Linear regression
assumptions
formula
gradient descent algorithm
height and weight
mean, standard deviation and covariance
multiple linear regression model
OLS method
ordinary least square model
prediction errors
predictive modeling
simple linear regression model
specification of
Logistic regression model
Log sigmoid transfer function
Long short-term memory (LSTM) model
Loss function
backward() function
epochs
estimated parameters
final loss value
grad function
hyperparameters
initial value
iteration level
learning rate
linear equation computation
mean square error (MSE)
MSELoss
parameter grid
weight tensor