CHAPTER 3

The House on Porter Drive

In May 1969, about the time Xerox shareholders voted to approve the purchase of SDS, the provost of Washington University in St. Louis was reaching the end of his rope. The academic year just ending had been the most trying of George E. Pake’s career. The 1960s were not easy on anyone in a college administration, but Pake felt that unrest on his own normally placid liberal arts campus had reached a high-water mark during the previous semester. A group of protesting students had occupied the chancellor’s office. Someone tossed a Molotov cocktail into the ROTC Quonset hut and burned it to the ground. Pake spent the year contending with all sorts of reactionary trustees and alumni who, he recalled, “wondered why we didn’t just fire the students and keep the faculty.” As spring drew to a close, he said, “I was a case of battle fatigue.”

In a more peaceful era Pake would have seemed the ideal college administrator. Narrow-shouldered and retiring, he possessed a clipped and slightly distracted manner of speaking that reinforced his donnish air. But this diffidence was deceptive. When the faculty got fractious he could dig in his heels and hold his ground, especially when called upon to uphold his standards of academic propriety. Fairness, he insisted, was the key. No administrator of a large academic institution could possibly know enough to mediate every issue purely on academic or scholastic grounds. The trick in refereeing among powerful faculty with their overdeveloped intellects and underdeveloped social graces was to remain unyieldingly impartial. When all else fails, split everything down the middle.

This was a skill he had tried to hone in the years since he had come to St. Louis from Stanford, where he had held a physics professorship. Washington University had installed a dynamic new chancellor determined to enhance its reputation as a first-class academic institution, and Pake had accepted his call to join the crusade as a senior administrator. At first the change fed his idealism. He imagined himself promoting the social benefits of higher education in ways that would be closed to him if he remained merely a teacher and laboratory researcher. But by the spring of 1969, when he was next in line to succeed that chancellor, he had also become profoundly disillusioned.

“I hadn’t visualized myself as running a command post in a military operation,” he said. “I knew I did not want to be a candidate for chancellor, not to lead that goldfish-bowl kind of life. My wife would have hated it.”

So that fall he returned to teaching. On Thanksgiving weekend, just as he was finally reacclimating to the milieu of classroom and chalkboard, he got a phone call from his old friend Jack Goldman.

“George,” Goldman said, “I got a proposition for you.”

 

Jack Goldman’s relationship with George Pake dated back twenty-five years to when they had worked together on wartime projects at Westinghouse Research Laboratory, Goldman as a senior fellow and Pake as a Westinghouse undergraduate scholar.

After the war Goldman remained in industry while Pake moved on to Harvard for his doctorate. But they kept track of each other’s careers within the insular community of working physicists. Just as he was starting his search for a director for his new research center, Goldman heard that Ford had offered his former job to Pake, and that Pake had turned it down.

Goldman guessed Pake’s reasoning had something to do with Ford’s erratic commitment to basic research. “I figured I could make a better case for Xerox than Ford could make for Ford,” he recalled. After a speaking engagement in Chicago he swung down to St. Louis in Xerox’s new Sabreliner corporate jet (his favorite mode of transportation). “I met Pake at the airport, invited him aboard the company plane, gave him a couple of drinks and proposed that he join up.”

In truth, Goldman’s pitch was more focused than this breezy description suggests. From the airport the two of them repaired to a nearby hotel, where Goldman spent the better part of a day spinning a seductive vision of computer research conducted in a pristine setting with Xerox’s copious cash. “We’re talking real money, George,” he said, showing him the growth plan for a lab that would employ 300 professionals within four years.

Pake hesitated, wondering about Xerox’s resolve over the long haul. “I had a lot of friends at other industrial research establishments and the usual thing they were worried about was the feast-or-famine effect,” he said later. “You know, in the good business years the company invests in research, but in the bad years they want to pull out.” That was a recipe for wasting millions of dollars. “Research is a steady-state thing. You can’t just turn it on and off.”

Goldman tried his best to be reassuring. He reminded Pake that in 1944 the Haloid Company had offered Chester Carlson research support when no other corporation would. Carlson had scarcely anything to demonstrate the potential of his invention other than a tiny scrap of paper on which he had duplicated his own scrawled “10–22–38 Astoria”—the date and place of his first successful xerographic copy. The company that was now Xerox had invested in that improbable invention for fifteen years before the first Model 914 came off the production line in 1959 and made its fortune. Long-range research? Was there an enterprise anywhere in the land that understood it better than Xerox?

“Yes, but it seems to me the corporation has got it backwards,” Pake replied. “If you’re going into the computer business, you should have got the researchers first to help you identify the right corporation to buy.”

“Unfortunately,” Goldman said, “it’s too late for that.”

Pake ended the meeting insisting how deeply he enjoyed the life of a college professor in St. Louis, but he was beginning to crack. Before Jack Goldman reboarded his plane he extracted Pake’s agreement to visit Rochester and Stamford to meet Peter McColough and the chairman, Joe Wilson. If anyone could charm his wavering quarry into joining the company, they could.

 

“When I went back I asked Peter McColough why he wanted to start a new research center,” Pake recalled later. “I said, ‘You’ve got a research center here that has developed xerography. To build a new one you’ll have to have a new research library and new research machine shop and all the other things. Lot of fixed costs you have to duplicate. Wouldn’t it be easier to expand the laboratory in Rochester?’

“McColough turned to me—and I remember this conversation very well, it’s indelible in my memory. He said, ‘George, I think these people here in Rochester have had a heady success with xerography. But I’m not sure they’re adaptable enough to take on new and different technologies. If we’re going to bring new technologies into Xerox it would be better to do it in a whole new setting.’”

McColough’s reply might have come directly from the Jack Goldman playbook. Despite himself, Pake was utterly taken with McColough and Wilson and deeply flattered by their apparent willingness to place him in charge of a multimillion-dollar corporate asset after only one interview, especially since he told them he would expect to be held to a liberal standard of success.

“I said if you hire me you will get nothing of business value in five years,” he recalled. “But if you don’t have something of value in ten years, then you’ll know you’ve hired the wrong guy.”

Pake understood that managing a research center devoted to finding a common ground between his first love, physics, and the intriguing new field of digital computing was a once-in-a-lifetime opportunity. In comparison, the charm of closing out one’s teaching career in the Midwest seemed meager indeed. Just after New Year’s Day 1970, he telephoned Jack Goldman to accept the job.

 

The first order of business was to find a site.

Goldman’s plan to locate the lab in New Haven had collapsed even before Pake came aboard. Yale, as it turned out, was afflicted by a strain of that old malady known as the town-gown syndrome more virulent than Goldman had suspected. The university, it was true, was famous for the snobbery of its faculty, but he was still shocked at its unfriendliness to enterprises located outside the grimy stone campus walls. Faced with the prospect of being shut off from the very resources for which he sought an academic setting in the first place, Goldman decided to look elsewhere.

Several other possibilities were culled early. These included Webster, where Goldman feared his new lab would come under the intellectual domination of the copier bureaucracy still entrenched in Rochester. Also rejected were Princeton; Stony Brook on Long Island, where the State University of New York was building a new campus; and several other East Coast sites that were either too far from an established Xerox facility or lacked the cachet Goldman craved for his would-be Bell Labs.

Pake directed Goldman’s attention westward. Teaching at Stanford in the early 1960s had given him a glimpse of the phenomenon that would shortly make the Santa Clara peninsula famous as “Silicon Valley.” A few weeks after signing on, he proposed that Goldman charter the company plane for a California excursion. Ardent corporate wayfarer that he was, Goldman agreed with alacrity. Soon he and Pake were working their way south from Berkeley to San Diego, stopping at every major university campus in search of the ideal spot.

But at Berkeley there was no available real estate to support a corporate research facility. At Santa Barbara, where a new state university campus was sprouting on the dazzling coastline, there was real estate but no major airport. “Oxnard…dismal,” Pake recalled. “Pasadena…Smog was terrible. Xerox had a division called Electro-Optical Systems there with a fairly big site but it was not something that could interact with Caltech—too industrial. So we didn’t see anything very encouraging.”

That suited his purposes fine. For the whirlwind tour on which he led Goldman was mostly window dressing. Pake’s primary objective was Stanford and its vibrant home town, Palo Alto. Goldman had initially ruled out the site for lack of any nearby Xerox facility, but Pake goaded him to reconsider. He knew from experience that the university was anxious to develop strong relationships with the industrial enterprises springing up like anthills all over the valley. Then there was the salubrious physical and cultural climate—not a trivial consideration if one hoped to attract gifted researchers to an embryonic lab.

As for Goldman’s objection that Palo Alto was too far from any Xerox property, Pake countered with a neat equivocation: Let proximity mean being close enough to reach a Xerox facility in time for lunch. SDS was in Los Angeles, an hour’s flight from the Bay Area. Anyone could leave Palo Alto in the morning, lunch at SDS, and get home in time for dinner. And was not the original rationale for the lab to be SDS’s research support?

“That’s a very interesting thought,” Goldman said, bowing to the inevitable.* In early March, Pake invested his first two staff members, a pair of administrative officials from the Webster research division named Richard E. Jones and M. Frank Squires, with the task of flying to Palo Alto and finding a building suitable to rent.

 

“Nobody at Webster wanted the job,” Rick Jones chuckled, remembering how he became PARC’s first official employee. “I was the administrative manager at research and development in Webster. Everyone else had kids in school in Rochester and I only had a nine-month-old son. I had married a Rochester girl in 1966, but when I said, ‘How about leaving Rochester and moving to California?’ she said, ‘Sure.’” Squires was similarly unencumbered by a growing family, having only recently mustered out of the service, so Jones tapped him as personnel manager.

On their first reconnaissance trip they found that cutbacks in government and military research spending had left plenty of vacant research facilities to choose from. In a couple of days they visited thirteen empty locations before settling on one in a development known as Stanford Industrial Park. This was a compound of one- and two-story buildings occupying a parcel of land the cash-strapped university had decided to lease out to small businesses. It was located just beyond the campus boundary, in a dale surrounded by orchards and horse pastures where the grass had turned brown in the dry peninsular spring. Its main street, Porter Drive, meandered in gentle curves among the squat industrial buildings before disappearing over a low hill.

About halfway down Porter stood a two-building complex that had been vacant since the Encyclopedia Britannica moved out a couple of years before. Facing the street was a cinderblock building windowless on two sides and with a concrete floor sturdy enough to support heavy lab equipment. Behind it was a somewhat larger structure that presented an exterior of floor-to-ceiling plate glass to the bright California sun. Trailing behind the rental agent, they stepped inside, disturbing a layer of dust and filth that seemed to have remained untrammeled since the beginning of time. A musty stench pervaded the air. The floor, littered with pieces of crumbled ceiling tile, traced a large square around an interior courtyard adorned with one lonely olive tree. Squires and Jones contemplated the squalor, which was illuminated by a few dim rays of sunlight straggling in through streaks in the windows. The place needed work. But every other site they inspected would have needed more. And at a total of 25,000 square feet, the two buildings together were the roomiest they had seen. They gave the real estate agent a handshake deal and flew home to Rochester to pack up.

In mid-May Jones returned with his wife and infant son as Pake’s advance guard. He temporarily parked his family a mile or two from the site at Rickey’s Hyatt House, a motel on El Camino Real that would serve as a transitional home for scores of PARC recruits over the next dozen years. After picking up the keys to his new workplace from the rental agent, he headed over to the property. As he coasted up the long driveway he could make out a stranger peering through one of the big windows.

“Can I help you?” Jones asked.

“I must be lost,” the man replied. “Do you know where there’s a Xerox research facility around here?”

“You’re at it,” Jones said.

“Really?” An expression of grave doubt passed over the stranger’s face. He introduced himself as Frank Galeener, a newly graduated Ph.D. from Purdue who had been hired as a materials scientist in the new physics lab.

“Oh, right, I recognize your name,” Jones said. “But you’re not supposed to start for a couple of weeks.”

“No…I was in the area and thought I’d stop by and see what it looked like.” He cast another anxious look through the window at the debris-strewn interior.

“We’re not set up just yet,” Jones hastily reassured him. “But don’t worry. It’s going to be great.”

“Thank goodness,” Galeener said. “For a minute there I thought I’d made a terrible mistake.”

Jones, Squires, and Gloria Warner, a senior secretary who relocated from Webster to work for Pake, spent the next week working like char-women. With brooms, buckets, and mops purchased from the nearest K Mart, they swept up the accumulated filth themselves and installed a rickety table and chairs in the clearing. A day or two later a man showed up from Pacific Bell to install the first telephone and a van arrived from Webster with a load of surplus oscilloscopes and other castoff equipment that Jones had redeemed from the Webster storage sheds. By the time Pake arrived on June 30 a local contractor had been in to fashion a few office cubicles and a large library space out of the bare interior. The next day Xerox’s Palo Alto Research Center officially opened for business at 3180 Porter Drive.

 

Pake had also been busy. While closing out his final semester’s teaching obligations at Washington, he wrestled with the challenge of getting up to speed on the science of digital computing. He felt like an old dog trying to learn new tricks. “I was starting from scratch,” he said. “I had to ask around to find out who are the good people, what are the big issues and so on. But I did worry because I was not a computer scientist.”

He did, however, know one person who boasted a first-rate familiarity with the Young Turks of the new discipline: Bob Taylor.

Pake had met Taylor in 1964, back when Washington University undertook an unusual rescue operation for Wes Clark, the MIT computer pioneer. Among Clark’s idiosyncrasies was a visceral antipathy to the concept of time-sharing. (“I’m one of the oldest continuing floating objectors in the business,” he once told an interviewer.) Time-sharing, he believed, encouraged institutions like universities to lust after grander and costlier machines that were by their nature inefficient for the small-scale work students and professors typically did. Their only virtue was that they could be paid off by overcharging every user for his or her time-slice of the entire behemoth, no matter how much of it the user actually employed. Thus was computing rendered more remote and intimidating than ever—a backwards trend exemplified in Clark’s view by the archetypal system at MIT: “That of a very large International Business Machine in a tightly sealed Computation Center: The computer not as tool, but as demigod.” What Clark found even more troubling was that subdividing the main processor, as time-sharing did, rendered impossible the sort of display-based research that Ivan Sutherland had achieved so spectacularly on the TX-2. No user of a time-shared computer could ever monopolize the processor long enough to drive a coherent visual display as Sutherland had. (Clark allowed the TX-2 to be shared, but only serially—you signed up for a block of time on it, but during that period the entire machine was yours.) Time-sharers were limited to communicating with their machines via teletype, because the sluggish rate at which people typed was what gave the system the necessary opportunities to shift its attention from one customer to another between keystrokes.

Clark thought computer science would be better served by jumping directly to single-user machines, even if that meant temporarily making do with underpowered computers. “He would talk about how it was not going to be too many years before we would have a computer you could hold in your hand,” recalled Severo Ornstein, a PARC engineer who was one of Clark’s longtime associates. “At that time computers were filling buildings larger than this one—a single computer. But he said, ‘Yeah, you’ll just paint ’em on your desk, just like that.’ So a lot of us felt that time-sharing was an enormous waste.”

Starting in 1962 Clark underscored his conviction by designing and building the legendary “LINC.” (Its name stood for “Laboratory Instrument Computer” but echoed the name of its birthplace, MITs Lincoln Lab.) The LINC was unique for its time in that it could be operated by a single user from a desk-sized console, although its processor and memory were housed in a wardrobe-sized unit typically concealed in a nearby closet. Designed specifically to serve biomedical research rather than as a general-purpose machine—which helped keep it compact—the LINC “was the first machine that you could take apart and put in the back of your car, carry somewhere else, put back together again, and it would run,” Ornstein recalled. “That idea had never previously seemed conceivable.”

But the machine was almost too fascinating. It attracted the interest of the National Institutes of Health, which in 1964 offered MIT the unprecedented sum of $37 million to establish around the LINC an inter-university program of computer-aided biomedical research. The scent of money attracted MIT’s academic mandarins to a project they had previously relegated to the fringes of the research departments, which Clark preferred anyway. He did not relish seeing his own program coming under the academic establishment’s thumb. Obstreperous to the last, he flatly refused to cooperate, forcing the exasperated university to abruptly withdraw its support for the entire venture.

For the next few weeks Clark frantically canvassed the country to find a new home for the machine and the dozen junior researchers whose livelihoods and careers depended on it. Washington University, which was trying to build both a medical school and a digital computing program, saw opportunity in MITs pique, not to mention the chance to turn the tables on a big East Coast institution by raiding it for a change. A few days before his scheduled eviction from Lincoln Lab, Clark looked up from his desk. A stranger in spectacles was standing in the office, stammering out a transparent story about “just happening” to be passing through Cambridge en route to an engagement in Woods Hole. It was George Pake, come to check Clark out on the recommendation of a mutual friend. Before returning to St. Louis a few days later, he agreed to give Clark’s project a permanent home at Washington University, where it was to obtain further funding through one Bob Taylor, at ARPA.

Pake and Taylor each came away from this initial interaction favorably disposed toward the other. Pake was impressed by Taylor’s excellent contacts within the computing fraternity and his apparent authority to disburse millions of dollars with a minimum of fuss. (Formally speaking, Taylor was still Ivan Sutherland’s deputy at the time.) Taylor saw Pake as a pragmatic administrator capable of cutting through red tape to assist a program and a researcher he valued highly. They obviously could have had no inkling of how, within a few short years, their lives would intertwine as colleagues and adversaries.

Before the two would have a chance to meet again Taylor’s capacious net would come to embrace areas of computer research that barely existed when ARPA delivered its lifesaving shot to Wes Clark’s project. At ARPA he funded the country’s first full-fledged graduate degree programs in computer science at Stanford, Carnegie-Mellon, and MIT. Some fields of study virtually owed their existence to his largesse. Among them was computer graphics, which came to life at the University of Utah when Dave Evans, a devout Mormon who had led the Genie team building the time-sharing SDS 940 at UC Berkeley, called Taylor to say his alma mater had invited him to return to Salt Lake to start a computer program. How about an ARPA project, he asked, to get it going?

Computer graphics was then attracting almost no one’s attention, for the simple reason that most computers lacked visual displays of any kind. If Evans was willing to start such a program in the backwater of Utah, where it could develop in pristine isolation from the traditionalist thinking elsewhere, Taylor was all for it. The venture turned out better than anyone could have expected. The program Taylor funded partially as a personal experiment and partially as a favor to an old friend evolved into a world leader in computer graphics research.

His most enduring legacy, however, was not a university program but a leap of intuition that tied together everything else he had done. This was the ARPANET, the precursor of today’s Internet.

Taylor’s original model of a nationwide computer network grew out of his observation that time-sharing was starting to promote the formation of a sort of nationwide computing brotherhood (at this time very few members were women). Whether they were at MIT, Stanford, or UCLA, researchers were all looking for answers to the same general questions. “These people began to know one another, share a lot of information, and ask of one another, ‘How do I use this? Where do I find that?’” Taylor recalled. “It was really phenomenal to see this computer become a medium that stimulated the formation of a human community.”

There was still a long way to go before reaching that ideal, however. The community was less like a nation than a swarm of tribal hamlets, often mutually unintelligible or even mutually hostile. Design differences among their machines kept many groups digitally isolated from the others. The risk was that each institution would develop its own unique and insular culture, like related species of birds evolving independently on islands in a vast uncharted sea. Pondering how to bind them into a larger whole, Taylor sought a way for all groups to interact via their computers, each island community enjoying constant access to the others’ machines as though they all lived on one contiguous virtual continent.

This concept would develop into the ARPANET. The idea owed something to Licklider, who had earlier proposed what he dryly called an “intergalactic network” of mainframes. During his time at ARPA the notion remained theoretical, however; it was hard enough to get small-scale time-sharing systems to run individually, much less in concert with one another. But Taylor judged that the technology had now progressed far enough to make the concept practical. He did not deceive himself: Building such a system meant overcoming prodigious obstacles. On the other hand, ARPA’s generous umbrella sheltered hundreds of scientists and engineers whose prodigious talents, he reasoned, were fully up to the challenge.

One day in February 1966 Taylor knocked at the office of ARPA’s director, the Austrian-born physicist Charles Herzfeld, armed with little more than this vague notion of a digital web connecting bands of time-sharers around the country. At any other agency he would have been expected to produce reams of documentation rationalizing the program and projecting its costs out to the next millennium; not ARPA. “I had no formal proposals for the ARPANET,” he recounted later. “I just decided that we were going to build a network that would connect these interactive communities into a larger community in such a way that a user of one community could connect to a distant community as though that user were on his own local system.”

After listening politely for a short time, Herzfeld interrupted Taylor’s rambling presentation. He had followed his young associate’s theoretical research closely enough to know already the gist of his ideas. All he had was a question.

“How much money do you need to get it off the ground?”

“I’d say about a million dollars or so, just to start getting organized.”

“You’ve got it,” Herzfeld said.

“That,” Taylor remembered years later of the meeting at which the Internet was born, “was literally a twenty-minute conversation.”

Actually getting the program underway required some further maneuvering, Taylor-style. His candidate for program manager, a twenty-nine-year-old MIT researcher named Lawrence G. Roberts, refused to leave his secure and intellectually rewarding post at Lincoln Lab despite Taylor’s relentless wheedling. After seven or eight months, Taylor was desperate to resolve the standoff.

“Do we still support fifty-one percent of Lincoln Lab?” he asked Herzfeld, who confirmed the figure. Taylor asked Herzfeld to put in a call to Lincoln’s director. “Tell him that it’s in Lincoln Lab’s and ARPA’s best interests to tell Larry Roberts to come down and do this.” Within two weeks, Roberts accepted a job that would eventually secure him a permanent place in the computing Pantheon, as the Internet’s founding engineer. As Taylor later crowed: “I blackmailed Larry Roberts into fame!”

 

But by 1969 Bob Taylor was feeling burned out. He had spent more than four years at ARPA’s Information Processing Technologies Office, nearly three of those as director. His annual research budget of $30 million had become the single most important force in U.S. computer research. But the research agency was changing around him. The inescapable catalyst was Vietnam.

In 1967 the war had reached into the comfortable civilian enclosure of ARPA and touched Taylor personally. The Johnson White House had appealed for help with a logistical nightmare that had nothing to do with materiel or troop deployment. The issue was information. The Vietnam military command, it seemed, had got itself bogged down in a statistical quagmire. “There were discrepancies in the reporting coming back from Vietnam to the White House about enemy killed, supplies captured, bullets on hand, logistics reports of various kinds,” Taylor recalled. “The Army had one reporting system; the Navy had another; the Marine Corps had another.”

Unsurprisingly, this system produced ludicrous results. Estimates of enemy casualties exceeded the known population of North Vietnam, while the reported quantities of captured sugar reached levels equivalent to three-quarters of the world supply. “It was ridiculous. Out of frustration the White House turned to the Secretary of Defense to clean this mess up. The Secretary of Defense turned to ARPA, because ARPA was a quick-response kind of agency. The director of ARPA asked me to go out to Vietnam and see whether or not any kind of computer technology could bring at least some semblance of agreement, if not sanity, to this whole process.”

Joined by his assistant, Barry Wessler, and three Pentagon-based representatives from the Army, Navy, and Air Force, Taylor made several trips to the war zone. The situation was even worse than he expected. The military was literally drowning in information. Data flowed into depots and never flowed out. Pilots returning from missions would get debriefed their reports entered on punch cards; then their co-pilots would get debriefed and their reports recorded. But no one did anything with the information, which piled up without anyone bothering to figure out how or even why these reports should be collated and organized.

Taylor assigned technical teams to the trouble spots to straighten out the chaos, although not without meeting resistance. Occasionally some base commander would refuse to grant ARPA’s civilian analysts access to his precious cache of useless data, at which point Taylor, who traveled on government business as a one-star general, would be forced to step in and pull rank.

Taylor and his group solved the military’s problem, after a fashion. They installed a master computer at the U.S. military command headquarters at Ton Son Nhut Air Base and made it the lone repository of all data. “After that the White House got a single report rather than several,” Taylor remarked. “Whether the data were any more correct or not I don’t know, but at least it was more consistent.”

But the experience left him feeling increasingly uneasy about his role at the Pentagon. “My first trip out to Vietnam I was thinking, ‘Well, we’re doing a good thing for these oppressed people. We’re out here to clean this mess up.’ But by the second or third trip I realized this is a civil war and I didn’t want to have much to do with it. Nor did I think my country should have anything to do with it.”*

Adding to his frustration was the war’s increasing toll on ARPA. For most of the decade the agency’s civilian character had insulated it from the deepening rifts within the military establishment. But as the war encroached more and more, the agency had to fight for resources. By the close of the 1960s the Pentagon had slashed ARPA’s budget to half of what it had been at mid-decade.

The agency faced mounting political troubles, too. The notion that any arm of the Pentagon could engage in wholly innocent and purely civilian research incited mistrust across the country. As a defensive measure, ARPA started to shed its civilian entanglements and consciously remake itself into what the nation thought it was anyway—an arm of the war machine. When the Caltech engineer Eberhardt Rechtin succeeded Herzfeld as director in 1967, he assured his congressional overseers he would nudge ARPA toward “mission-oriented” objectives—programs aimed at satisfying chiefly military goals. The 1969 Mansfield Amendment to the military appropriations bill would formalize the trend, directing the Pentagon henceforth to fund only projects of obvious military relevance. As if to underscore the point, the amendment changed ARPA’s name to DARPA, the Defense Advanced Research Projects Agency.

Taylor beheld the emasculation of government research with frank alarm. “Most of the time I was there ARPA was going for projects with an order-of-magnitude impact on the state of the science,” he reflected. “We had made a decision that we would not go for incremental things. But as soon as you get mission orientation you’re focusing on very narrow objectives.”

He felt it was the right time to leave. He had held his job longer than both his predecessors combined. The ARPANET was securely launched under Larry Roberts’s unwavering eye, In September the network’s first four nodes—at UCLA, Stanford Research Institute, the University of California at Santa Barbara, and the University of Utah—went operational. Taylor accepted an invitation from Dave Evans to help Utah undertake a research coordination effort of conveniently vague scope. In late 1969 he left Washington for good and headed for Salt Lake City. He was still there a year later when George Pake tracked him down.

“I heard through the grapevine that he wasn’t altogether happy at Utah,” Pake recalled. This was certainly the prevailing opinion among Taylor’s friends, who found it hard to imagine him careening through the stolid precincts of Salt Lake in his blue Corvette. On campus his recommendations to cancel some programs and merge others together caused, he freely admitted, “some dissatisfaction.” Clearly Dave Evans had done him a favor by facilitating his departure from Washington. But beyond that, Bob Taylor was marking time.

Pake’s purpose in inviting Taylor to Palo Alto was to pick his brains rather than offer him a job (although he did not rule out the latter possibility). He had been unable to solve his most pressing administrative problem: identifying the best researchers in the computing field. It was one thing to compile a list of the country’s best computer science programs—the same few names kept coming up, including Berkeley, MIT, Carnegie-Mellon, and Stanford—but quite another to appraise the individual talents within, or to know which projects pointed toward progress and which were intellectual cul-de-sacs. Pake recognized that Taylor’s job for five productive years had involved making exactly those sorts of judgments.

A few days later Taylor was ushered into Pake’s office on Porter Drive. There were two men in the room other than his host—Frank Squires, the personnel chief, and Bill Gunning, a pleasant and unassuming engineer with twenty years’ experience in analog and digital electronics who had been appointed manager of PARC’s Systems Science Lab.

“They sat me down and Pake said, ‘We bought a computer company,’” Taylor recalled. “I said, ‘Yeah, that’s too bad. You bought the wrong one.’ I told them that SDS wasn’t interested in interactive computing, and that’s what I’d be doing.” Without humility he proceeded to summarize how he believed SDS and Max Palevsky had gone astray, the memory of his bitter encounter with the computer magnate (then still a Xerox director) apparently still fresh. As his hosts listened patiently, he outlined his vision of a future in which interactive computers harnessed to nationwide networks enhanced the communication of human to human.

Pake, for one, took his caustic critique of SDS in stride. He had already encountered the people in El Segundo and largely agreed with Taylor’s assessment. The lecture on distributed personal computing was a different matter. No one in the room valued Bob Taylor as an important theoretician and his digression elicited only their mental shrugs. “We were interested in him not because of any vision he had of distributed computing,” recalled Squires, “but because of the people he knew—and that meant every significant computer scientist in the United States.”

When the meeting ended they were sure they needed him on board. He was equally certain his plain talk had ensured he would never hear from them again. “I left thinking, ‘I don’t want them and they don’t want me,’” he said. Therefore he was all the more surprised when Pake called him a few days later in Salt Lake.

“I want you to come help build the computer lab,” he said.

Pake’s offer sounded straightforward enough, but there were oddly ambivalent feelings on both sides. Taylor understood that the titular head of the PARC computer lab would have to spend most of his time “attending to matters with corporate types and educating Pake,” rather than directly supervising research. This was a job he considered out of his competence and disinclined to learn. Fortunately enough, it was not exactly what Pake had in mind, either.

The job, he told Taylor, would involve recruiting an entire laboratory staff—including his own boss. Taylor would be hired in an associate management position, but Pake took pains to warn him that on paper he was underqualified even for that and would have to prove himself before advancing.

“I didn’t exactly say to him, ‘You don’t have the right research credentials for the job I’m about to offer you,’” Pake recalled. “What I did say was: ‘Bob, it seems to me that what you need to do is to develop real research credentials if you want to go on. Why don’t you come into this laboratory as associate manager and help me recruit its manager, your boss, and undertake a research program that would develop these credentials for you?’”

What he meant, of course, was chiefly that Taylor lacked a respectable Ph.D. In Pake’s hard science universe, where researchers laid their bricks upon foundations that had been built as long as three centuries earlier, a doctorate was a certificate of genuine originality and achievement. That was not true in the fledgling science of computing, which was erecting its own academic foundation as it went along. Nor did Pake’s viewpoint apply very well to Taylor’s unique abilities as a master motivator of top research talent, which could never be encompassed within the rubric of any advanced university degree. In the coming years this absurd yet unspoken issue of Taylor’s nonexistent Ph.D. would help poison the two men’s relationship. It would never cease to color Pake’s assessment of Taylor’s abilities, which only added to Taylor’s belligerence toward the Ph.D.-laden physicists who he viewed as sucking down half of the PARC budget as members of the “General Science Lab.” He was determined to prove that his ragtag bunch of engineering gunslingers could out-research any credentialed physicist in town, and he would never let an opportunity pass without reiterating the challenge.

For the moment, however, enraptured by the chance to finally realize his own vision of computing with a hand-picked team, he tried to ignore Pake’s condescension. He and his protégés had encountered these quaint prejudices of “hard science” bureaucrats on every university campus. All he asked to be spelled out was Pake’s understanding that Xerox’s cherished “office of the future” would embrace networking and interactive computers. Pake agreed without devoting much thought to what those terms implied.

Shortly after arriving in Palo Alto to take up his new responsibilities, Taylor found a more direct way to explain himself. Walking down the hall one day he noticed Pake’s secretary, Gloria Warner, showing off her new IBM Selectric typewriter. With its distinctive golf ball-shaped striking mechanism, this machine was the most elegant and popular piece of office equipment of the time. Taylor stepped up and tapped it with his finger.

“You know,” he said, “we’re going to make this thing obsolete.”

 

* He also acceded to Pake’s repudiation of the designation “Advanced Scientific and Systems Lab,” the name the lab bore in Goldman’s original proposal, in favor of the bucolic-sounding “PARC.” As Goldman acknowledged later, “The acronym of the former would have invited ridicule.”

 

* Perhaps he was also put off by the effect American morals and money were having on the bucolic country. Wessler recalled an incident one evening when he and Taylor were being relentlessly importuned by two Vietnamese prostitutes at the bar of their Saigon hotel. One pressed herself with particular vigor on Taylor, who kept turning her away with the excuse, that as a mere government employee he could never meet her price. As the two men were leaving, the second prostitute stopped Wessler. “My friend would like to sleep with your friend,” she said. “Would you please arrange it?” Wessler solemnly shook his head. “I do a lot of things for Bob Taylor,” he replied. “But I don’t do that.”