1 (Bostrom, 2002, p. 381).

2 For many aggregative consequentialist ethical theories, including but not limited to total utilitarianism, it can be shown that the injunction to maximize expected value! can be simplified-for all practical purposes – to the injunction to minimize existential risk! (Bostrom, 2003, p. 439). (Note, however, that aggregative consequentialism is threatened by the problem of infinitarian paralysis [Bostrom, 2007, p. 730].)

3 One can sometimes define something akin to objective physical probabilities (‘chances’) for deterministic systems, as is done, for example, in classical statistical mechanics, by assuming that the system is ergodic under a suitable course graining of its state space. But ergodicity is not necessary for there being strong scientific constraints on subjective probability assignments to uncertain events in deterministic systems. For example, if we have good statistics going back a long time showing that impacts occur on average once per thousand years, with no apparent trends or periodicity, then we have scientific reason – absent of more specific information – for assigning a probability of ≈0.1% to an impact occurring within the next year, whether we think the underlying system dynamic is indeterministic, or chaotic, or something else.

4 Of course, when allocating research effort it is legitimate to take into account not just how important a problem is but also the likelihood that a solution can be found through research. The drunk who searches for his lost keys where the light is best is not necessarily irrational; and a scientist who succeeds in something relatively unimportant may achieve more good than one who fails in something important.

5 For example, the risk of large-scale conventional war is only covered in passing, yet would surely deserve its own chapter in a more ideally balanced page allocation.

6 For example, the risk ‘Chronic disease in the developed world’ is defined as ‘Obesity, diabetes and cardiovascular diseases become widespread; healthcare costs increase; resistant bacterial infections rise, sparking class-action suits and avoidance of hospitals’. By most standards, obesity, diabetes, and cardiovascular disease are already widespread. And by how much would healthcare costs have to increase to satisfy the criterion? It may be impossible to judge whether this definition was met even after the fact and with the benefit of hindsight.

7 This heuristic is only meant to be a first stab at the problem. It is obviously not generally valid. For example, if one million dollars is sufficient to take all the possible precautions, there is no reason to spend more on the risk even if we think that its probability is much greater than 1/1000. A more careful analysis would consider the marginal returns on investment in risk reduction.

8 A comprehensive review of space hazards would also consider scenarios involving contact with intelligent extraterrestrial species or contamination from hypothetical extraterrestrial microorganisms; however, these risks are outside the scope of Chapter 12.

9 Even if we ourselves are expert, we must still be alert to unconscious biases that may influence our judgment (e.g., anthropic biases, see Chapter 6).

10 If experts anticipate that the public will not quite trust their reassurances, they might be led to try to sound even more reassuring than they would have if they had believed that the public would accept their claims at face value. The public, in turn, might respond by discounting the experts’ verdicts even more, leading the experts to be even more wary of fuelling alarmist overreactions. In the end, experts might be reluctant to acknowledge any risk at all for fear of a triggering a hysterical public overreaction. Effective risk communication is a tricky business, and the trust that it requires can be hard to gain and easy to lose.

11 Somewhat analogously, we could prevent much permanent loss of biodiversity by moving more aggressively to preserve genetic material from endangered species in biobanks. The Norwegian government has recently opened a seed bank on a remote island in the arctic archipelago of Svalbard. The vault, which is dug into a mountain and protected by steel-reinforced concrete walls one metre thick, will preserve germplasm of important agricultural and wild plants.

12 In mortality statistics, deaths are usually classified according to their more proximate causes (cancer, suicide, etc.). But we can estimate how many deaths are due to ageing by comparing the age-specific mortality in different age groups. The reason why an average 80-year-old is more likely to die within the next year than an average 20-year-old is that senescence has made the former more susceptible to a wide range of specific risk factors. The surplus mortality in older cohorts can therefore be attributed to the negative effects of ageing.