Summary

This chapter has looked at the evolution of cybersecurity from legacy to advanced and then on to futuristic technologies such as AI and ML. It has been explained that the first cybersecurity system was an antivirus system that was created to stop the first worm. Cybersecurity then followed this example, where security tools were created as responses to threats. Legacy security systems started the approach of using signature-based detection. This is where security tools would be loaded with signatures of common malware and use this knowledge base to detect and stop any program that matched the signature. However, the security systems were focused on malware, and thus, hackers focused on breaching organizations through the network. In 1970, an OS company was breached via its network and a copy of an OS was stolen. In 1990, the US military suffered a similar attack where a hacker broke into 97 computers and corrupted them. Therefore, the cybersecurity industry came up with stronger network security tools. However, these tools still used the signature-based approach and thus could not be trusted to keep all attacks at bay.

In the 2000s, the cybersecurity industry came up with a new concept of security where it advised organizations to have layered security. Therefore, they had to have security systems for securing networks, computers, and data. However, layered security was quite expensive, yet some threat vectors were still infiltrating computers and networks. By 2010, cyber criminals started using threats called advanced persistent threats. Attackers were no longer doing hit-and-run attacks; they were infiltrating networks and staying hidden in the networks while carrying out malicious activities. In addition to this, phishing was revolutionized and made more effective. Lastly, there was another development where attackers were using DoS attacks to overwhelm the capabilities of servers and firewalls. Since many companies were being forced out of business by these attacks, the cybersecurity industry developed a new approach to security, known as cyber resilience. Instead of focusing on how to secure the organization during attacks, they ensured that organizations could survive the attacks. In addition to this, users became more involved in cybersecurity where organizations started focusing on training them to avoid common threats. This marked the end of security 1.0.

The cybersecurity industry then moved to the current "security 2.0", where it finally created an alternative to signature-based security systems. Anomaly-based security systems were introduced and they came with more efficiencies and capabilities than signature-based systems. Anomaly-based systems detect attacks by checking normal patterns or behaviors against anomalies. Apps and traffic that conform to the normal patterns and behaviors are allowed to execute or pass, while those that do not are stopped. While anomaly-based tools are effective, they rely on decisions from humans. Therefore, a lot of work still comes back to IT security admins. The answer to this has been to leverage AI with the hopes that such security systems will become self-sufficient.

AI sounds promising, though many doubts have been cast against it. AI and ML security tools will operate by detecting threats based on anomalies and taking informed decisions on how to handle these threats. The AI-security tools will have a learning module that will ensure that they only get better with time. Before deployment, these systems will be extensively trained using datasets and real environments that have real threats. Once the learning module is able to provide sufficient information to protect an organization from common threats, it will be deployed. One of the main advantages of AI security systems is that they will evolve along with the threats. Any new threats will be studied and thwarted. Despite the advantages of AI-powered security systems, there are worries that they may ultimately become harmful. As AI overtakes human intelligence, there might come a point where such tools will not accept any human input. There are also worries that attackers might poison the algorithms to make them harmful. Therefore, the future of AI in cyber security is not easy to foretell, but there should be two main outcomes: either AI-backed security systems will finally contain cyber crime, or AI systems will go rogue, or be made to go rogue, and become cyber threats.