Most triathletes spend the majority of their training hours on the three disciplines of the sport; few spend sufficient time practicing the actual mechanics of transitions and preparing for the subsequent segment while still competing in either the swim or bike portion. Therefore, the aim of this chapter is to discuss what some have called the fourth discipline of triathlon—transitions—including how to minimize the amount of time spent in T1 and T2 and how, from an exercise physiology aspect, to improve overall triathlon performance by taking advantage of recent advancements in pacing and drafting strategies across all disciplines.
Various studies have shown that the transition from one event of the race to another has important implications for physiological and kinematic (movement of the body) measures that affect both perceived effort and performance in the remaining events. One study found that athletes do not bike or run as economically after swimming and do not run as economically after the bike segment. Part of this lack of economy may in fact be due to an athlete’s inadequate technical ability or fitness level, which in turn leads to an increased metabolic load. This, then, emphasizes the need for transition training between each discipline and specific physiological training that will help triathletes switch between disciplines quickly and more efficiently—thus biking faster out of T1 and running faster out of T2.
One of the key factors in having a successful transition experience is knowing the layout of the transition area, including its entry and exit points, and also the layout of your own equipment. Many triathletes bring far too much baggage into the area and clutter it up, not only for themselves but also for those sharing the rack, so bring only what you will be using during the actual race. You should also note that in accordance with USAT rules, you “own” only the piece of real estate where your wheel touches the ground, so do not spread your equipment in too large an area.
Most athletes rack their bikes by the seat so the front wheel is touching the ground. This can make for a faster exit from the bike rack than, say, if the bike is racked by the brake levers, which makes it more difficult to remove. Most races have a single transition area, so according to USAT rules, athletes must return their bikes to their assigned positions on the bike rack, and failure to do so may result in a penalty.
Remember that others will be in close proximity to you, and thus you should be considerate and keep your equipment in a tight and logical order. Lay your equipment out in reverse order, meaning the items that are farthest away are those you will be putting on last. For example, if you are looking down at the ground from farthest away to nearest, you would lay out your gear next to your bike in the following order:
1. Running shoes with lace locks or similar
2. Hat or visor
3. Socks (although many think they can race without them, the time spent putting them on for the run may be well spent rather than getting a blister)
4. Bike shoes (see later section on cyclo-cross mount and dismount)
5. Race number, which is usually attached to an elastic race belt so it’s easy to put on (check with the race director on local rules because some require you to wear your race number on the bike and some only for the run segment; if you have to wear it on the bike, in order to stop it flapping so much in the breeze, scrunch it up and wrinkle the whole race number, then spread it out and attach it to your race belt to limit the “sail effect” behind you)
6. Helmet and sunglasses, which may be on the ground or hanging on the front of your bike, but remember your helmet must be on and securely fastened before you leave the transition area; if you do not fasten your helmet before mounting your bike (outside the transition area), you could be disqualified
It is worthwhile to lay out your kit the same way for every race and have a set routine of what you put on first so you have less to think about in the heat of the race.
It is well known that swimming has an impact on subsequent cycling performance, with some studies demonstrating that overall cycling performance may be hindered by short-duration, high-intensity swimming, such as a sprint triathlon when the distance is much shorter (usually 750-meter swim, 20K bike, and 5K run), thus many athletes try to swim this leg much faster than normal. One method of countering the detrimental impact of high-intensity swimming is drafting.
Drafting is the act of swimming very close behind or at hip level to another swimmer. It reduces passive drag, thus decreasing the effort to swim the same distance. Also drafting usually improves stroke economy and efficiency, therefore potentially improving the subsequent cycling performance. To take maximal advantage of drafting, swimming behind another triathlete at a distance up to 1.5 feet (.5 m) back from the toes is the most advantageous; in lateral drafting—in kayaking this is termed “catching the bow wave”—a swimmer’s head can be level with another swimmer’s hips. You would do this when there isn’t physical room to get behind another swimmer’s toes or there are other athletes all around you, preventing you from moving.
Also, many triathletes are aware of terms such as blood pooling and orthostatic intolerance but don’t actually know what they are. Orthostatic intolerance is characterized by impaired balance, dizziness, blurred vision, or even partial or complete loss of consciousness. This may occur postswim in athletes with normal blood pressure because of gravitational stress and the removal of the muscle pump. In fact, one study showed that severe dizziness after swimming when exiting the water and standing up for the transition section is a common occurrence for many triathletes, but it is more prevalent in highly trained endurance athletes. If this happens to you frequently, you should seek medical advice. However, the good news is that most athletes who get checked out by their doctors discover that severe dizziness is usually benign.
To counteract the effect of gravity and maintain blood pressure and venous return, one study suggests continuing to keep moving rather than stopping abruptly. This is especially important when removing the wetsuit upon exiting the water, stopping to walk up wet steps or noncarpeted transitions, bending down to put on cycling shoes, and so on. One way to offset dizziness as you leave the swim is to start utilizing the muscular pump by working the calf muscles as soon as possible, meaning you should take short steps at a higher cadence than normal as you make your way to the transition. Ultimately, this will improve your ability to maintain venous return and blood pressure, maintain mental concentration through the transition, and execute pacing strategies for the start of the cycling discipline—thus going faster out of T1.
It would be remiss if we did not touch on what for many triathletes is the most challenging skill—the swim start, especially if it is in open water and the waves are rolling into the beach.
Perhaps the biggest mistake most triathletes make is what we term overseeding—starting too near the front in a wave start and thus enduring a great deal of body contact in the first several hundred meters, as faster swimmers go over, under, or around them. Holding back a few seconds at the start of the wave allows many of the faster swimmers to go ahead, giving slower swimmers more open water to have a clean and contact-free swim without giving up too much time.
Another matter to consider is swim pace. Many triathletes go off too hard in the first couple of hundred meters and suffer for this later in the swim and even the race. So ensure your start pace is something you can keep up for the whole swim portion, or even consider a slightly slower race pace at first until you get comfortable in the water, and then start cranking it up. It is better to start a bit slower and finish fast rather than the other way round.
Perhaps the only way to replicate the swim start is to practice it. In a pool, several triathletes in a single lane can all start off at the same time, making race-like body contact, even to the point of pulling each other back and pushing each other under the water. This practice will never be the same as a race, but it will give you a feeling of what it is like and how you will react to the body contact.
Finally, please remember you are doing a triathlon, so pace yourself for the whole distance and don’t leave your bike in the water or your run on the bike—intelligent pacing will win every time.
A debate exists regarding the metabolic cost of running at the end of a triathlon compared with running the same distance in isolation. However, the vast majority of research suggests that high-intensity cycling will have a detrimental effect on subsequent running performance, with the effects dependent on the fitness level of the triathlete; the greatest decreases in performance are observed in recreational triathletes, and minimal effects are seen in elite triathletes.
To offset the impact of cycling on running performance, researchers have come up with a few practical strategies; see Bentley et al. (2008) for further details. In summary, triathletes may be able to improve running performance by (1) drafting behind as many athletes as is practical (in draft-legal events); (2) adopting a cycling cadence of between 80-100 rpm (note, however, that cadence is a very personal matter—just consider the cycling cadence of Lance Armstrong (above 110 rpm for several hours at a time), for example—but many in triathlon will find a slightly higher cadence is acceptable); and (3) concentrating on reducing the effort during the final minutes of the cycling stage to prepare for the run. Points 2 and 3 really strike home for many coaches and physiologists. Pro cyclists will of course state the physiological benefits of spinning at greater than 110 rpm, but all too often, triathletes will trash themselves on the last 5K of the cycling discipline when coming in for the home stretch. However, the global performance time of a triathlon is the most important aspect, not the bike time. As such, establishing optimal pacing strategies for the start of the bike, the end of the bike, and the start of the run is an individual task and should be done in training on a regular basis. To put it as simply as possible: Don’t leave your run on the bike! And spinning is better than crunching big gears.
To emphasize this point, various studies tried to determine the best pacing strategy during the initial phase of an Olympic-distance triathlon for highly trained triathletes. Ten male triathletes completed a 10K control run at free pace as well as three individual time-trial triathlons in a randomized order. In the time trials, the swimming and cycling speeds imposed were identical to the first triathlon performed, and the first run kilometer was done alternately 5 percent faster, 5 percent slower, and 10 percent slower than in the control run. The triathletes were instructed to finish the remaining 9 kilometers (5.6 miles) as quickly as possible at a self-selected pace. The 5 percent slower run resulted in a significantly faster overall 10K performance than the 5 percent faster and 10 percent slower runs, respectively (p < .05). Of note, the 5 percent faster strategy resulted in higher values for oxygen uptake, ventilation, heart rate, and blood lactate at the end of the first kilometer than the two other conditions. After 5 and 9.5 kilometers, these values were higher for the 5 percent slower run (p < .05).
This excellent and well-controlled study demonstrates that contrary to popular belief, running slower during the first kilometer of an Olympic-distance triathlon may actually improve overall 10K performance. With the recent advances in global positioning system (GPS) watches, split times and distances are easily available for triathletes to take advantage of even if no distance markers are provided during the triathlon. This technology is best used only if the triathlete has previously established performance standards for that particular event. Thus, for these data to be most effective, the triathlete must know what split time equals 5 percent slower than his maximal effort.
Very few studies have investigated the physiological effects of multiple swim–bike–run sessions during training and their impact on total performance. One study of 6 weeks of multicycle run training compared with normal isolation training found that this type of training did not produce a greater improvement in bike–run performance versus normal isolation training, but it did induce significant improvement in the bike–run transition. Clearly this is an understudied aspect of triathlon performance, although British Olympic coaches have focused on this area since the early 2000s. (Mat Wilson, one of the coauthors of this chapter, was one of those coaches.) The six swim–bike and bike–run sessions provided next were extensively used by the 2000 and 2004 British Olympic squads.
Three sample swim to bike sessions are provided in this section. The prime objective of these sessions is to enable you to bike faster out of the swim in an effort to reduce overall bike time. Typically, these sessions should be conducted in the preparatory phase of your training cycle.
All swim to bike sessions require a pool, your race bike, and a bike trainer. Set up the bike and bike trainer about 10 yards or meters from the poolside, with a large towel on the floor next to the bike for drying yourself. The equipment layout is exactly as you would normally do it in a race. At the end of each set, take the time to lay out your equipment again as if it were a proper T1 setup—but keep the time to the absolute minimum.
When you perform the following swim to bike workouts, first warm up as you normally would for a speed-based session. A proper warm-up increases heart rate, breathing rate, and the flow of blood to the muscles to prepare the body for increasingly vigorous activity. This means you should include some tempo work, and as you near the end of your warm-up, increase the pace slightly. In addition, using a heart rate monitor for these sessions is not recommended, as the chest strap may become dislodged in the water and distract you from the prime purpose of the session, which is to increase your speed out of the water and onto the bike.
Before performing these sessions, it is necessary to know your benchmark times for the swim and bike distances, so before you enter this phase of your training, conduct time-trial sessions for the 200-meter, 400-meter, and 800-meter swim and time-trial sessions for the 2K, 4K, and 8K cycle. The times recorded will become your benchmarks to measure consistency throughout the session and to measure your overall improvement.
Maximal intensity, sometimes called steady state, is the level of effort you can maintain for the full duration of the whole session. The aim of this maximal intensity session is for you to push yourself as hard as possible in each set as close as you can to your maximal
time-trial effort. The objective is for you to become aware of what your body will feel like coming out of the swim so you can then become as economical as possible, thus training the mind and body.
Do your usual warm-up, and then do five sets of the following: 200-meter swim immediately followed by a 2K cycle at greater than 100 rpm. The total number of transitions for the session is nine, and the total distance covered is 1 kilometer for the swim and 10 kilometers for the bike. This is a short overall session, but, as mentioned, each set is conducted at your best sustainable speed for the whole session. To get maximum benefit, do not take a rest between sets. During the first set of 200-meter swimming and 2K cycling, you must try to equal the established fastest time-trial times you conducted before, with the aim of maintaining this performance.
Clearly many triathletes will slow as the session continues, and you should record your fatigue as a percentage time increase. As you progress, you should notice an overall reduction of fatigue, seen as improved and maintained performance times. When you get stronger, you can increase the number of sets if you choose. Be careful of doing too many, though, because this is a very taxing session, and recovery will be much longer than normal, thus affecting the rest of your training modules.
Lactate tolerance training will help you recover more quickly from bursts of speed and power, and while triathletes should try to minimize this type of effort in a race, it is inevitable that you will need to increase power on the bike or run harder on a hill to pass other runners. By training properly, you can push your lactate tolerance up to a higher heart rate. Since LT is the point where significant amounts of lactate start to accumulate in the blood, improving your ability to clear lactate means you can ride harder before you reach LT. By training slightly below LT, you train your body to convert lactate to fuel for the slow-twitch muscles, thus clearing lactate from the bloodstream. The most effective training to raise LT is relatively long efforts just below LT, with only partial recovery between each effort. Starting the next hard interval before lactate is fully cleared continues the training stimulus to remove lactate.
Do your usual warm-up, and then do two sets of the following: 400-meter swim and 4K cycle at greater than 95 rpm. This is followed by four sets of the following: 200-meter swim and 2K cycle at greater than 90 rpm. The total number of transitions for the session is eleven, and the total distance covered is 1,600 meters for the swim and 16 kilometers for the bike.
To get the most benefit from this session, there should be no rest between sets, and all swim and cycle reps must be within 10 percent of your fastest established time-trial times, with the aim of maintaining this performance. Again, record your fatigue as a percentage time increase. You can measure your overall improvement by noticing a reduction of fatigue, seen as improved and maintained performance times. This session can be physically uncomfortable and mentally taxing for many because it requires you to maintain your concentration for a long time and because it is very tiring in a progressive manner. Once you feel OK with this session, you can increase the effort by either adding more sets or adding the following: 1 × 800-meter swim and 8K cycle at greater than 100 rpm to the beginning of the set.
Aerobic development is important because the more work you do aerobically, meaning with oxygen, then generally the more efficient you become. As an added bonus, aerobic work trains the body to break down and use stored fat for energy (fat is a primary source of fuel for the aerobic energy system). Another benefit of aerobic development is an increase in heart stroke volume, which means more blood pumping oxygen to the muscles. As most triathletes tend to train and race aerobically, it is useful to include an aerobic development session to increase your ability to be economical and efficient while exercising.
Do your usual warm-up, and then do two sets of the following: 800-meter swim and 8K bike at greater than 100 rpm. The total number of transitions for the session is three, and the total distance covered is 1,600 meters for the swim and 16 kilometers for the bike.
Again, no rest should be taken between sets. You should record negative split times, with the second set being within 5 percent of the fastest of your established time-trial times. This can be a long, tiring session with what may appear to be very little progression. However, by working on aerobic development, you are building a stronger base to work from. Because it can be tiring, this session should be completed once or twice per month only. Thus a reduction of fatigue by improving performance time is the main goal.
Three sample bike to run sessions are provided in this section. Each session trains you to run faster off the bike, something many athletes struggle with, certainly in the first mile or two. The key to these bike to run sessions is using correct running posture (not leaning too far forward in the first kilometer), opening running gait, and keeping mental focus and concentration at maximal heart rates. Clearly you need to keep an eye on heart rate, but again the prime focus should be on time splits and limiting fatigue through session progression, thus ensuring you are running at your best speed during this segment of the race.
All bike to run sessions require a mag trainer and a running track (not a treadmill if possible, although this may be your only option in the winter depending on where you live). Set the mag trainer up next to the running track, with full race equipment laid out as per your usual setup.
Warm up adequately before beginning. Because the sessions involve a higher heart rate, add some speed elements to your warm-up while being careful of injury. Before performing these sessions, it is necessary to know your benchmark times for the bike and run distances, so before you enter this phase of your training, conduct time-trial sessions for the 2K, 4K, and 8K cycle and time-trial sessions for the 400-meter, 800-meter, and 1K run. The times recorded will become your benchmarks to measure consistency throughout the session and to measure your overall improvement.
As mentioned in the previous swim to bike maximal intensity session, maximal intensity is the level of effort you can maintain for the full duration of the whole session, and the aim of this session is for you to push yourself as hard as possible in each set as close as you can to your maximal time-trial effort. This session includes 10 sets of 400-meter running and 2K cycling at greater than 100 rpm. The total number of transitions for this session is 19, and the total distance covered is 4 kilometers for the run and 20 kilometers for the bike.
Lay out your running gear as if it were a race so you will have the added benefit of ensuring your logistics for the transition are correct. One noticeable difference this time is that you must take a 2-minute rest between sets to reset transition equipment, hydrate, and so on, and the first run and cycle set must be equivalent to your fastest established time-trial times. The primary aim of this set is consistency of time and effort. As previously stated, you will slow (in some cases by a lot), but you must record your fatigue as a percentage time increase. If each set is completed to your maximal intensity, there is a good chance this session could be the hardest you will ever do. Also, because this set can be very taxing, it may be conducted in your base phase but most likely will have a bigger impact in your build phase.
As mentioned in the previous swim to bike lactate tolerance session, lactate tolerance training will help you recover more quickly from bursts of speed and power, and while triathletes should try to minimize this type of effort, it is inevitable that you will need to increase power at some point during the race. This session includes three sets of 800-meter running and 4K cycling at greater than 95 rpm followed by four sets of 400-meter running and 2K cycling at greater than 100 rpm. The total number of transitions for this session is 13, and the total distance covered is 4 kilometers for the run and 20 kilometers for the bike.
To maintain consistency of effort throughout the session, take 3 minutes’ rest between sets so you have time to set up your T2, hydrate, and so on. All run and cycle reps must be within 10 percent of your fastest established time-trial times, with the aim of maintaining this performance. Again note your fatigue factor. You can monitor your progress by feeling a reduction of fatigue for the same time or better, and once you reach this stage you can add a complete set to the whole session.
As mentioned in the previous swim to bike aerobic development session, aerobic development is important because the more work you do aerobically, meaning with oxygen, then generally the more efficient you become. As most triathletes tend to train and race aerobically, it is useful to include an aerobic development session to increase your ability to be economical and efficient while exercising. This session includes four sets of 1K running and 8K cycling at greater than 100 rpm. The total number of transitions for this session is seven, and the total distance covered is 4 kilometers for the run and a whopping 32 kilometers for the bike.
A full 5-minute rest must be taken between sets, and your heart rate should drop rapidly during this rest phase (to do this, you may wish to walk the track very slowly). Once again, you must try to get negative split times, with the third and fourth sets being within 10 percent of your fastest established time-trial times. A reduction of fatigue by improving performance time is your main goal. This is a very tough session mentally and physically, with little progression. The mental focus required during the longer sets is vital to success because so many times during a race we find ourselves admiring the scenery and perhaps slowing down. You should enjoy your sessions but remember why you are there—to try to get faster. This is the longest of the sets listed, and because it is so tough, it is recommend that you complete this session once or twice per month only. Also, this session is best conducted in your preparatory (base) phase.
For any action that is repeatable, you can devise a process around it. By practicing some of the sets outlined in this chapter, you will be playing in the world of specificity—each workout is specifically designed to help you become faster in triathlon. You will not only become faster in and out of transitions but also should be able to bike faster out of the swim and run faster off the bike.
The key to real success, however, is ensuring you know how your body reacts to the intensity of racing for the full duration of the race and to structure certain aspects of your training to replicate those stresses. If you are a wonderful swimmer and can come out with a good lead only to lose it on the bike or run, then perhaps your training focus needs to be realigned—the same goes if you are a strong biker or runner. Pacing is paramount for overall success. Yes, use your natural talent for each discipline, but be conscious of the overall effort needed to finish well. Your racing should be the culmination of good rehearsal and preparation—you have to occasionally feel discomfort in training to know how hard you can push in racing, so there is an element of truth in “no pain, no gain”—you have to know your limits but feel the burn every so often.