1 Holy Bat Cane!
It sounds like the beginning of a bad joke: A brain expert, a bat biologist, and an engineer walk into a cafeteria. But that’s exactly what happened when a casual meeting of the minds at England’s Leeds University led to the invention of the Ultracane, a walking stick for the blind that vibrates as it approaches objects.
The cane works using echolocation, the same sensory system that bats use to map out their environments. It gives off 60,000 ultrasonic pulses per second and then listens for them to bounce back. When some return faster than others, that indicates a nearby object, which causes the cane’s handle to vibrate. Using this technique, the cane not only “sees” objects on the ground, such as trash cans and fire hydrants, but also senses things above, such as low-hanging signs and tree branches. And because the cane’s output and feedback are silent, people using it can still hear everything going on around them.
2 Puff the Magic Sea Sponge
The orange puffball sponge isn’t much to look at; it’s basically a Nerf ball resting on the ocean floor. It has no appendages, no organs, no digestive system, and no circulatory system. It just sits all day, filtering water. And yet, this unassuming creature might be the catalyst for the next technological revolution.
The “skeleton” of the puffball sponge is a series of calcium and silicon lattices. Actually, it’s similar to the material we use to make solar panels, microchips, and batteries—except that when humans make them, we use tons of energy and all manner of toxic chemicals. Sponges do it better. They simply release special enzymes into the water that pull out the calcium and silicon and then arrange the chemicals into precise shapes.
Daniel Morse, a professor of biotechnology at the University of California, Santa Barbara, studied the sponge’s enzyme technique and successfully copied it in 2006. He’s already made a number of electrodes using clean, efficient sponge technology. And now, several companies are forming a multimillion-dollar alliance to commercialize similar products. In a few years, when solar panels are suddenly on every rooftop in America and microchips are sold for a pittance, don’t forget to thank the little orange puffballs that started it all.
The first hot-air balloon passengers were a sheep, a duck, and a rooster. Their historic ride launched from France in 1783.
3 The Secret Power of Flippers
One scientist thinks he’s found part of the solution to our energy crisis deep in the ocean. Frank Fish, a fluid dynamics expert and marine biologist at Pennsylvania’s West Chester University, noticed something that seemed impossible about the flippers of humpback whales. Humpbacks have softball-size bumps on the forward edge of their limbs, which cut through the water and allow whales to glide through the ocean with great ease. But according to the rules of hydrodynamics, these bumps should put drag on the flippers, ruining the way they work.
Professor Fish decided to investigate. He put a 12-foot model of a flipper in a wind tunnel and witnessed it defy our understanding of physics. The bumps, called tubercles, made the flipper even more aerodynamic. It turns out that they were positioned in such a way that they actually broke the air passing over the flipper into pieces, like the bristles of a brush running through hair. Fish’s discovery, now called the “tubercle effect,” not only applies to fins and flippers in the water, but also to wings and fan blades in the air.
Based on his research, Fish designed bumpy-edge blades for fans, which cut through air about 20 percent more efficiently than standard ones. He launched a company called Whalepower to manufacture them and will soon begin licensing its energy-efficient technology to improve fans in industrial plants and office buildings around the world. But Fish’s big fish is wind energy. He believes that adding just a few bumps to the blades of wind turbines will revolutionize the industry, making wind more valuable than ever.
4 Consider the Lobster Eye
There’s a reason X-ray machines are large and clunky. Unlike visible light, X-rays don’t like to bend, so they’re difficult to manipulate. The only way we can scan bags at airports and people at the doctor’s office is by bombarding the subjects with a torrent of radiation all at once—which requires a huge device.
But lobsters, living in murky water 300 feet below the surface of the ocean, have “X-ray vision” far better than any of our machines. Unlike the human eye, which views refracted images that have to be interpreted by the brain, lobsters see direct reflections that can be focused to a single point, where they are gathered together to form an image. Scientists have figured out how to copy this trick to make new X-ray machines. The Lobster Eye X-ray Imaging Device (LEXID) is a handheld “flashlight” that can see through three-inch-thick steel walls.
The device shoots a small stream of low-power X-rays through an object, and a few come bouncing back off whatever is on the other side. Just as in the lobster eye, the returning signals are funneled through tiny tubes to create an image. The Department of Homeland Security has already invested $1 million in LEXID designs, which it hopes will be useful in finding contraband.
In colonial America, lobster wasn’t exactly a delicacy. In fact, it was so cheap and plentiful it was often served to prisoners.
5 Picking Up the Bill
The bill of the toucan is so large and thick that it should weigh the bird down. But as any Froot Loops aficionado can tell you, Toucan Sam gets around. That’s because his bill is a marvel of engineering. It’s hard enough to chew through the toughest fruit shells and sturdy enough to be a weapon against other birds, and yet, the toucan bill is only as dense as a Styrofoam cup.
Marc Meyers, a professor of engineering at the University of California at San Diego, has started to understand how the bill can be so light. At first glance, it appears to be foam surrounded by a hard shell, kind of like a bike helmet. But Meyers discovered that the foam is actually a complicated network of tiny scaffolds and thin membranes. The scaffolds themselves are made of heavy bone, but they are spaced apart in such a way that the entire bill is only one-tenth the density of water. Meyers thinks that by copying the toucan bill, we can create car panels that are stronger, lighter, and safer. Toucan Sam was right: Today we’re all following his nose.
Redondo Beach, California, adopted the Goodyear Blimp as the city’s official bird in 1983.