Gram equivalent weight is the mass (in grams) that would release one mole of protons. Because sulfuric acid has two hydrogens per molecule, the gram equivalent weight is 98.1 g divided by 2, or 49.1 g.
Note that all four of these compounds are commonly encountered on the MCAT, and you should be familiar with the structure and composition of each, including their common names.
The formula weight of AgNO3 is
From this, we can determine that we are given:
Because we need two moles of AgNO3 for every mole of Na2S, AgNO3 is the limiting reagent, and the correct answer choice will be in grams of Na2S. If 0.5 mol of AgNO3 are used up, and Na2S will be consumed at half the rate of AgNO3 (based on their mole ratio), then 0.25 mol Na2S will be used up. We then have 0.25 mol excess Na2S, which has a mass of
The equation given is unbalanced, so the first step must be to balance it:
The theoretical yield is the amount of product synthesized if the limiting reagent is completely used up. This question therefore asks how much glucose is produced if the limiting reagent is 30 grams of water. Using the three-fraction method discussed in this chapter to solve for the mass of glucose produced gives:
Thus, 50 grams of glucose are produced.
A limiting reagent is by definition a reactant. Because Au and H2S are products, they cannot act as limiting reagents, eliminating (C) and (D). Next, note that the given equation is unbalanced and the first step is to balance it:
The problem states that 2 moles of gold(III) sulfide and 5 moles of hydrogen gas are available. To use up both moles of gold(III) sulfide, 6 moles of hydrogen gas are needed because there is a 1:3 ratio between these reactants. Since only 5 moles of hydrogen gas are present, that will have to be the limiting reagent.