by Ed Yong
[JULY/AUGUST 2018]
One hundred years ago, in 1918, a strain of H1N1 flu swept the world. It might have originated in Haskell County, Kansas, or in France or China—but soon it was everywhere. In two years, it killed as many as 100 million people—5 percent of the world’s population, and far more than the number who died in World War I. It killed not just the very young, old, and sick, but also the strong and fit, bringing them down through their own violent immune responses. It killed so quickly that hospitals ran out of beds, cities ran out of coffins, and coroners could not meet the demand for death certificates. It lowered Americans’ life expectancy by more than a decade. “The flu resculpted human populations more radically than anything since the Black Death,” Laura Spinney wrote in Pale Rider, her 2017 book about the pandemic. It was one of the deadliest natural disasters in history—a potent reminder of the threat posed by disease.
Humanity seems to need such reminders often. In 1948, shortly after the first flu vaccine was created and penicillin became the first mass-produced antibiotic, U.S. Secretary of State George Marshall reportedly claimed that the conquest of infectious disease was imminent. In 1962, after the second polio vaccine was formulated, the Nobel Prize–winning virologist Sir Frank Macfarlane Burnet asserted, “To write about infectious diseases is almost to write of something that has passed into history.”
Hindsight has not been kind to these proclamations. Despite advances in antibiotics and vaccines, and the successful eradication of smallpox, Homo sapiens is still locked in the same epic battle with viruses and other pathogens that we’ve been fighting since the beginning of our history. When cities first arose, diseases laid them low, a process repeated over and over for millennia. When Europeans colonized the Americas, smallpox followed. When soldiers fought in the first global war, influenza hitched a ride, and found new opportunities in the unprecedented scale of the conflict. Down through the centuries, diseases have always excelled at exploiting flux.
Humanity is now in the midst of its fastest-ever period of change. There were almost 2 billion people alive in 1918; there are now 7.6 billion, and they have migrated rapidly into cities, which since 2008 have been home to more than half of all human beings. In these dense throngs, pathogens can more easily spread and more quickly evolve resistance to drugs. Not coincidentally, the total number of outbreaks per decade has more than tripled since the 1980s.
Globalization compounds the risk: Airplanes now carry almost 10 times as many passengers around the world as they did four decades ago. In the ’80s, HIV showed how potent new diseases can be, by launching a slow-moving pandemic that has since claimed about 35 million lives. In 2003, another newly discovered virus, SARS, spread decidedly more quickly. A Chinese seafood seller hospitalized in Guangzhou passed it to dozens of doctors and nurses, one of whom traveled to Hong Kong for a wedding. In a single night, he infected at least 16 others, who then carried the virus to Canada, Singapore, and Vietnam. Within six months, SARS had reached 29 countries and infected more than 8,000 people. This is a new epoch of disease, when geographic barriers disappear and threats that once would have been local go global.
Last year, with the centennial of the 1918 flu looming, I started looking into whether America is prepared for the next pandemic. I fully expected that the answer would be no. What I found, after talking with dozens of experts, was more complicated—reassuring in some ways, but even more worrying than I’d imagined in others. Certainly, medicine has advanced considerably during the past century. The United States has nationwide vaccination programs, advanced hospitals, the latest diagnostic tests. In the National Institutes of Health, it has the world’s largest biomedical research establishment, and in the CDC, arguably the world’s strongest public-health agency. America is as ready to face down new diseases as any country in the world.
Yet even the U.S. is disturbingly vulnerable—and in some respects is becoming quickly more so. It depends on a just-in-time medical economy, in which stockpiles are limited and even key items are made to order. Most of the intravenous bags used in the country are manufactured in Puerto Rico, so when Hurricane Maria devastated the island last September, the bags fell in short supply. Some hospitals were forced to inject saline with syringes—and so syringe supplies started running low, too. The most common lifesaving drugs all depend on long supply chains that include India and China—chains that would likely break in a severe pandemic. “Each year, the system gets leaner and leaner,” says Michael Osterholm, the director of the Center for Infectious Disease Research and Policy at the University of Minnesota. “It doesn’t take much of a hiccup anymore to challenge it.”
Perhaps most important, the U.S. is prone to the same forgetfulness and shortsightedness that befall all nations, rich and poor—and the myopia has worsened considerably in recent years. Public-health programs are low on money; hospitals are stretched perilously thin; crucial funding is being slashed. And while we tend to think of science when we think of pandemic response, the worse the situation, the more the defense depends on political leadership.
When Ebola flared in 2014, the science-minded President Barack Obama calmly and quickly took the reins. The White House is now home to a president who is neither calm nor science-minded. We should not underestimate what that may mean if risk becomes reality.
Bill Gates, whose foundation has studied pandemic risks closely, is not a man given to alarmism. But when I spoke with him, he described simulations showing that a severe flu pandemic, for instance, could kill more than 33 million people worldwide in just 250 days. That possibility, and the world’s continued inability to adequately prepare for it, is one of the few things that shake Gates’s trademark optimism and challenge his narrative of global progress. “This is a rare case of me being the bearer of bad news,” he told me. “Boy, do we not have our act together.”
Preparing for a pandemic ultimately boils down to real people and tangible things: A busy doctor who raises an eyebrow when a patient presents with an unfamiliar fever. A nurse who takes a travel history. A hospital wing in which patients can be isolated. A warehouse where protective masks are stockpiled. A factory that churns out vaccines. A line on a budget. A vote in Congress. “It’s like a chain—one weak link and the whole thing falls apart,” says Anthony Fauci, the director of the National Institute of Allergy and Infectious Diseases. “You need no weak links.”
Among all known pandemic threats, influenza is widely regarded as the most dangerous. Its various strains are constantly changing, sometimes through subtle mutations in their genes, and sometimes through dramatic reshuffles. Even in non-pandemic years, when new viruses aren’t sweeping the world, the more familiar strains kill up to 500,000 people around the globe. Their ever-changing nature explains why the flu vaccine needs to be updated annually. It’s why a disease that is sometimes little worse than a bad cold can transform into a mass-murdering monster. And it’s why flu is the disease the U.S. has invested the most in tracking. An expansive surveillance network constantly scans for new flu viruses, collating alerts raised by doctors and results from lab tests, and channeling it all to the CDC, the spider at the center of a thrumming worldwide web.
Yet just 10 years ago, the virus that the world is most prepared for caught almost everyone off guard. In the early 2000s, the CDC was focused mostly on Asia, where H5N1—the type of flu deemed most likely to cause the next pandemic—was running wild among poultry and waterfowl. But while experts fretted about H5N1 in birds in the East, new strains of H1N1 were evolving within pigs in the West. One of those swine strains jumped into humans in Mexico, launching outbreaks there and in the U.S. in early 2009. The surveillance web picked it up only in mid-April of that year, when the CDC tested samples from two California children who had recently fallen ill.
One of the most sophisticated disease-detecting networks in the world had been blindsided by a virus that had sprung up in its backyard, circulated for months, and snuck into the country unnoticed. “We joked that the influenza virus is listening in on our conference calls,” says Daniel Jernigan, who directs the CDC’s Influenza Division. “It tends to do whatever we’re least expecting.”
The pandemic caused problems for vaccine manufacturers, too. Most flu vaccines are made by growing viruses in chicken eggs—the same archaic method that’s been used for 70 years. Every strain grows differently, so manufacturers must constantly adjust to each new peculiarity. Creating flu vaccines is an artisanal affair, more like cultivating a crop than making a pharmaceutical. The process works reasonably well for seasonal flu, which arrives on a predictable schedule. It fails miserably for pandemic strains, which do not.
In 2009, the vaccine for the new pandemic strain of H1N1 flu arrived slowly. (Then–CDC director Tom Frieden told the press, “Even if you yell at the eggs, it won’t grow any faster.”) Once the pandemic was officially declared, it took four months before the doses even began to roll out in earnest. By then the disaster was already near its peak. Those doses prevented no more than 500 deaths—the fewest of any flu season in the surrounding 10-year period. Some 12,500 Americans died.
The egg-based system depends on chickens, which are themselves vulnerable to flu. And since viruses can mutate within the eggs, the resulting vaccines don’t always match the strains that are circulating. But vaccine makers have few incentives to use anything else. Switching to a different process would cost billions, and why bother? Flu vaccines are low-margin products, which only about 45 percent of Americans get in a normal year. So when demand soars during a pandemic, the supply is not set to cope.
American hospitals, which often operate unnervingly close to full capacity, likewise struggled with the surge of patients. Pediatric units were hit especially hard by H1N1, and staff became exhausted from continuously caring for sick children. Hospitals almost ran out of the life-support units that sustain people whose lungs and hearts start to fail. The health-care system didn’t break, but it came too close for comfort—especially for what turned out to be a training-wheels pandemic. The 2009 H1N1 strain killed merely 0.03 percent of those it infected; by contrast, the 1918 strain had killed 1 to 3 percent, and the H7N9 strain currently circulating in China has a fatality rate of 40 percent.
“A lot of people said that we dodged a bullet in 2009, but nature just shot us with a BB gun,” says Richard Hatchett, the CEO of the Coalition for Epidemic Preparedness Innovations. Tom Inglesby, a biosecurity expert at the Johns Hopkins Bloomberg School of Public Health, told me that if a 1918-style pandemic hit, his hospital “would need in the realm of seven times as many critical-care beds and four times as many ventilators as we have on hand.”
That the U.S. could be so ill-prepared for flu, of all things, should be deeply concerning. The country has a dedicated surveillance web, antiviral drugs, and an infrastructure for making and deploying flu vaccines. None of that exists for the majority of other emerging infectious diseases.
Anthony Fauci’s office walls are plastered with certificates, magazine articles, and other mementos from his 34-year career as NIAID director, including photos of him with various presidents. In one picture, he stands in the Oval Office with Bill Clinton and Al Gore, pointing to a photo of HIV latching onto a white blood cell. In another, George W. Bush fastens the Presidential Medal of Freedom around his neck. Fauci has counseled every president from Ronald Reagan through Barack Obama about the problem of epidemics, because each of them has needed that counsel. “This transcends administrations,” he tells me.
Reagan and the elder Bush had to face the emergence and proliferation of HIV. Clinton had to deal with the arrival of West Nile virus. Bush the younger had to contend with anthrax and SARS. Barack Obama saw a flu pandemic in his third month in office, MERS and Ebola at the start of his second term, and Zika at the dusk of his presidency. The responses of the presidents varied, Fauci told me: Clinton went on autopilot; the younger Bush made public health part of his legacy, funding an astonishingly successful anti-HIV program; Obama had the keenest intellectual interest in the subject.
And Donald Trump? “I haven’t had any interaction with him yet,” Fauci says. “But in fairness, there hasn’t been a situation.”
There surely will be, though. At some point, a new virus will emerge to test Trump’s mettle. What happens then? He has no background in science or health, and has surrounded himself with little such expertise. The President’s Council of Advisers on Science and Technology, a group of leading scientists who consult on policy matters, is dormant. The Office of Science and Technology Policy, which has advised presidents on everything from epidemics to nuclear disasters since 1976, is diminished. The head of that office typically acts as the president’s chief scientific consigliere, but to date no one has been appointed.
Organizing a federal response to an emerging pandemic is harder than one might think. The largely successful U.S. response to Ebola in 2014 benefited from the special appointment of an “Ebola czar”—Ron Klain—to help coordinate the many agencies that face unclear responsibilities. How will Trump manage such a situation? Back in 2014, he called Obama a “psycho” for not banning flights from Ebola-afflicted countries, even though no direct flights existed, and even though health experts noted that travel restrictions hadn’t helped control SARS or H1N1. Counterintuitively, flight bans increase the odds that outbreaks will spread by driving fearful patients underground, forcing them to seek alternative and even illegal transport routes. They also discourage health workers from helping to contain foreign outbreaks, for fear that they’ll be denied reentry into their home country. Trump clearly felt that such Americans should be denied re-entry. “KEEP THEM OUT OF HERE!” he tweeted, before questioning the evidence that Ebola is not as contagious as is commonly believed.
Trump called Obama “dumb” for deploying the military to countries suffering from the Ebola outbreak, and he now commands that same military. His dislike of outsiders and disdain for diplomacy could lead him to spurn the cooperative, outward-facing strategies that work best to contain emergent pandemics.
Perhaps the two most important things a leader can personally provide in the midst of an epidemic are reliable information and a unifying spirit. In the absence of strong countermeasures, severe outbreaks tear communities apart, forcing people to fear their neighbors; the longest-lasting damage can be psycho-social. Trump’s tendency to tweet rashly, delegitimize legitimate sources of information, and readily buy into conspiracy theories could be disastrous.