Foreword

Robert M. May

INSOFAR AS ANY ONE EVENT can be said to mark the coming of age of ecological science as a discipline with a theoretical/conceptual base, it is the publication in 1967 of MacArthur and Wilson’s Theory of Island Biogeography, the inaugural “Monograph in Population Biology” in the Princeton University Press series.

It is easy to forget how young a science ecology is. We did not start a systematic naming and codification of the plants and animals we share the world with until a century after Newton and the founding of the world’s major scientific academies (the canonical date for Linnaeus’s De Rerum Naturae is 1758; for the founding of the Royal Society, 1660). The very word ecology is not much more than a century old, and in 2009 neither of the two oldest ecological societies has yet attained its century (the British Ecological Society was established in 1913, the Ecological Society of America in 1915).

One way of accounting for the development of any particular area of the natural sciences comes from the classic sequence of Brahe, Kepler, Newton: systematic observation and description; tentative patterns that give coherence to the observed facts; fundamental ideas or laws that explain the patterns. This characterization of the quest for real understanding as a journey from asking “what” questions to asking “why” questions is a deliberate oversimplification, but I think it is nevertheless useful.

The early years of ecological science are largely Brahe, verging into Kepler. Up to the 1960s the textbooks clearly reflect this. There are, of course, exceptions. These reach as far back as the late 1700s, when Gilbert White first looked beyond the “cabinets of curiosities” of his time to ask questions such as why the swift population of Selborne was so very steady at eight breeding pairs per year. The work of Lotka and Volterra in the 1920s—itself partly anticipated by earlier work in the 1880s—raises significant theoretical issues about competitive and predator-prey relations. This being acknowledged, the fact remains that up into the 1960s the leading ecology texts, such as Andrewartha and Birch’s The Distribution and Abundance of Animals, were at best like earlier descriptive chemistry texts in which the empirically derived Periodic Table gave coherence, but before the underlying quantum mechanical basis of atomic structure had illuminated the Periodic Table itself.

In marked contrast, today’s ecology texts present a richer view of the world. Of course there is a factual foundation of natural history observations along with careful idea-testing experiments in field and laboratory. Many of these field and laboratory experiments themselves play off against theoretical ideas and “why is it so” questions. While some of the theory is verbal (as, let us not forget, Darwin’s influential theory was!), much of it is—when necessary—explicitly mathematical, and sometimes sophisticatedly mathematical. After all, mathematics is ultimately no more, although no less, than a way of thinking clearly.

This volume derives from a meeting held at Harvard to celebrate the fortieth anniversary of the publication of Theory of Island Biogeography. Happily, Ed Wilson was with us to enjoy it. Sadly, Robert McArthur was not, having died very young only five years after its publication; had he lived, I believe we would be further down the road than we are.

One notable feature of this lively meeting was the size of the audience, reflecting the huge growth in the national and global community of ecological researchers. When, around fifty years ago, ecologists gathered to celebrate Evelyn Hutchinson’s Festschrift, the ecological community numbered less than a tenth that of today. Hutchinson’s impact was summed up by a picture, showing a tree whose trunk was Hutchinson, branches his graduate students, leaves his postdocs, and circumambient butterflies and other insects associates; the total assembly was small, yet it represented a fair fraction of the world’s ecological theorists. The number present at the symposium associated with the present volume, although small relative to the current global population of ecologists, was roughly ten times that around Hutchinson’s tree.

Given the environmental problems that currently loom over the planet, this large and rapid growth in what might be called the ecological task force is greatly and unreservedly to be welcomed. Almost forty years ago, in the Preface to Stability and Complexity in Model Ecosystems, I wrote that “I have been struck by the attitude of constructive interest in others’ work which seems to prevail among ecologists. The competition and predation which characterise many other disciplines seem relatively absent, possibly because the field has not yet reached (or exceeded) its natural carrying capacity”; this has the implicit corollary that physics was, perhaps, a bit less civil (a theme elaborated much more recently, and in a constructive and interesting way, by Lee Smolin in The Trouble with Physics). Be this as it may, my belief—reinforced by the contents of the present book—is that ecological science has achieved much over the past forty years, with the remarkable growth in the research community reflecting both advances in understanding on many fronts (most of which pose further questions and open further avenues for research) and increasing recognition of the pressing problems which need to be addressed. I also, perhaps Polyannaishly, believe the ecological community has largely succeeded in preserving its collegial character despite such increases in numbers.

As good ecologists and/or evolutionary biologists, we all recognize that dispersal strategies are one of the key issues in life history choices. Effective application of ecological knowledge to environmental problems requires not only teachers and researchers in schools and universities, but also professional ecologists in NGOs, in consultancies, in local, state, and federal government offices, and elsewhere. Too often, Ph.D. supervisors unintentionally suggest career paths confined to universities. This is understandable but unfortunate: we need ecological expertise more widely disseminated and applied.

The Theory of Island Biogeography has recently and justly been reprinted as the first volume in Princeton University Press’s (PUP) series of “Landmarks in Biology.” And it is a true landmark among landmarks. The PUP series of “Monographs in Population Biology,” which it led off, under Robert MacArthur’s editorial direction, has continued strongly. Just before leaving PUP, the Commissioning Editor in Life Science, Sam Elworthy, made an informal list of the thirty most cited monographs in ecology and evolution. This is headed, as you would expect, by Darwin’s Origin of Species, and books by Fisher, Mayr, and so on. But twelve of the thirty are in the series MacArthur and Wilson started and set the standard for.1 Citations can, of course, be misleading. For example, Darwin’s Origin—although deservedly top—actually owes more of its citations to the history of science Darwin industry than to science as such.

The fact remains that the MacArthur and Wilson book marks a true turning point in the advance of ecological science, and thence in our understanding of how the natural world works. The extraordinary scope and diversity of the contributions in the present book testify to this. This is no ordinary collection of symposium papers. Although multiauthored, I would call it a metalevel monograph, illustrating the many doors that MacArthur and Wilson opened for us.

1S. Elworthy, Bulletin of the British Ecological Society 38(2):55–57 (2007). I suspect that an exhaustive search of Google Scholar might turn up some “top thirty” titles missed by Elworthy, but I think his list is basically sound. I cannot resist adding that my wife, Judith May, who was earlier at PUP and later at Oxford University Press, commissioned no fewer than fifteen of Elworthy’s thirty books (some in various series at Princeton and at Oxford, others as stand-alone texts).