ENDNOTES

Introduction to Fasting

1. M. La Merrill et al., “Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants,” Environmental Health Perspectives 121, no. 2 (2013): 162–169. DOI: 10.1289 /ehp.1205485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569688/.

2. O. Hue et al., “Increased Plasma Levels of Toxic Pollutants Accompanying Weight Loss Induced by Hypocaloric Diet or by Bariatric Surgery,” Obesity Surgery 16, no. 9 (2006): 1145–54. DOI: 10.1381/096089206778392356. https://www.ncbi.nlm.nih.gov/pubmed/16989697.

3. M. J. Kim et al., “Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss,” Environmental Health Perspectives 119, no. 3 (2011): 377–383. DOI: 10.1289/ehp.1002848.

4. Ibid.

Is Fasting Safe?

1. M. La Merrill et al., “Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants,” Environmental Health Perspectives 121, no. 2 (2013): 162–169. DOI: 10.1289 /ehp.1205485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569688/.

2. Y. Y. Qin et al., “Persistent Organic Pollutants and Heavy Metals in Adipose Tissues of Patients with Uterine Leiomyomas and the Association of These Pollutants with Seafood Diet, BMI, and Age,” Environmental Science and Pollution Research 17, no. 1 (2010): 229–240. DOI: 10.1007 /s11356-009-0251-0. https://link.springer.com/article/10.1007%2Fs11356-009-0251-0.

Food and Drink for Keto Fasting

1. L. Gamet-Payrastre et al., “Sulforaphane, a Naturally Occurring Isothiocyanate, Induces Cell Cycle Arrest and Apoptosis in HT29 Human Colon Cancer Cells,” Cancer Research 60, no. 5 (2000): 1426–33. https://www.ncbi.nlm.nih.gov/pubmed/10728709.

2. A. Wiczk et al., “Sulforaphane, a Cruciferous Vegetable-Derived Isothiocyanate, Inhibits Protein Synthesis in Human Prostate Cancer Cells,” BBA Molecular Cell Research 1823, no. 8 (2012): 1295–1305. DOI: 10.1016/j.bbamcr.2012.05.020. https://www.sciencedirect.com/science/article/pii/S016748891200136X.

3. Y. Li et al., “Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells,” Clinical Cancer Research 16, no. 9 (2010): 2580–2590. DOI: 10.1158/1078 -0432.CCR-09-2937.

4. C. C. Conaway et al., “Phenethyl Isothiocyanate and Sulforaphane and Their N-acetylcysteine Conjugates Inhibit Malignant Progression of Lung Adenomas Induced by Tobacco Carcinogens in A/J Mice,” Cancer Research 65, no. 18 (2005): 8548–57. DOI: 10.1158/0008-5472.CAN-05 -0237. https://www.ncbi.nlm.nih.gov/pubmed/16166336.

5. M. F. Ullah, “Sulforaphane (SFN): An Isothiocyanate in a Cancer Chemoprevention Paradigm,” Medicines 2, no. 3 (2015): 141–156, DOI: 10.3390/medicines2030141. https://www.mdpi.com/2305-6320/2/3/141.

6. E. Munters et al., “Effects of Broccoli Sprouts Intake on Oxidative Stress, Inflammation, Microalbuminuria and Platelet Function in Human Volunteers: a Cross-Over Study,” Proceedings of The Nutrition Society 69, no. OE68 (2010): E590. DOI: 10.1017 /S0029665110004842. https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effects-of-broccoli-sprouts-intake-on-oxidative-stress-inflammation-microalbuminuria-and-platelet-function-in-human-volunteers-a-crossover-study/0DEDA73F445B67B4E3DCDB7B415A48DA.

7. J. Caba, “Eat Your Broccoli: Phenolic Compounds Found in Cruciferous Vegetables Are About to Get a Lot Healthier,” Medical Daily June 24, 2016, https://www.medicaldaily.com/broccoli-health-benefits-cruciferous-vegetables-390467.

8. University of Illinois at Urbana-Champaign, “More Reasons to Eat Your Broccoli,” June 22, 2016, https://phys.org/news/2016-06-broccoli.html.

9. A. M. Gardner, A. F. Brown, and J. A. Juvik, “QTL Analysis for the Identification of Candidate Genes Controlling Phenolic Compound Accumulation in Broccoli (Brassica oleracea L. var. italica),” Molecular Breeding 36, no. 6 (2016): 81. DOI: 10.1007/s11032-016-0497-4. https://link.springer.com/article/10.1007%2Fs11032-016-0497-4.

10. K. M. Dalessandri et al., “Pilot Study: Effect of 3,3’-Diindolylmethane Supplements on Urinary Hormone Metabolites in Postmenopausal Women with a History of Early-Stage Breast Cancer,” Nutrition and Cancer 50, no. 2 (2004): 161–7. DOI: 10.1207/s15327914nc5002_5. https://www.ncbi.nlm.nih.gov/pubmed/15623462.

11. W. W. Zhang, Z. Feng, and S. A. Narod, “Multiple Therapeutic and Preventive Effects of 3,3’-Diindolylmethane on Cancers Including Prostate Cancer and High Grade Prostatic Intraepithelial Neoplasia,” Journal of Biomedical Research 28, no. 5 (2014): 339–348. DOI: 10.7555/JBR.28.20140008.

12. J. Wilcox, “Benefits of Broccoli,” Forbes July 1, 2012, https://www.forbes.com/sites/juliewilcox/2012/07/01/health-benefits-of-broccoli/#2085c7f942e1.

13. M. Xue et al., “Activation of NF-E2-Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease,” Diabetes 57, no. 10 (2008): 2809–2817. DOI: doi.org/10.2337/db06-1003.m http://diabetes.diabetesjournals.org/content/early/2008/08/04/db06-1003?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=Paul+Thornalley&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT.

14. BMJ, “High Dietary Fiber Intake Linked to Health Promoting Short Chain Fatty Acids,” ScienceDaily September 29, 2015, https://www.sciencedaily.com/releases/2015/09/150929070122.htm.

15. G. V. Senanayake et al., “The Dietary Phase 2 Protein Inducer Sulforaphane Can Normalize the Kidney Epigenome and Improve Blood Pressure in Hypertensive Rats,” American Journal of Hypertension 25, no. 2 (2012): 229–35. DOI: 10.1038/ajh.2011.200. https://www.ncbi.nlm.nih.gov/pubmed/22052072.

16. R. K. Davidson et al., “Sulforaphane Represses Matrix-Degrading Proteases and Protects Cartilage from Destruction In Vitro and In Vivo,” Arthritis & Rheumatism 65, no. 12 (2013): 3130–3140. DOI: 10.1002/art.38133.

17. BBC News, “Broccoli: Researchers Say It Slows Arthritis,” August 28, 2013, https://www.bbc.com/news/av/health-23863175/broccoli-researchers-say-it-slows-arthritis.

18. A. S. Axelsson et al., “Sulforaphane Reduces Hepatic Glucose Production and Improves Glucose Control in Patients with Type 2 Diabetes,” Science Translational Medicine 9, no. 394 (2017). DOI: 10.1126/scitranslmed.aah4477. http://stm.sciencemag.org/content/9/394/eaah4477.

19. M. Xue et al., “Activation of NF-E2–Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease,” Diabetes 57, no. 10 (2008): 2809–2817. DOI: 10.2337/db06-1003.

20. G. V. Senanayake et al., “The Dietary Phase 2 Protein Inducer Sulforaphane Can Normalize the Kidney Epigenome and Improve Blood Pressure in Hypertensive Rats,” American Journal of Hypertension 25, no. 2 (2012): 229–35. DOI: 10.1038/ajh.2011.200. https://www.ncbi.nlm.nih.gov/pubmed/22052072.

21. T. Phillips, “The Role of Methylation in Gene Expression,” Nature Education 1, no. 1 (2008): 116, https://www.nature.com/scitable/topicpage/the-role-of-methylation-in-gene-expression-1070.

22. G. V. Senanayake et al., “The Dietary Phase 2 Protein Inducer Sulforaphane Can Normalize the Kidney Epigenome and Improve Blood Pressure in Hypertensive Rats,” American Journal of Hypertension 25, no. 2 (2012): 229–35. DOI: 10.1038/ajh.2011.200. https://www.ncbi.nlm.nih.gov/pubmed/22052072.

23. Holistic Health, “H. Pylori: Another Piece to the Puzzle – Part 1,” https://player.vimeo.com/video/26847817.

24. M. A. Riedl, A. Saxon, and D. Diaz-Sanchez, “Oral Sulforaphane Increases Phase II Antioxidant Enzymes in the Human Upper Airway,” Clinical Immunology 130, no. 3 (2009): 244–251. DOI: 10.1016/j.clim.2008.10.007.

25. T. D. Hubbard et al., “Dietary Broccoli Impacts Microbial Community Structure and Attenuates Chemically Induced Colitis in Mice in an Ah Receptor Dependent Manner,” Journal of Functional Foods 37 (October 2017): 685-698. DOI: 10.1016/j.jff.2017.08.038. https://www.sciencedirect.com/science/article/pii/S1756464617305029.

26. “Broccoli May Ward Off Leaky Gut Problems,” The National October 15, 2017, https://www.thenational.ae/lifestyle/food/broccoli-may-ward-off-leaky-gut-problems-1.667203.

27. Pennsylvania State University, “Like It or Not: Broccoli May Be Good for the Gut,” ScienceDaily October 12, 2017, https://www.sciencedaily.com/releases/2017/10/171012151754.htm.

28. “Broccoli Compounds Could Aid Leaky Gut,” Natural Health News October 16, 2017, https://www.naturalhealthnews.uk/food/2017/10/broccoli-compounds-could-aid-leaky-gut/.

29. A. Tarozzi et al., “Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases,” Oxidative Medicine and Cellular Longevity (2013): 415078. DOI: 10.1155/2013/45078.

30. L. C. Blekkenhorst et al., “Cruciferous and Total Vegetable Intakes Are Inversely Associated with Subclinical Atherosclerosis in Older Adult Women,” JAHA: Journal of the American Heart Association 7, no. 8 (2018). DOI: 10.1161/JAHA.117.008391. https://www.ahajournals.org/doi/10.1161/JAHA.117.008391.

31. K. F. Mills et al., “Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice,” Cell Metabolism 24, no. 6 (2016): 795–806. DOI: 10.1016/j.cmet.2016.09.013. https://www.sciencedirect.com/science/article/pii/S1550413116304958.

32. Fox News, “Compound in Broccoli May Slow Signs of Aging,” October 28, 2016, https://www.foxnews.com/health/compound-in-broccoli-may-slow-signs-of-aging.

33. L. Rusu, “Natural Compound Derived from Broccoli, Avocado Shows Promise in Reducing Signs of Aging,” Tech Times October 29, 2016, https://www.techtimes.com/articles/184088/20161029/natural-compound-derived-from-broccoli-avocado-shows-promise-in-reducing-signs-of-aging.htm.

34. C. C. Alano, W. Ying, and R. A. Swanson, “Poly(ADP-ribose) Polymerase-1-mediated Cell Death in Astrocytes Requires NAD+ Depletion and Mitochondrial Permeability Transition,” Journal of Biological Chemistry 279, no. 18 (2004): 18895–902. DOI: 10.1074/jbc.M313329200. https://www.ncbi.nlm.nih.gov/pubmed/14960594.

35. J. B. Kirkland and M. L. Meyer-Ficca, “Chapter Three – Niacin,” Advances in Food and Nutrition Research 83 (2018): 83–149. DOI: 10.1016/bs.afnr.2017.11.003. https://www.sciencedirect.com/science/article/pii/S1043452617300396.

36. K. L. Stromsdorfer et al., “NAMPT-Mediated NAD+ Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice,” Cell Reports 16, no. 7 (2016): 1851–1860. DOI: 10.1016/j.celrep.2016.07.027. https://www.cell.com/cell-reports/fulltext/S2211-1247(16)30945-7.

37. K. M. Dalessandri et al., “Pilot Study: Effect of 3,3’-Diindolylmethane Supplements on Urinary Hormone Metabolites in Postmenopausal Women with a History of Early-Stage Breast Cancer,” Nutrition and Cancer 50, no. 2 (2004): 161–7. DOI: 10.1207/s15327914nc5002_5. https://www.ncbi.nlm.nih.gov/pubmed/15623462.

38. W.W. Zhang, Z. Feng, and S.A. Narod, “Multiple Therapeutic and Preventive Effects of 3,3’-Diindolylmethane on Cancers Including Prostate Cancer and High Grade Prostatic Intraepithelial Neoplasia,” Journal of Biomedical Research 28, no. 5 (2014): 339–348. DOI: 10.7555/JBR.28.20140008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197384/.

39. R. Naik et al., “A Randomized Phase II Trial of Indole-3-Carbinol in the Treatment of Vulvar Intraepithelial Neoplasia,” International Journal of Gynecological Cancer 16, no. 2 (2006): 786–90. DOI: 10.1111/j.1525-1438.2006.00386.x. https://www.ncbi.nlm.nih.gov/pubmed/16681761.

40. L. Gamet-Payrastre et al., “Sulforaphane, a Naturally Occurring Isothiocyanate, Induces Cell Cycle Arrest and Apoptosis in HT29 Human Colon Cancer Cells,” Cancer Research 60, no. 5 (2000): 1426–33. https://www.ncbi.nlm.nih.gov/pubmed/10728709.

41. W.W. Zhang, Z. Feng, and S.A. Narod, “Multiple Therapeutic and Preventive Effects of 3,3’-Diindolylmethane on Cancers Including Prostate Cancer and High Grade Prostatic Intraepithelial Neoplasia,” Journal of Biomedical Research 28, no. 5 (2014): 339–348. DOI: 10.7555/JBR.28.20140008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197384/.

42. A. Wiczk et al., “Sulforaphane, a Cruciferous Vegetable-Derived Isothiocyanate, Inhibits Protein Synthesis in Human Prostate Cancer Cells,” BBA Molecular Cell Research 1823, no. 8 (2012): 1295–1305. DOI: 10.1016/j.bbamcr.2012.05.020. https://www.sciencedirect.com/science/article/pii/S016748891200136X.

43. Y. Li et al., “Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells,” Clinical Cancer Research 16, no. 9 (2010): 2580–2590. DOI: 10.1158/1078 -0432.CCR-09-2937.

44. C. C. Conaway et al., “Phenethyl Isothiocyanate and Sulforaphane and Their N-acetylcysteine Conjugates Inhibit Malignant Progression of Lung Adenomas Induced by Tobacco Carcinogens in A/J Mice,” Cancer Research 65, no. 18 (2005): 8548–57. DOI: 10.1158/0008-5472.CAN-05 -0237. https://www.ncbi.nlm.nih.gov/pubmed/16166336.

45. S. M. Tortorella et al., “Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition,” Antioxidants & Redox Signaling 22, no. 16 (2015): 1382–1424. DOI: 10.1089/ars.2014.6097. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432495/.

46. A. S. Axelsson et al., “Sulforaphane Reduces Hepatic Glucose Production and Improves Glucose Control in Patients with Type 2 Diabetes,” Science Translational Medicine 9, no. 394 (2017). DOI: 10.1126/scitranslmed.aah4477. http://stm.sciencemag.org/content/9/394/eaah4477.

47. “British Scientists Have Developed Broccoli Pill to Help in Arthritis Fight,” Daily Express, April 27, 2015, https://www.express.co.uk/life-style/health/573089/Broccoli-pill-help-arthritis-fight.

48. Y. Li et al., “Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells,” Clinical Cancer Research 16, no. 9 (2010): 2580–2590. DOI: 10.1158/1078 -0432.CCR-09-2937. https://www.ncbi.nlm.nih.gov/pubmed/20388854.

49. S. Lee et al., “Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer’s Disease,” Molecular Nutrition & Food Research 62, no. 12 (2018): 1800240. DOI: 10.1002/mnfr.201800240. https://www.ncbi.nlm.nih.gov/pubmed/29714053.

50. A. S. Axelsson et al., “Sulforaphane Reduces Hepatic Glucose Production and Improves Glucose Control in Patients with Type 2 Diabetes,” Science Translational Medicine 9, no. 394 (2017). DOI: 10.1126/scitranslmed.aah4477. http://stm.sciencemag.org/content/9/394/eaah4477.

51. Kanazawa University, “Sulforaphane, a Phytochemical in Broccoli Sprouts, Ameliorates Obesity,” ScienceDaily, March 7, 2017, https://www.sciencedaily.com/releases/2017/03/170307100402.htm.

52. P. A. Egner et al., “Rapid and Sustainable Detoxication of Airborne Pollutants by Broccoli Sprout Beverage: Results of a Randomized Clinical Trial in China,” Cancer Prevention Research 7, no. 8 (2014): 813–823. DOI: 10.1158/1940-6207.CAPR-14-0103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125483/.

53. M. Xue et al., “Activation of NF-E2–Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease,” Diabetes 57, no. 10 (2008): 2809–2817. DOI: 10.2337/db06-1003. http://diabetes.diabetesjournals.org/content/early/2008/08/04/db06-1003?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=Paul+Thornalley&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT.

54. G. S. Shehatou and G. M. Suddek, “Sulforaphane Attenuates the Development of Atherosclerosis and Improves Endothelial Dysfunction in Hypercholesterolemic Rabbits,” Experimental Biology and Medicine 241, no. 4 (2016): 426–436. DOI: 10.1177/1535370215609695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935417/.

55. L. M. Beaver et al., “Long Non-Coding RNAs and Sulforaphane: A Target for Chemoprevention and Suppression of Prostate Cancer,” Journal of Nutritional Biochemistry 42 (2017): 72–83. DOI: 10.1016/j.jnutbio.2017.01.001. https://www.ncbi.nlm.nih.gov/pubmed/28131897.

56. University of Illinois at Urbana-Champaign, “Maximizing the Anti-Cancer Power of Broccoli,” ScienceDaily, April 5, 2005, https://www.sciencedaily.com/releases/2005/03/050326114810.htm.

57. American Institute for Cancer Research, “New Research Reveals How to Prepare Foods to Boost Cancer-Fighting Activity,” November 7, 2013, http://www.aicr.org/press/press-releases/good-food-prep-boosts-cancer-fighting-ability.html?referrer=https://www.google.com/.

58. J. L. Marnewick et al., “Ex Vivo Modulation of Chemical-Induced Mutagenesis by Subcellular Liver Fractions of Rats Treated with Rooibos (Aspalathus linearis) Tea, Honeybush (Cyclopia intermedia) Tea, as Well as Green and Black (Camellia sinensis) Teas,” Mutation Research 558, no. 1–2 (2004): 145–154. DOI: 10.1016/j.mrgentox.2003.12.003. https://www.sciencedirect.com/science/article/abs/pii/S1383571803003516.

59. L. Cai et al., “Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root,” Molecules 22, no. 9 (2017): 1409. DOI: 10.3390 /molecules22091409. https://www.mdpi.com/1420-3049/22/9/1409/htm.

60. B. A. Clare, R. S. Conroy, and K. Spelman, “The Diuretic Effect in Human Subjects of an Extract of Taraxacum officinale Folium over a Single Day,” Journal of Alternative and Complementary Medicine 15, no. 8 (2009): 929–934. DOI: 10.1089/acm.2008.0152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155102/.

61. T. K. H. Chang, “Activation of Pregnane X Receptor (PXR) and Constitutive Androstane Receptor (CAR) by Herbal Medicines,” AAPS Journal 11, no. 3 (2009): 590–601. DOI: 10.1208 /s12248-009-9135-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758128/.

62. J. Kiani and S. Z. Imam, “Medicinal Importance of Grapefruit Juice and Its Interaction with Various Drugs,” Nutrition Journal 6, no. 33 (2007). DOI: 10.1186/1475-2891-6-33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147024/

63. B. H. Hellum, Z. Hu, and O. G. Nilsen, “Trade Herbal Products and Induction of CYP2C19 and CYP2E1 in Cultured Human Hepatocytes,” Basic & Clinical Pharmacology & Toxicology 105, no. 1 (2009): 58–63. DOI: 10.1111/j.1742-7843.2009.00412.x. https://www.ncbi.nlm.nih.gov/pubmed/19371257.

64. M. K. Rasmussen, G. Zamaratskaia, and B. Ekstrand, “In Vivo Effect of Dried Chicory Root (Cichorium intybus L.) on Xenobiotica Metabolising Cytochrome P450 Enzymes in Porcine Liver,” Toxicology Letters 200, no. 1–2 (2011): 88–91. DOI: 10.1016/j.toxlet.2010.10.018. https://www.ncbi.nlm.nih.gov/pubmed/21056093.

65. A. Ahmad et al., “A Review on Therapeutic Potential of Nigella sativa: A Miracle Herb,” Asian Pacific Journal of Tropical Biomedicine 3, no. 5 (2013): 337–352. DOI: 10.1016/S2221-1691(13) 60075-1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642442/.

66. S. Hasani-Ranjbar, Z. Jouyandeh, and M. Abdollahi, “A Systematic Review of Anti-Obesity Medicinal Plants - An Update,” Journal of Diabetes & Metabolic Disorders 12, no. 1 (2013): 28. DOI: 10.1186/2251-6581-12-28. https://www.ncbi.nlm.nih.gov/pubmed/23777875.

67. M. M. AbuKhader, “Thymoquinone in the Clinical Treatment of Cancer: Fact or Fiction?” Pharmacognosy Review 2013; 7, no. 14 (2013): 117–10. DOI: 10.4103/0973-7847.120509. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841989/.

68. M. S. Touillaud et al., “Dietary Lignan Intake and Postmenopausal Breast Cancer Risk by Estrogen and Progesterone Receptor Status,” Journal of the National Cancer Institute 99, no. 6 (2007): 475–486. DOI: 10.1093/jnci/djk096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292813/.

69. M. Ogata et al., “Supplemental Psyllium Fibre Regulates the Intestinal Barrier and Inflammation in Normal and Colitic Mice,” British Journal of Nutrition 118, no. 9 (2017): 661–672. DOI: 10.1017/S0007114517002586. https://www.ncbi.nlm.nih.gov/pubmed/29185927.

Nourish Your Organs of Filtration: The Liver, Kidneys, and GI Tract

1. A. O. Docea et al., “Six Months Exposure to a Real Life Mixture of 13 Chemicals’ Below Individual NOAELs Induced Non Monotonic Sex-Dependent Biochemical and Redox Status Changes in Rats,” Food and Chemical Toxicology 115 (2018): 470–481. DOI: 10.1016 /j.fct.2018.03.052. https://www.sciencedirect.com/science/article/pii/S0278691518302011?via%3Dihub.

2. W. J. Chang et al., “The Relationship of Liver Function Tests to Mixed Exposure to Lead and Organic Solvents,” Annals of Occupational and Environmental Medicine 25, no. 1 (2013): 5. DOI: 10.1186/2052-4374-25-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886255/.

3. G. Malaguarnera et al., “Toxic Hepatitis in Occupational Exposure to Solvents,” World Journal of Gastroenterology 18, no. 22 (2012): 2756–2766. DOI: 10.3748/wjg.v18.i22.2756. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374978/.

4. Environmental Working Group, “State of American Drinking Water,” https://www.ewg.org/tapwater/state-of-american-drinking-water.php#.WYDfkoqQwUE.

5. Environmental Protection Agency, “Consumer Confidence Reports,” https://ofmpub.epa.gov/apex/safewater/f?p=136:102.

6. N. Tripathi, “The Disadvantages of Ion Exchange,” Sciencing, April 25, 2017, https://sciencing.com/disadvantages-ion-exchange-8092882.html.

7. S. Dai, “Springbone, a Restaurant Dedicated to Bone Broth, Opens Friday in Greenwich Village,” Eater New York, May 12, 2016, https://ny.eater.com/2016/5/12/11665206/springbone-bone-broth.

8. P. Diez, “Bone Broth Alchemist Marco Canora Opens West Village Brodo Dispensary,” Eater New York, November 9, 2016, https://ny.eater.com/2016/11/9/13567014/brodo-west-village-opens.

9. S. Hall, “Bone Broth Is the New Coffee: Our Fave Paleo Staple Hits L.A.,” The Chalkboard, April 21, 2015 http://thechalkboardmag.com/our-fave-paleo-staple-hits-l-a-bone-broth-is-the-new-coffee.

10. B. Holmes, “Chicken Soup for the Aging Star’s Soul,” ESPN, January 15, 2015 http://www.espn.com/nba/story/_/id/12168515/bone-broth-soup-helping-los-angeles-lakers-kobe-bryant.

Supplements for Keto Fasting

1. A. Fischer et al., “Coenzyme Q Regulates the Expression of Essential Genes of the Pathogen- and Xenobiotic-Associated Defense Pathway in C. elegans,” Journal of Clinical Biochemistry and Nutrition 57, no. 3 (2015): 171–177. DOI: 10.3164/jcbn.15-46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639588/.

2. B. A. Daisley et al., “Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model,” Applied and Environmental Microbiology 84, no. 9 (2018). DOI: 10.1128 /AEM.02820-17. https://www.ncbi.nlm.nih.gov/pubmed/29475860.

3. B. V. Deepthi et al., “Lactobacillus plantarum MYS6 Ameliorates Fumonisin B1-Induced Hepatorenal Damage in Broilers,” Frontiers in Microbiology 8 (2017): 2317. DOI: 10.3389 /fmicb.2017.02317. https://www.ncbi.nlm.nih.gov/pubmed/29213265.

4. S. Johnson, “The multifaceted and widespread pathology of magnesium deficiency,” Medical Hypotheses 56, no. 2 (2001): 163–70. DOI: 10.1054/mehy.2000.1133. https://www.ncbi.nlm.nih.gov/pubmed/11425281

5. National Institutes of Health, “Magnesium: Fact Sheet for Health Professionals,” https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/.

6. National Center for Complementary and Integrative Health, “Milk Thistle,” https://nccih.nih.gov/health/milkthistle/ataglance.htm.

7. D. S. Jaya, J. Augustine, and V. P. Menon, “Protective Role of N-acetylcysteine Against Alcohol and Paracetamol Induced Toxicity,” Indian Journal of Clinical Biochemistry 9, no. 2 (1994): 64–71. DOI: 10.1007/BF02869573. https://link.springer.com/article/10.1007%2FBF02869573#page-1.

8. H. Sprince, “Protection against Acetaldehyde Toxicity in the Rat by L-Cysteine, Thiamin and L-2-Methylthiazolidine-4-Carboxylic Acid,” Agents and Actions 4, no. 2 (1974): 125–130. DOI: 10.1007/BF01966822. https://link.springer.com/article/10.1007%2FBF01966822.

9. B. Olsson, “Pharmacokinetics and Bioavailability of Reduced and Oxidized N-Acetylcysteine,” European Journal of Clinical Pharmacology 34, no. 1 (1988): 77–82. DOI: 10.1007 /BF01061422. https://www.ncbi.nlm.nih.gov/pubmed/3360052.

10. L. Borgström, B. Kågedal, and O. Paulsen, “Pharmacokinetics of N-Acetylcysteine in Man,” European Journal of Clinical Pharmacology 31, no. 2 (1986): 217-22. DOI: 10.10.07 /BF00606662. https://www.ncbi.nlm.nih.gov/pubmed/3803419.

11. M. M. Houck and J. A. Siegel, Fundamentals of Forensic Science (Third Edition) (San Diego: Academic Press, 2015), 155–179. DOI: 10.1016/B978-0-12-800037-3.00007-8. https://www.sciencedirect.com/science/article/pii/B9780128000373000078.

12. “MSM and Allergies,” https://www.nutriteam.com/msm-allergies.

13. L. S. Kim et al., “Efficacy of Methylsulfonylmethane (MSM) in Osteoarthritis Pain of the Knee: A Pilot Clinical Trial,” Osteoarthritis and Cartilage 14, no. 3 (2006): 286–94. DOI: 10.1016/j.joca .2005.10.003. https://www.ncbi.nlm.nih.gov/pubmed/16309928.

14. M. Butawan, R. L. Benjamin, and R. J. Bloomer, “Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement,” Nutrients 9, no. 3 (2017): 290. DOI: 10.3390 /nu9030290.

15. K. M. Dalessandri et al., “Pilot Study: Effect of 3,3’-Diindolylmethane Supplements on Urinary Hormone Metabolites in Postmenopausal Women with a History of Early-Stage Breast Cancer,” Nutrition and Cancer 50, no. 2 (2004): 161–7. DOI: 10.1207/s15327914nc5002_5. https://www.ncbi.nlm.nih.gov/pubmed/15623462.

16. W. W. Zhang, Z. Feng, and S. A. Narod, “Multiple Therapeutic and Preventive Effects of 3,3’-Diindolylmethane on Cancers Including Prostate Cancer and High Grade Prostatic Intraepithelial Neoplasia,” Journal of Biomedical Research 28, no. 5 (2014): 339–348. DOI: 10.7555/JBR.28.20140008. https://www.ncbi.nlm.nih.gov/pubmed/25332705.

17. H. L. Bradlow, “Review: Indole-3-Carbinol as a Chemoprotective Agent in Breast and Prostate Cancer,” In Vivo (Athens, Greece) 22, no. 4 (2008): 441–5. https://www.ncbi.nlm.nih.gov/pubmed/18712169.

18. “British Scientists Have Developed Broccoli Pill to Help in Arthritis Fight,” Daily Express, April 27, 2015. https://www.express.co.uk/life-style/health/573089/Broccoli-pill-help-arthritis-fight.

19. M. E. Sears, “Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review,” Scientific World Journal 2013: 219840. DOI: 10.1155/2013/219840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654245/.

20. J. Mikler et al., “Successful Treatment of Extreme Acute Lead Intoxication,” Toxicology and Industrial Health 25, no. 2 (2009): 137–40. DOI: 10.1177/0748233709104759. https://www.ncbi.nlm.nih.gov/pubmed/19458136.

21. M. D. Aldridge, “Acute Iron Poisoning: What Every Pediatric Intensive Care Unit Nurse Should Know,” Dimensions of Critical Care Nursing 26, no. 2 (2007): 43–8. https://www.ncbi.nlm.nih.gov/pubmed/17312404.

22. B. T. Ly, S. R. Williams, and R. F. Clark, “Mercuric Oxide Poisoning Treated with Whole-Bowel Irrigation and Chelation Therapy,” Annals of Emergency Medicine 39, no. 3 (2002): 312–5. https://www.ncbi.nlm.nih.gov/pubmed/11867987.

23. M. N. V. R. Kumar, “A Review of Chitin and Chitosan Applications,” Reactive & Functional Polymers 46, no. 1 (2000): 1–27. DOI: 10.1016/S1381-5148(00)00038-9. https://www.sciencedirect.com/science/article/abs/pii/S1381514800000389?via%3Dihub.

24. E. Guibal, “Interactions of Metal Ions with Chitosan-Based Sorbents: A Review,” Separation and Purification Technology 38, no. 1 (2004): 43–7. DOI: 10.1016/j.seppur.2003.10.004. https://www.sciencedirect.com/science/article/pii/S1383586603002648.

25. A. J. Varmaa, S. V. Deshpandea, and J. F. Kennedy, “Metal Complexation by Chitosan and Its Derivatives: A Review,” Carbohydrate Polymers 55, no. 1 (2004): 77–93. DOI: 10.1016/j .carbpol.2003.08.005. https://www.sciencedirect.com/science/article/pii/S0144861703002297.

26. L. Zhang, Y. Zeng, and Z. Cheng, “Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review,” Journal of Molecular Liquids 214 (2016): 175–191. DOI: 10.1016 /j.molliq.2015.12.013. https://www.sciencedirect.com/science/article/pii/S0167732215308801.

27. J. Wang and C. Chen, “Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides,” Bioresource Technology 160 (2014): 129–141. DOI: 10.1016/j.biortech.2013.12.110. https://www.sciencedirect.com/science/article/pii/S0960852413019500.

28. T. Fang et al., “Modified Citrus Pectin Inhibited Bladder Tumor Growth Through Downregulation of Galectin-3,” Acta Pharmacologica Sinica 2018. DOI: 10.1038/s41401-018 -0004-z. https://www.nature.com/articles/s41401-018-0004-z.

29. Z. Y. Zhao et al., “The Role of Modified Citrus Pectin as an Effective Chelator of Lead in Children Hos pitalized with Toxic Lead Levels,” Alternative Therapies in Health and Medicine 14, no. 4 (2008): 34–8. https://www.ncbi.nlm.nih.gov/pubmed/18616067

30. I. Eliaz, E. Weil, and B. Wilk, “Integrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification—Five Case Reports,” Forschende Komplementärmedizin 14, no. 6 (2007): 358-64. DOI: 10.1159/0000109829. https://www.ncbi.nlm.nih.gov/pubmed/18219211.

31. Oregon State University, “Chlorophyll and Chlorophyllin,” https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/chlorophyll-chlorophyllin.

32. J. Berry, “What Are the Benefits of Chlorophyll?” Medical News Today July 4, 2018, https://www.medicalnewstoday.com/articles/322361.php.

33. C. Xu et al., “Light-Harvesting Chlorophyll Pigments Enable Mammalian Mitochondria to Capture Photonic Energy and Produce ATP,” Journal of Cell Science 127 (2014): 388–99. DOI: 10.1242/jcs.134262. https://www.ncbi.nlm.nih.gov/pubmed/24198392.

Supporting Your Keto Fast with Sauna Therapy

1. S. J. Genuis et al., “Human Elimination of Phthalate Compounds: Blood, Urine, and Sweat (BUS) Study,” Scientific World Journal 2012: 615068. DOI: 10.1100/2012/615068. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504417/.

2. S. J. Genuis et al., “Human Excretion of Bisphenol A: Blood, Urine, and Sweat (BUS) Study,” Journal of Environmental and Public Health 2012: 185731. DOI: 10.1155/2012/185731. https://www.hindawi.com/journals/jeph/2012/185731/.

3. CBS News, “Toxic Metal Cadmium Found in Chain Stores’ Jewelry for Adults,” October 11, 2018, https://www.cbsnews.com/news/toxic-metal-cadmium-found-in-chain-stores-jewelry-for-adults/.

4. M. E. Sears, K. J. Kerr, and R. I. Bray, “Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review,” Journal of Environmental and Public Health 2012:184745. DOI: 10.1155/2012/184745. https://www.hindawi.com/journals/jeph/2012/184745/.

5. S. J. Genuis et al., “Blood, Urine, and Sweat (BUS) Study: Monitoring and Elimination of Bioaccumulated Toxic Elements,” Archives of Environmental Contamination and Toxicology 61, no. 2 (2011): 344–357. DOI: 10.1007/s00244-010-9611-5. https://link.springer.com/article/10.1007%2Fs00244-010-9611-5

6. A. Kenttämies and K. Karkola, “Death in Sauna,” Journal of Forensic Sciences 53, no. 3 (2008): 724–729. DOI: 10.1111/j.1556-4029.2008.00703.x. https://www.ncbi.nlm.nih.gov/pubmed/18471223.