12.1 Introduction of the Problem
In this text, we illustrate the process leading from a physical problem to an effective simulation. This process will display to three types of models. The first one, the most simple, will provide the opportunity to familiarise with the model and the existence of solutions to the problem, a second, more complex, will illustrate the necessity of numeric computations and at last we will give a complete formulation. The example we chose is the optimisation of a network of antennas. For the sake of simplification, the antennas taken into consideration will be assimilated to discrete dipolar systems. The goal of this study is to give an algorithm for antennas placement and power regulation. In a first part, we will focus on the modelling of the problem. We will start by setting the problem and choose the notations, and will, then, focus on the modelling of an antenna, explaining the link between the electromagnetic equations and a dipolar antenna. In the second, third and fourth parts, we will treat the three optimisation problems.
12.2 A Network of Antennas: Modelling
The first work to perform in order to model a situation, is to set the problem in mathematical terms. The built model will enable the study and optimisation of the situation parameters. This first milestone of the modelling and simulation process is very important and must be carefully treated. The key of the modelling process is to answer the question: “what do you want to do?”. This question is, not only about what we are modelling but also about what we want to do with this model. Is this work will be exploited in order to forecast the behaviour of a system, to understand and enhance a modelling or to compute specific parameters? In our case, the objective is clear: how to optimise the topology of an antenna network in order to provide a given signal strength on a given territory. The accuracy of the physical hypothesis is not required, then we can simplify the model with the assumption that antennas are dipoles and the signal is not harmonic in time. These antennas, in finite number, are set on a collection of points in space. The set of antennas will induce a resultant power in the whole space, the question we want to tackle here is how to optimise the number of antennas, their position and power to ensure that, in a given part of the space, the resultant power would stay between a minimum and a maximum. The questioning is quite common even if simplified here: how to optimise a network to certify that the power of the signal is sufficient to ensure its good functioning and sufficiently small to guarantee the safety of the system for users?
12.2.1 The Global Problem: Setting of a Mathematical Model
Does solutions exist?
If a solution exists, is this solution unique?
Can we compute explicitly this solution?
12.2.2 Power of an Antenna
There exists φ in , unique up to a constant, such that ∇xϕ is solution of the equation rot xh = 0.
The operator △xis an isomorphism from into where .
Given f in , compactly supported, then div f is an element of .
, where c is the speed of light.
12.3 Two Fixed Antennas and Yet, Problems…
12.4 More Antennas and No Analytic Solving
Problem 1: Fixed number of antennas, fixed powers, the positions vary among a finite predetermined set of positions.
Problem 2: Fixed ground positions of the antennas, but the power and the height of the antennas vary.
Problem 3: Fixed power and heights of the antennas, the number of antennas is fixed and the positions vary freely.
Here, it will not be possible to treat analytically these cases in general case, we must use a powerful tool: the numerical optimisation (see for example [1]). In these three cases, the existence of at least a solution is almost every time guaranteed (classical proof), but not the uniqueness of this solution. In the first case, a systematic exploration of the set of solution may be long but possible. Here is a glimpse for each of these three problems.
12.4.1 Problem 1
It is necessary to be careful as, for this problem, even if you find an algorithm sufficiently fast to performs computations, you do not know if the problem admits a solution; in fact, the constraints may not be fulfilled, in particular the maximum constraint if the power is too high but also the minimum constraint if the power is too low and the assigned position not sufficiently close.
12.4.2 Problem 2
Strangely, this problem is in fact simpler than the previous one. The positions are fixed but power and height of the antennas vary. The existence of a solution, like in the previous problem, is not guaranteed if the network of position is ill-prepared. Here, we can, starting from a well chosen configuration, apply a gradient method adapted to the constraint. Two problems appear: gradient method adapted to the constraint and good starting configuration. Here, the first step is to find a starting position. But, even if we find this kind of position, we are not sure to be able to attain the optimal solution. The projected gradient method will guarantee that the power decreases, respecting the constraints, but this decreases ensures that we arrive in a local minimum which is not necessarily the global minimum. The question is then: if we arrive in a local minimum, do we stop or do we try to find a better one in order to attain the global one. One algorithm is the so called simulated annealing, this method is inspired from the technics of heating and cooling when injecting heat in a system.
The main principle of this algorithm is then the following: a gradient descent algorithm (projected in our case), perturbed regularly in order to push out of possible non optimal minima bowl.
12.4.3 Problem 3
This case is much more difficult than the previous ones, but quite similar to Problem 2. We could see it as a simple adjunction of a third dimension (vertical position of the antenna and height). Here, we can imagine to apply the previously described algorithm.
12.5 A Complex Situation
In fact, modelling of the antennas covering is much more complex and would require the resolution of Maxwell equations in “town” represented by volume with given electric permittivity and magnetic permeability. The models used effectively are combining, in order to accelerate the computation, a ray tracing part, using the classical geometrical light propagation and, when necessary, a complete electromagnetic resolution in order to catch the diffraction phenomena.
12.6 Conclusion
This text is not extensive but gives the tracks in order to treat a simplified version of an important optimisation problem. Nevertheless, in scientific literature, there exists several occurrences treating the wave propagation in complex areas. In particular, the perfect simulation of problem is almost impossible. The propagation of electromagnetic wave using the Maxwell model is highly dependant of the exact geometry and composition obstacles, mobile or fixed, the humidity ratio and many other parameters not manageable exhaustively. In this context, the modelling process describe gives an example of simplification in order to build a manageable problem in finite time. This process is essential and must be carefully documented in order to identify the simplification and prevent errors of interpretations of the results obtained by simulation.
I thank Christophe Picard for his carefully reading this article and his pertinent remarks and propositions.