 135–6

standards for statistical

record-keeping 235

Starbucks 110

state pensions 85fn

statistical metrics 61–2

statistical significance testing 135, 136

Stereotypical Daydream 114, 118

stock market crash (1929) 257, 272, 273, 274, 275

stock markets 25–6, 27–8, 272–6

ostrich effect and 25–6

wishful thinking and 27–8

stock-picking 129–30

see also forecasting industry

storks and babies correlation 1–2, 16

StreetBump 159, 174

Stroke Association 102, 103

stroke, incidence of 102–3

Subacchi, Paola 202–3

suicide 80

Sunstein, Cass 178

survivorship bias 115, 117, 118, 128–9, 130–1, 132

Sutherland, Dr John 228fn

Sweden 222

system 1 and system 2 thinking 64fn

Taber, Charles 34–5, 39

Taft, William 254

Taiwan 7–8

Taleb, Nassim 106, 129

Tanzania 207

Target department store 167–8, 170–1, 172, 185, 191

teaching quality, measurement of 172–3

teenage drinking 12

teenage mothers 58, 59

television personalities 57

Temne people 144

terrorism, deaths from 58, 59, 101

testosterone 126

Tetlock, Philip 263–4, 265, 266, 269, 275

Tett, Gillian 105, 106

Thaler, Richard 137 thalidomide 147

Thatcher, Margaret 217 Tierney, John 126

tobacco industry 12–13, 14, 16, 41

see also cigarettes, and lung cancer

Tooze, Adam 214

Torricelli, Evangelista 181, 183

Transport for London 50, 51, 52, 53–4

Trials (journal) 134

tribalism 282, 283

Trudeau, Justin 208

Trump, Donald 8, 15, 44, 84fn, 98, 135, 155, 167, 201–2, 209, 219, 220, 222

trustworthiness 189–90

tuberculosis 4, 5, 253, 254

Tufte, Edward 231, 237, 243 Tversky, Amos 101

Twitter 158, 237, 238

2001: A Space Odyssey 161

Uganda, labour force growth 148–9

understanding what is being measured 69–90, 108, 279

premature enumeration 73, 75–6, 78, 84–5

unemployment statistics 11–12, 201, 207–8, 219, 220, 223–4

UNESCO 215–16

United Kingdom

Active Lives Survey 151

Brexit 291–2

British Election Study 153–4

census 155–6, 210

child benefit payments 149

Covid-19 pandemic 72, 148

Crime Survey of England and Wales 151

demographics 99

divorce rates 267fn

elections 154–5

homicide rate 77, 91–2

income inequality 88–9, 98

infant mortality rate 69–70, 71–2

London riots (2011) 177–8

London transport occupancy rates 49–54

lung cancer rates 4

medical appointment waiting times 60–1

Office for Budget Responsibility (OBR) 199–200

Office for National Statistics 200, 211, 219–22, 223

population 99

self-harming 78–80

sexual activity 97–8

stroke, incidence of 102–3

unemployment statistics 219, 221, 223–4

Universal Credit payments 150

United Nations Sustainable Development Goals 150

United States

census 155

Centers for Disease Control and Prevention (CDC) 161, 163

child neglect or abuse 180

climate change politics 35–6, 282, 283, 284

Congressional Budget Office (CBO) 196–7, 198–9, 200, 211, 216–17

Covid-19 pandemic 8, 9, 148

defence budget 98, 100

elections 15, 151–2, 155, 201

GDP 99

Gini coefficient 97

gun deaths 76–8

gun violence 76–8

homicide rate 92–3

Hurricane Sandy 158

income inequality 243–5

infant mortality rate 70–1

influenza, spread of 161–2, 163–4, 173–4

Mexican border wall 98

national debt 100fn

9/11 101

official statistics compilation 200

Political Action Committees (PACs) 289–90

population 99

Prohibition 255

smoking-related deaths 101

teaching quality, measurement of 172–3

tobacco industry 12–13, 16

unemployment rate 201

Vietnam War 61

Yale graduate earnings 2–3

university rankings 61

‘unskilled immigration’ 75

US News and World Report 61

vaccinations 56–7, 104

vacuum experiments 183

Venturi, Robert 230

Vermeer, Johannes 19–22, 23, 30–3

Christ at Emmaus 19–20, 21, 22, 23, 31–3

Christ in the House of Martha and Mary 31

Girl With a Pearl Earring 21

The Milkmaid 21, 32

Woman Reading a Letter 21

The Woman Taken in Adultery 22

Viagra 147

Victoria, Queen 229, 239

Vietnam War 61

violence, video games and 73–5

Wald, Abraham 114, 115

Waterman, Robert 128–9

WebMD 140

well-being, measuring 122–3

Welles, Orson 279, 288, 289

Wheelan, Charles 2

‘When I’m Sixty-Four’ (Beatles) 124, 137

whistleblowers 190

Wilkinson, Norman 231–2

wishful thinking 27–30, 33, 38, 42, 47

Woolf, Virginia 271

Wootton, David 183, 185

World Bank 105, 207, 215, 277

World Health Organization (WHO) 8

World Inequality Database 88

‘worm’s eye view’ 49, 64, 65, 67–8, 279

Wunderlich, Carl 174, 175

Yale graduate earnings 2–3

yoga 140, 141

Yong, Ed 188

YouTube 191

Yue Hen 65

Yunus, Muhammad 49, 64

Zelazny, Gene 242