Subject Index

Abelian equation, 755

Abelian function, 665

Abelian integral, 653, 663-65, 936, 939-40

Abel’s theorem, 645, 653-55, 935-36

Absolute, 907

Absolute differential calculus, SeeTensor analysis

Absolutely continuous function, 1048

Abstract algebra, 945, 1136-57

Lie algebra, 1153-56

non-associative algebra, 1153-56

see alsoField

Group

Ideal

Ring

Abstraction, 29, 43-44, 171

Academies, 227, 370, 396-97, 401, 404, 621, 1023

Academy of Plato, 27, 42-43, 45, 130, 190

Ad Locos Pianos et Solidos Isagoge,302, 317

Adjoint curve, 935

Aesthetics, 172-73

Affine geometry, 918

Airy’s integral, 1100, 1102-3

Akkadians, 4

Alexandria, 101-3

Algebra: and analysis, 323-24, 361

as analysis, 279-80, 323

Arabic, 191-95

vs, geometry, 49, 136, 197-98, 279-82, 318, 323, 365, 391-92, 834-36

Greek (Alexandrian), 104, 135-44

Hindu, 184-88

Renaissance, 236-37

of throws, 850-51

see also Chaps, 13, 25, 31, 32, 33, 34

Algebra,364

Algebraic geometry, 920, 924-46, 1168-69

Algebraic invariants, 925-32

absolute, 926

complete system, 928-29

covariant, 926

Algebraic numbers, 593-94, 818-26, 980, 996-97

Almagest, 54, 122-25, 133, 159, 191

Analytic continuation, 642-44, 1114

Analytic geometry, SeeCoordinate geometry

Angle, projective definition of, 907, 911

Anharmonic ratio, SeeCross ratio

Apollonian problem, 99

Application of areas, 34, 74-77

Arabs, 181, 190-99, 205

Archimedes’ principle, 165-66

Areas, 1042

calculation of, 343, 348-54, 360

of surfaces, 355, 1020

Arithmetic: Arabic, 191-92

Babylonian, 5-8

Egyptian, 16-18

Greek, (Alexandrian), 131-35

Hindu, 183-86

primitive, 3

Renaissance, 251-59

Arithmetica, 139-43

Arithmetica Universalis, 252, 271-72, 281, 312, 318, 358, 392, 607

Arithmetization of analysis, 947-72, 1025-26

Ars Conjectandi, 273, 442, 451

Ars Magna, 236, 253, 263-65, 267-68

Astrology, 13, 168-69, 179, 196, 202-3, 222

Astronomy, 250, 470-71, 490-97

Arabic, 196

Babylonian, 11-12

Egyptian, 21-22;

Greek, 119, 125-26, 148-49, 151, 154-60

Hindu, 189

see alsoGeocentric theory

Gravitational attraction

Heliocentric

theory

Three-body problem

Asymptotic series, 1097-1109

semiconver-gent, 1097, 1104

see alsoWKBJ method Athens, 37, 101

Atomism, 150, 329

Automorphic functions, 726-30

elliptic modular, 727

Fuchsian, 729

Kleinian, 730

Automorphism, 1142

Axes of a conic, 93-95

Axiom of Archimedes, 81, 991, 1012-13

Axiom of choice, 1002, 1186, 1209

Axiom of reducibility, 1195-96

Axiomatization, 1026-27

of set theory, 1185-87

Axioms, 50, 52, 59-60

of Euclid, 59-60, 1005-7

of Hilbert for geometry, 1010-13

of non-Euclidean geometry, 1015

of number, 988-91

of projective geometry, 1007-10

of set theory, 1185-86

see alsoHubert’s axioms for number

Parallel axiom

Banach space, 1088-91, 1159, 1178

Base, 5-6

Bernoulli numbers, 449, 451

Bessel functions, 480-82, 489, 518-19, 710-11

Bessel inequality, 717, 1083

Beta function, 424

Betti numbers, 1169, 1173 74, 1176-77, 1179-80

Binomial equation, 600, 752-53, 761-64

Binomial theorem, 272-73, 438, 441, 964-65

Binormal, 560-61

Biquadratic reciprocity, 816-18

Biquatemions, 792

Birational transformation, 924, 932

Brachistochrone, 574-75

Branch-cut, 642, 656-57

Branch-point, 641-657

Brianchon’s theorem, 841, 848

Burnside’s problem, 1143

Burali-Forti paradox, 1003, 1182

Byzantine Empire, 180, 191, 205, 216

Calculus, 342-90, 400-35, 615, 798

see alsoMethod of exhaustion

Calculus of extension, 782-85

Calculus of finite differences, 440-41, 452-53

Calculus of variations, 573-91, 685, 739-51, 1076, 1078, 1081

Jacobi condition, 745

Legendre condition, 589-90

Weierstrass conditions, 748

see alsoMinimal surface

Calendar, 12-13, 21-22, 119, 178-79

Cardinal number, 995

Cassinian ovals, 320

Categoricalness, 1014-15

Catenary, 382, 472, 579

Cauchy integral formula, 639

Cauchy integral theorem, 599, 636-37, 639-40, 668-69

Cauchy-Lipschilz theorem, 718

Caucliy-Riemann equations, 627-28, 635, 658

Ca\alicri’s theorem, 349

Caylcy-Hamilton theorem, 807-9

Cayley numbers, 792

Chain, 1171-72

Chain, oscillations of, 480-81

Chain rule, 376

Chaldeans, 4

Characteristic equation: of a determinant, 800-801

of a differential equation, 485

of a matrix, 807

of quadratic forms, 800-801

Characteristic function, 706-7, 715-16, 1063, 1068

Characteristic root: of a determinant, 800-1

of a matrix, 807-8

Characteristic triangle, 346, 375, 387

Characteristic value, 480, 673, 706-7, 715-16, 1063, 1068

Characteristics, theory of, 535-38, 700-703

Christianity, 180-81, 200-201, 203-5

Christoffel symbols, 894, 1129

Chiistoffel’s quadrilinear form, 898

μ-ply form, 898-99

Circular points, 845, 854

Cissoid, 118-19, 286, 355

Clebsch-Gordan theorem, 929

Clifford algebra, 792

Commutator, 1142

Complete continuity, 1065

Complete quadrilateral, 127, 292-93

Completeness of axioms, 1015, 1207

Completeness of characteristic functions, 7’7

Complex, 1171

Complex function theory, 626-70, 686-87, 934-35

Complex integers, 817-19

Complex number, 143, 253-54, 407-8, 594-95, 635-36, 687, 775-76, 815-16

geometrical representation, 594-95, 628-32

logarithms of, 408-11, 594

Composition indices, 762

Composition series, 762, 767

Computing machines, 258-59

Conchoid, 117-18, 286

Conformai mapping, 236, 370, 570-71, 666-67, 887

see alsoMap-making

Congruence of lines, 567-69

Congruence of numbers, 813-18

Conic sections, 47-48, 88-99, 286, 299, 303-43, 319, 837-38, 847-49

Conic Sections, 27, 56, 90-99, 172

Connectivity, 660-62, 937

Consistency, 880, 913-17, 1013-14, 1038, 1182, 1186, 1206, 1209

Construction problems, 38-42, 47-48, 118, 195, 234-35, 309-10, 312-4, 753-54, 763-64, 840

Constructive proofs, 1202-3

Content, 1041-44

Continued fraction, 187, 254-56, 459-60, 1114-16

Continuity, 405, 950-54

uniform, 953

Continuous change, 299

Continuous transformation, 1160-61

Continuous transformation group, 1139-40, 1154-55

Continuum hypothesis, 1002, 1209

Convergence, 460-66

Cauchy, 961-66

strong, 1072-73

weak, 1072-73

see alsoSummability

Coordinate geometry, 302-24, 544-54

higher plane curves, 547-54, 855-58

importance of, 321-24

three-dimensional, 320-21, 545-47

see alsoConic sections

Quadric surfaces

Cours d’analyse algébrique,948, 950, 951-52, 963-64

Covariant, 926

Covariant differentiation, 1127-30

Cramer’s paradox, 553-54, 856

Cramer’s rule, 606

Cremona transformation, 933-34

Cross ratio, 121-22, 127-28, 219-20, 848-49, 851, 907

Cross- cut, 660

Cubic equation, 193-95, 237, 263-67, 269

Cubic reciprocity, 816, 818

Cuneiform, 5

Curl, 781, 785, 789

Curvature, 364, 378, 382-83, 555-56, 559-60

of a manifold, 891-93, 895-96, 1126-27

mean, 884

of surfaces, 563-64, 883-85, 887

Curve: concept of, 174, 312-14, 1017-22, 1162

length of, 343, 348, 354-55, 414-16, 958, 1020

see alsoHilbert curve

Jordan curve

Peano curve

Curve and equation, 303-4, 310-17

see alsoHigher plane curves

Algebraic geometry

Curvilinear coordinates, 687-89, 713-14

Cusp, SeeSingular points of curves Cycle, 1172

Cycloid, 338, 350-53, 355, 367, 469, 472, 556, 575

Cyclotomic equation, SeeBinomial equation

De Analyst per Aequationes Numero Ter-minorum Infinitas, 359, 361, 381, 438

De Revolutionibus Orbium Coelestium, 241

Deferent, 157

Deficiency, 552

Definition: Aristotle’s concept of, 51-52

in Euclid, 58-59, 68-71, 73, 78, 81-82, 1006

Del, 781

DeMorgan’s laws, 1189

Derivative, 344-48, 359-65, 371-78, 384-88, 425-33, 954-56

Desargues’s involution theorem, 292-93

Desargues’s theorem, 291, 845-46

Descartes’s rule of signs, 270

Descriptive geometry, 235

Determinant, 606-8, 795-804

elementary divisors of, 803

infinite, 732

invariant factors, 803

similar, 802

see alsoMatrices

Developable surface, 564-68

polar, 566

Dialogue on the Great World Systems, 327-28

Dialogues Concerning Two New Sciences, 229, 328, 332-33, 338, 348, 468, 993

Diameter of a conic, 93, 98-99, 294-95

Differential, 372-78, 385, 429-30, 433, 615, 954

Differential geometry, 554-71, 881-902, 1130-35

Differential invariants, 889-902, 1122-23, 1127-28, 1130

Dimension, 1021, 1161-62, 1177

Dirichlet principle, 659-60, 684-86, 704-5, 939

Dirichlet problem, 685, 703-5

Dirichlet series, 830

Discourse on Method, 226-27, 304-5

Discrete vs, continuous, 34-35, 52-53, 175-76

Disquisitiones Arithmeticae, 752, 813-15, 826-28, 870

Distance, projective definition of, 908, 910-11

Divergence, 781, 785, 789, 1129

Divergence theorem, 790

Divergent series, 466, 973-77, 1096-1120

see alsoAsymptotic series

Infinite series

Division algebra, 1151

Domain of rationality, SeeField

Double Points, SeeSingular points of curves

Duality, topological, 1174, 1179

Duality theorem, 845-46, 848-49

Dupin indicatrix, 569

e, 258, 439, 459-60, 593, 980-81

Eastern Roman Empire, 180, 191, 205, 216

Edge of regression, 566-67

Eigcnfunction, SeeCharacteristic function

Eigenvalue, SeeCharacteristic value

Elastica, 413, 558

Elasticity, 468-69, 485, 697-98, 739

Eleatic school, 27, 34-37

Elements of Euclid, 25, 27, 33, 37, 52, 56-88, 172, 220, 393, 507, 866, 1005-7

Elimination, SeeResultant

Ellipoidal harmonics, 712-13

Elliptic functions, 644-51

addition theorem of, 648

Empiricism, 227-30, 330

Encyclopédie, 432-33, 465, 510, 595, 597, 616

Entire functions, 667-68

Envelope, 378, 556-57

Epicycle, 157

Epicycloid, 235, 367

Erlanger Programm, 917-20, 1139, 1159

Essential singularity, 641

Euclidean algorithm, 78-79, 187

Euclidean geometry, 861-63, 1005-22

Alexandrian Greek, 104, 107-19, 126-29

Arabic, 195

Babylonian, 10-11

Egyp-tion, 19-20

Classical Greek, 24-55, 58-99

Hindu, 188-89

nineteenth century, 837-40

solid, 47, 81-3

spherical, 89, 119-21

Euler-Maclaurin summation formula, 452

Euler-Poincaré formula, 1174

Euler’s constant, 450, 892

Eulcr’s differential equation, 578, 584, 589

Euler’s differential geometry theorem, 563

Euler’s topology theorem, 1163-64

Evolute, 98, 555-56

Existence, 599

in algebra, 597-98

in Euclidean geometry, 52, 60, 174, 1010-11

proof of, 52, 176-77

see alsoOrdinary differential equation

Partial differential equation Exponents, 260-61

Fagnano’s theorem, 415-16

Fermat’s “theorem”, 276-77, 609, 818-20

Field, 755, 757, 821-25, 931, 1146-50

adjunction, 821, 1148

characteristic of, 1148

extension, 821, 1148

finite, 114-950

Galois theory of, 1149

non-commutative, 1151

p-adic, 1146-47

Fixed point theorem, 1177-79

Fluent, 361

Fluxion, 361

Folium of Descartes, 549

Formalism, 1203-8

Foundations, 979-1022

algebra, 176, 282, 772-75, 980

analysis, 383-89, 426-34, 947-77

arithmetic, 176, 596-97, 775-76, 950, 972

geometry, 1005-22

of mathematics, 1182-1210

Fourier integral, 679-81

Fourier series, 456-59, 513-14, 674-78, 966-72, 1040, 1046-47, 1119

see alsoTrigonometric series

Fourier transform, 681, 1052-53, 1074

integral, 679-81

Fredholm alternative theorem, 1060, 1067-69, 1090-91

Fresnel integrals, 1100

Function concept, 338-40, 403-6, 505-7, 677-79, 949-54

Functional, 1077-81

differential of, 1080

semi-continuity of, 1079

Functional analysis, 1076-95, 1159

Functions of bounded variation, 971, 1048

Functions of real variables, 1040-50

Fundamental group, 1174-75

Fundamental theorem: of algebra, 595, 597-98

of arithmetic, 79-80, 817, 819, 824

of the calculus, 373-74, 956-57

Galois theory, 752-64

Galoisian equation, 763

Gamma function, 423-24

Generality, 394

Generalized coordinates, 588-89

Generators of a group, 1141, 1143

Genus, 654-55, 661, 936-40, 1166-67

geometrical, 944

numerical, 944-45

Geocentric theory, 154-60, 241

Geodesic, 562-63, 575, 577, 886, 891

Geodesy, 116-17

Geography, 119, 160-62

Geometrical algebra, 62-67, 76-77, 108, 195

Geometry vs, analysis, 614-16

Geometry of numbers, 829

Geometry from the transformation viewpoint, 917-20

Gnomon, 30-31

Coldbach’s “theorem”, 616

Gradient, 781, 786, 789, 901-2

Gravitational attraction, 343, 357-58, 367-68, 469, 490-94, 522-30

Greek mathematics summarized, 171-77

Greek science, 49-50, 103, 145-69

Green’s function, 683-85, 692, 1069

Green’s theorem, 683, 692-96

Gregory-Newton formula, 440-41

Group, 757-58

Abelian, 767

abstract, 769, 1137-46

alternating, 762

composite, 766, 1142

continuous transformation, 1139-40, 1154-55

discontinuous, 726-30

of an equation, 758

index, 759

infinite, 726-30, 76g

linear transformation, 768-69, monotlromy, 723

order of, 759

permutation, seesubstitution

primitive, 765, 1142

simple, 766, 1142

solvable, 762, 1142-43

substitution, 758, 764-69

symmetric, 762

in topology, 1180

transitive, 765, 1142

Group character, 1145

Group representation, 768, 1143-45

Hahn-Banach theorem, 1090

Hamilton-Jacobi equation, 744

Hamilton’s equations of motion, 742-43

Harmonic function, 685

Harmonic oscillator, 482

Harmonic set of points, 96, 128, 293, 300, 851

Hauptvermutungof Poincaré, 1176

Heine-Borei theorem, 953-54

Heliocentric theory, 241-47, 327-28

Helmholtz equation, SeePartial differential equation

Hermite function, 714

Hessian, 858, 917-28

Hieratic, 15-16

Hieroglyphic, 15

Higher degree equation, 270, 599-606, 752-63

see alsoAbelian equation

Binomial equation

Galois theory

Higher plane curves, 547-54

projective approach, 855-58

Hilbert cube, 1161

Hilbert curve, 1018-19

Hilbert space, 1074, 1082, 1088, 1092-95, 1159

Hubert’s axioms for number, 990-92

Hubert’s basis theorem, 930-31, 1158

Hubert’s invariant integral, 749

Hubert’s Nullstellensalz, 943

Hilbert-Schmidt theorem, 1064, 1068

Hindus, 183-90

Holomorphic, 642

Homeomorphism, 1158

Homogeneous coordinates, 853-54

Homologous figures, 842

Homology, 1180-81

Homomorphism, 767, 1139

Homotopy, SeeFundamented group

Horn angle, 67-68

Humanist movement, 221-23, 236

Huygens’s principle, 691, 694

Hydrodynamics, 368, 520, 540-42, 686, 686-97

hydrostatics, 165-66, 211

Hyperbolic functions, 404

Hyperelliptic integrals, 651-53

Hypernumbers, 782-85

see alsoLinear associative algebra

Quaternion Hypocycloid, 367

Ideal, 822-23, 1150-51, 1153

Ideal numbers, 819-20

Imaginary elements in geometry, 843-45

Impredicative definition, 1184

In Artem Analyticam Isagoge,261

Incommensurable ratio, SeeIrrational number

Independence of axioms, 1014

Indeterminate equations, 140-43, 187-88

Index of a curve, 736-37

Indivisibles, 349-51

Infinite series, 360-61, 410, 436-66, 465, 480-82, 488-89

convergence and divergence, 460-66, 961-66

Euler transformation of, 452-53

harmonic, 443-44, 449-50

hypergeometric, 489

uniform convergence of, 964-66

see alsoDivergent series

Fourier series

Ordinary differential equation

Special functions

Trigonometric series

Infinitesimal, 69, 361, 385, 388, 429

see alsoDifferential

Infinity, 53, 69, 175-77

Inflection points, 549, 551-52, 556, 587, 857

Institutiones Calculi Differentialis, 402, 430, 463

Institutiones Calculi Integralis, 402, 489, 542

Integral, 360-62, 372-80, 956-61

Lebesque-Stieltjes, 1050

Riemann, 9585g

Stieltjes, 1041

Integral equations, 1052-74, 1086, 1089-91

Fredholm, 1055, 1058-60

Volterra, 1055-58

Interpolation, 422-23, 440-41, 454-56

Intersections of curves, 553, 856-58

Introductie Arithmetica, 136-38

Introducilo in Analysin Infinitorum, 392, 402, 404-5, 430, 506, 554, 558

Intuitionism, 1197-1203

Invariance, 299-300, 920, 925-32

Inversion, 932-33

Involute, 555

Involution, 128, 292-93

Ionia, 25, 146

Ionian school, 27-28

Irrational number, 8, 18, 32-33, 48-49

72-73, 80-81, 104, 134-35, 143, 149, 173, 176, 185-86, 191-92, 197, 209, 251-52, 593-94

definition, 982-87

Irreducible polynomials, 755

Isochrone, 471, 556

Isomorphism, 765-67, 1139

Isoperimetric figures, 126, 576-77, 838-39

Isoperimetric theorem, 838-39

Jacobian, 927-28

Jordan canonical form, 810

Jordan curve, 1017

Jordan curve theorem, 1017, 1179

Jordan-Holder theorem, 762, 767

Journals, 397, 624-25

Kepler’s laws, 244-45, 367

Klein bottle, 1168

Koenigsberg bridge problem, 1163-64

Kummer surface, 859

La Géométrie, 270-71, 281, 305, 307-17, 345

Lagrange’s equations of motion, 588-89, 740

Laméfunctions, 712-13

Laplace coefficients, See Legendre polynomials

Laplace transform, 1052

Laplace’s equation, See Potential theory

Laplacian, 785-86, 900-2, 1129-30

Latent roots, See Characteristic equation

Latitude of forms, 210-11

Laurent expansion, 641

Law of excluded middle, 1202

Law of inertia, 799-800

Lebesgue integral, 1044-50, 1071

Lebesgue-Stieltjes integral, 1050

Legendre polynomial, 526-31, 711-12

associated, 531

Lemniscate, 320, 416-20, 549

Length, projective definition of, 908, 910-11

Les Méthodes nouvelles de la mécanique céleste, 735, 1105, 1170

L’Hospital’s rule, 383

Library of Alexandria, 102, 180

Lie algebra, See Abstract algebra

Line coordinates, 855

Line curve, 848

Line, structure of, 52-53

Linear algebraic equations, 606, 803-4

Linear associative algebra, 791-94, 1151-53

Linear transformations, 768-69, 917-20

Liouville’s theorem, 667

Logarithm function, 354, 403-4

Logarithms, 256-58

Logic, 52-53

see also Mathematical logic

Logicism, 1192-97

Logistica, 131

Logistica numerosa, 261-62

Logistica speciosa, 261-62

Lunes of Hippocrates, 41-42

Lyceum of Aristotle, 27

Maclaurin’s theorem, 442

Magnitudes of Eudoxus, 48-49, 68-73

see also Irrational number

Map problem, 1166

Map-making, 161-62, 235-36, 286, 564-65, 570-71

Mastery of nature, 226, 307

Mathematical design of nature, 153, 213-14, 218-19, 326, 328-29

Mathematical induction, 272

Mathematical logic, 281, 1187-92

Mathematical Principles of Natural Philosophy, 334-35, 358, 364-69, 380, 395, 440, 470, 492-93, 497, 573

Mathematical societies, 625

Mathematics and reality, 392-94, 879-80, 1028-31

Mathematics and science, 325-35, 394-96, 616-17

see also Methodology, of science

Mathieu functions, 713-14

Matrices, 804-12

congruent, 811

elementary divisors of, 809

equivalent, 809

Hermitian, 808

infinite, 811

invariant factors of, 809

inverse, 807

minimal polynomial of, 808

orthogonal, 809-10

rank of, 809

similar, 810

trace of, 808

transpose, 807

see also Characteristic equation

Characteristic root

Maxima and minima, 97-98, 343, 347-48, 838-39

Maxwell’s equations, 698-99

Mean value theorem, 464, 955

Means of numbers, 32

Measure, 1044-46

Mécanique analytique, 493, 541, 615, 949, 1029

Mécanique céleste, 495, 498-99, 530, 542, 972

Mechanics, 129, 162-66, 211-12, 286, 616

center of gravity, 129, 164, 211, 235, 343, 348

motion, 153, 162-63, 211-12, 335-38, 469

see also Astronomy

Pendulum motion

Projectile motion

Medicine, 169, 196, 203

Menelaus’s theorem, 121

Meromorphic functions, 642, 668

Metamathematics, 1205-6

Method of exhaustion, 50, 83-85, 108, 112-15, 177, 343

Method of infinite descent, 275

Methodology: in algebra, 268-70

in geometry, 286, 300, 302, 308, 322

of science, 223, 325-35

Methodus Fluxionum et Serierum Infini-tarum, 361-62, 364, 381, 439, 470

Meusnier’s theorem, 564

Miletus, 25, 27

Minimal surface, 539, 57g, 585-86, 750

Möbius band, 1165-66

Modular system, 825

Module, 931, 943

Moment problem, 1072, 1117

Morley’s theorem, 839-40

Multiple integrals, 425-26, 798, 1048-49

Multiple points of curves, See Singular points of curves

Multiple-valued complex functions, 641-42, 655-62

Museum of Alexandria, 102

Music, 148, 478-79, 481, 515, 521-22, 693-94

see also Vibrating-string problem

Napier’s rule, 240

Navier-Stokes equations, 696-97

Navigation, 119, 250, 286, 336-37, 470-71

N-dimensional geometry, 782, 890, 1028-31

Negative number, 143, 185, 192, 252-53, 592-93

Neumann problem, 685

Newton’s laws of motion, 366-67, 490

Newton’s parallelogram, 439-40, 552

Newton-Raphson method, 381

Nine-point circle, 837

Non-Archimedian geometry, 1016

Non-Euclidean geometry, 729, 861-81, 947, 1014, 1025

applicability, 872-73, 877, 921-22

axioms for, 1015

consistency, 880, 913-17

hyperbolic, 905-6

implications, 879-80

models, 888, 905-6, 912-17

priority of creation, 877-79

single and double elliptic, 904, 906, 912-13

see also Riemannian geometry

Non-Riemannian geometries, 1133-35

Normal, 560-61

Number, 29-30

amicable, 31, 278, 610

hexagonal, 31-32

pentagonal, 31

perfect, 31, 78, 137, 278, 610

polygonal, 137, 277-78, 829

prime, see Prime number

square, 30

triangular, 29-30, 828

see also Complex number, Irrational nummer, Negative number

Theory of numbers

Operator, 1076-77, 1082, 1085-89, 1094

Her-mitian, 1092-93

Opticks, 358

Optics, 88, 166-68, 196, 212-13, 285-86, 307, 314-15, 357, 579-81, 740

Ordinal number, 1000-1

Ordinary differential equation, 468-500, 578, 709-38

adjoint, 487

Bernoulli’s 474

Bessel’s, 488-89, 519

Clairaut’s 476-77

exact, 476

existence theorems, 717-21, 1178-79

first order, 451, 471-78

Fuchsian, 721-22, 724-26

higher order, 484-87

hypergeometric, 489, 712, 723

Lamé’s, 721-22

Legendre’s, 529, 711

linear, 485-87, 730-32

Mathieu’s, 713-14

method of series, 488-89, 709-12

nonlinear, 483-84, 732-38

periodic solutions, 713-14, 730-32

Riccati, 483-84

second order, 478-84

singular solutions of, 476-78

systems of, 490-92, 735, 742

variation of parameters, 497-99

Weber’s, 714

see also Asymptotic series, Auto-morphic functions

Qualitative theory of ordinary differential equations

Sturm-Liouville theory

Summability

Orthogonal system of functions, 716, 1066

Orthogonal trajectories, 474-75

Osculating circle, 556

Osculating plane, 559, 561

Ostrogradsky’s theorem, See Divergence theorem

Oval of Descartes, 315-16

P-adic fields, 1146-47

Pappus’s theorem, 128, 297-98

Pappus-Guldin theorem, 129

Papyri, 16, 20, 25, 132

Parabolic cylinder functions, 714

Paradoxes of set theory, 1182-85

Parallel axiom, 60, 177, 852, 863-67, 916, 1012, 1014

Parallel displacement, 1130-33

Parseval inequality, 1093

Parscval’s theorem, 716-17, 971, 1047

Partial derivative, 425

Partial differential equation, 362, 502-43, 567-68, 671-707

classification, 700-701

existence theorems, 685, 699-707, 1178-79

first order, 532-35

Hamilton-Jacobi, 744

heat equation, 672-75, 679, 687-89

Helmholtz, 693-96, 1056

nonlinear, 536-40

Poisson ’s, 682, 684-85

potential, 524-529, 659, 681-87, 703-5

reduced wave equation, 693-94

separation of variables, 516-17, 673-74

systems of, 540-42, 696-99

total, 532

wave equation, 502-22, 690-94

Pascal triangle, 272-73

Pascal’s theorem, 297-98, 848

Pasch’s axiom, 1011-12

Peano curve, 1018, 1161

Peano’s axioms, 988-89

Pell’s equation, 278, 610-11

Pendulum motion, 337, 469, 471-72, 47g, 556

Periodicity modules, 641, 662

Permanence of form, 773-75

Permutation, See Substitution

Permutations and combinations, 273

Persia, 4, 10

Perspective, 231-34, 286-87

Pi, 10-11, 19, 134-35, 251, 255, 353, 439, 448, 593, 980-82

Picard’s theorems, 668

Platonic school, 42-48

Plücker formulas, 857

Poincaré conjecture, 1175-76

Poincaré-Bendixson theorem, 737

Poincaré’s last theorem, 1178

Point at infinity, 290

Polar coordinates, 319

Pole and polar, 96-97, 294, 298-99, 845

Polyhedra, regular, 47, 85-86

Positional notation, 5-7, 185

Potential theory, 522-29, 659, 681-87, 1055-56

equation, 524-29, 659, 682-87, 703-5

function, 524, 682-86

Power series, 643-44

see also Taylor’s theorem

Precession of the equinoxes, 158, 369

Primary and secondary qualities, 326, 329

Prime number, 78, 277, 609, 830-32

see also Theory of numbers

Prime number theorem Prime number theorem, 830-32

Principia Mathematica, 1193

Principle of continuity, 385-87, 841, 843-45

Principle of duality, 845-46, 848-49, 855

Principle of Least Action, 581-82, 587-89, 620, 739-45

Principle of Least Time, 315, 580-81

Principle of Stationary Phase, 1099

Printing, 217

Probability, 273

Projectile motion, 286, 476, 479

Projection, 232, 287

Projective geometry, 233, 285-301, 834-59, 1007-10

algebraic, 852-59

and metric geometry, 904-23

relation to Euclidean geometry, 850-52, 909, 1033

relation to non-Euclidean geometry, 909-12, 1033

see also Algebraic invariants

Projective plane, 290, 1168

Proof, 14, 20-22, 34, 44-46, 50, 144, 171, 198-99, 282, 383-89, 393-94, 426-34, 617-19, 1024-26

indirect method of, 33, 44-45

Proportion, 32, 137-38, 237

Eudoxian theory of, 68

Pseudosphere, 893, 905

Ptolemy dynasty, 102-3

Puiseux’s theorem, 552-53

Pure and applied mathematics, 1036-38

Pythagorean number philosophy, 219

Pythagorean theorem, 10, 20, 33, 63-64, 184

Pythagorean triples, 10, 31-32, 34

Pythagoreans, 27-34, 49, 147-50

Quadratic equation, 8-9, 19, 186-87, 192-93

solved geometrically, 76-77

Quadratic form, 799-80

reduction to standard form, 799, 801-2

infinite, 1063-66

see also Law of inertia

Quadratic reciprocity, 611-12, 813-15, 817

Quadratrix, 39-40, 48

Quadrature, 42

Quadric surface, 108-10, 168, 545-46, 848

Quadrivium, 146, 149-50, 201-2

Qualitative theory of ordinary differential equations, 732-38, 1170

Quantics, 928

Quantitative versus qualitative knowledge, 333-34

Quartic equations, 267-70

Quaternion, 779-82, 791, 1025

Quintic equation, 763

Rate of change, instantaneous, 344, 360

Reduction of singularities, 941-42

Reformation, 218

Relativity, 894, 1130-31

Religious motivation, 219-20, 359

Residue, 638, 640

Resolvent equation, 604, 760

Resultant, 606-8, 797-98

Revival of Greek works, 205-7, 216-17

Ricci tensor, 1127

Ricci ’s lemma, 1129

Riemann four index symbol, 894, 1125

Riemann hypothesis, 831

Riemann mapping theorem, 666

Riemann problem, 724, 726, 1069

Riemann surface, 656-62, 934-35, 937

Riemann zeta function, 831

Riemannian geometry, 889-99, 1126-27, 1131-33

applicability, 893

Ricmann-Lebesgue lemma, 1046-47

Riemann-Roch theorem, 665, 940

Riesz representation theorem, 1085

Riesz-Fischer theorem, 1072, 1084

Rigor, 947-77, 1025, 1209

see also Proof

Ring, 821-22, 931, 1150-53

Romans, 106, 178-80

Rule of false position, 18-19

Ruled surfaces, 567, 859

Scholastics, 207

Schwarz-Christoffel mapping, 666-67, 687

Schwarz’s inequality, 1083, 1093

Section, 232, 287

Seleucid period, 4, 102

Semicubical parabola, 98, 550

Serret-Frenet formulas, 561-62

Set, 970, 994-1003, 1159

closed, 995-1078, 1160

derived, 970, 1078

enumerable, 995-97

first species, 970

infinite, 992-1003

limit point of, 970

open, 995, 1160

perfect, 995

power of, 995

well-ordered, 1001

see also Space, abstract

Shape of the earth, 469-70, 522

Sieve of Eratosthenes, 138

Simplex, 1171

Singular points of curves, 549-52, 935, 941-42

conjugate point, 550

cusp, 549-50

double point, 549

multiple point, 549

node, 549

Singularities of differential equations, 721-26, 733, 737

Slide rule, 258

Sophists, 27, 37-42

Sound, 482-83, 520-22, 691

Space: abstract, 1078-80, 1159-63

compact, 1078, 1160

complete, 1161

connected, 1160

extremal, 1078

function, 1078-80, 1082-84, 1178

interior point of, 1078

limit point of, 1160

metric, 1079, 1160-61

metrizable, 1161

neighborhood, 1079, 1160-61

normal, 1087-89

perfect, 1078

separable, 1160

see also Banach space

Hilbert space

Set

Space curves, 235, 557-62, 566, 941

Special functions, 422-26, 709, 715

Specialization, 1024

Spherical circle, 845, 854

Spherical functions, 529-30, 711-12

Spherical harmonics, See Spherical functions

Stability of the solar system, 730, 735-36

Stereometry, 235

Sieltjes integral, 1041, 1085

Stirling series, 453, 1097

Stokes line, 1103, 1108

Stokes’theorem, 790

Straight line, infiniteness of, 863

Sturm-Liouville theory, 715-17

Subgroup, 758

invariant, see normal

normal, 761

self-conjugate, see Normal

Substitution, 602-3, 757-58

Sumcrians, 4

Summability, 464, 1098, 1109-20

Abel, 1111

Borei, 1117-19

Cesàro, 1113

Frobenius, 1112, 1119

Holder, 1112-13

Stieltjes, 1115-16

Summation convention, 1127

Superposition, 87

Sylow’s theorem, 768, 1141

Symbolic logic, See Mathematical logic

Symbolism, 10, 139-40, 143-44, 186, 192, 259-63, 340, 378

Symmetric functions, 600, 602

Tangent, 342-46

Tauberian theorem, 1119

Tautochrone, See Isochrone

Taylor’s theorem, 442, 464-65, 964

Tensor analysis, 784, 1122-23

Théorie analytique de la chaleur, 672, 961, 966

Théorie des fonctions analytiques, 406, 430-32, 948, 964, 1029

Theory of algebraic equations, 270-72, 381, 597-606

Theory of forms, 826-29

Theory of numbers, 10, 29-32, 53, 77-80, 136-43, 274-78, 608-12, 813-22, 925

analytic, 829-32

see also Biquadratic reciprocity

Cubic reciprocity

Pell’s equation

Prime number

Prime number theorem

Quadratic reciprocity

Theory of forms

Theory of perturbations, 494-98

Theory of surfaces, 562-69, 859

cubic, 859

differential geometric, 882-88

isometric, 886

quartic, 859

see also Algebraic geometry

Kummer surface

Quad-ric surface

Theory of types, 1195

Theta functions, 649-50

Three-body problem, 369, 492-93, 496-97, 731-33, 735

Topology, 920, 1158-81

combinatorial, 1159, 1163-81

point Set, 1159-63

Torsion: of a complex, 1173-74, 1176-77, 1180

of a curve, 559-62

Tractatus de Quadratura Curvarum, 361-62

Tractrix, 382, 473-74, 905

Transcendental number, 593-94, 980-82

Transfinite number, 992-1003

Transformation of coordinates, 426, 546-47

Translation of books, 206, 220

Triangle inequality, 1079, 1083

Trigonometric series, 454-59, 508-14, 968-70

see also Fourier series.

Trigonometry: Arabic, ’195-96

Greek, 119-26

Hindu, 189

plane, 119-26, 189, 237-40

Renaissance, 237-40

spherical, 119-26, 237-40

Trivium, 202

Truth, 45, 50, 151, 219, 305-6, 326, 330, 619-21, 879-80, 890, 893, 980, 1031-36

Undecidable propositions, 1202

Undefined terms, 51, 988, 1008, 1010

Unicursal curve, 552

Uniformization of curves, 937-39

Universities, 201, 209, 214, 220, 397-98, 621-22

Vector analysis, 776-79, 785-91

Velaria problem, 748

Velocity potential, 525, 686

Vibrating membrane, 518-19, 689, 713

Vibrating-string problem, 478-79, 503-18

Volumes, calculation of, 343, 348

Waring’s theorem, 609

Weierstrass factorization theorem, 667-68

Weierstrass’s theorem, 966

WKBJ method, 1102, 1108

Word problem, 1141, 1143

Zeno’s paradoxes, 35-37, 992

Zero, 6, 132, 185

Zonal harmonics, See Legendre polynomial