CHAPTER 4

Utopia

David Biegelsen’s first impression of PARC almost made him sick to his stomach.

A freshly minted physics Ph.D. from Washington University, Biegelsen had been personally recruited by George Pake in March 1970, when the Porter Drive building was still a littered and empty shell. It had been cleaned up but not filled up by September, when he and his wife arrived to lay eyes on California for the first time. The remodelers had been in, partitioning off the space in the big building so that both sides of the square corridor were lined with (mostly vacant) offices, but the first thing Biegelsen noticed when he walked into the building was its sunlit interior courtyard.

“The atrium had an olive tree in it and not much else,” he remembered. “But the ground underneath was just covered with olives. I thought, ‘Wow, this is California, the food is just lying there on the ground!’ I picked one up and put it in my mouth and just about died from the acidity in it. Later I spent hours in the library trying to find out how to cure the things.”

That was a fair enough introduction to the virtues and challenges of this mysterious place, so new that everyone’s first task was deciding what to do with their freedom. For Biegelsen there was a bittersweet and slightly frightening aspect to the empty offices and the clean slate. It was the trepidation sensed by any pioneer in the split second before he takes his very first step into the unknown.

“Here I was fresh out of graduate school and I didn’t have the vaguest idea of what I was to do. I was groping through the insecurity of trying to find something really worthy of this job. But the area was so beautiful, so lush and green, and there was this mixture of wonderful good luck of this really great job and the need to make something happen.”

Over the next few months the arrival of more young scientists like himself lent the glass-walled building on Porter a deceptively bustling air. In fact, the staffing proceeded slowly, by design. Although the announcement of PARC’s founding had brought in more than 900 resumes in the first few weeks, Pake and Squires took their time making offers. Government funding cuts and the dire economics of the aerospace and defense industries, they figured, were sure to produce a robust supply of gifted candidates. Pake was especially cautious, his ambitions fixed on assembling a cadre of exceptional scientists capable of winning Xerox a Nobel Prize, as Bell Labs had already won two for AT&T.* At its six-month anniversary on New Year’s Day 1971, PARC’s staff, including administrators and secretaries, still numbered only twenty-three.

The languid pace of recruitment left plenty of time for the ceremonies that often accompany the launch of new corporate ventures. PARC was formally dedicated at a dinner in October by none other than Peter McColough, who happened to be in California peddling an issue of Xerox bonds to West Coast investors.

Pake was delighted to show off his fledgling research center and its minuscule staff. Jack Goldman flew in for the occasion and invitations were dispatched to such Silicon Valley luminaries as Bill Hewlett, the co-founder of Hewlett-Packard, and Stanford President Richard Lyman. Rick Jones ordered a catered dinner and rented extra tables and chairs. Then a freak heat wave struck and the temperature settled at a humid 95 degrees.

This meant trouble. The one system not yet operational on Porter Drive was the air conditioning. Envisioning a hundred guests dozing through the ritual speeches and keeling over into their fancy hors d’oeuvres, Jones hastily equipped a couple of workmen with ladders and water hoses and instructed them to cool off the roof while he sped down to San Jose to rent a few big floor fans.

By the time the guests arrived that evening, the building was cool enough for Silicon Valley’s founding generation of high-tech entrepreneurs to mingle comfortably with the freshman class of PARC scientists in the harmony of shared knowledge and ambition. But as the guests moved to the buffet, something made Jones glance up at the ceiling, where a dark stain was spreading among the tiles directly over the buffet table. “My God,” he said to himself, “they forgot to turn off the hoses!” He bolted upstairs to stanch the flow of water while several intrepid guests bore the tables, laden with expensive delicacies, to safety—just before the compromised ceiling started to drip.

Finally the groaning boards were relocated under a dry area and, disaster averted, Goldman and Pake made their welcoming speeches. A beaming Peter McColough basked in his newfound reputation as an enlightened technological leader. For the rest of his administration he would think fondly of PARC as one of his finest achievements and Xerox’s crown jewel. It was not an opinion all his successors would share.

 

By the end of 1970, long before PARC reached its full complement of staff, Pake established its long-term organizational structure by subdividing the center into three distinct units. The Computer Science Laboratory had Taylor as acting manager over five scientists, including Jim Curry and Robert Flegal, a pair of graphics specialists he brought along from Utah. The Systems Science Laboratory (SSL), also with five professionals, had been placed temporarily under the management of a reluctant Bill Gunning, who had accepted the job as a stopgap but was anxious to return to hands-on research (a more willing research manager would not be recruited for another two years). The third leg of the structure was the General Science Lab (GSL), the solid-state physics branch nominally headed by Pake. GSL employed four scientists, one of whom, an ex-Webster physicist named Gerald Lucovsky, served under Pake as GSL’s associate manager.

This structure mirrored Pake’s determination to set the new science of computing and the classical science of physics on equal footings, which he believed would encourage the two sides to intermingle. Even if this dream would never be realized, the optimistic structure endured through the next decade with only minor changes, as when Pake severed the Optical Science Lab from SSL to give its work on laser printing and optical memory technology greater status.

Pake also established by the close of 1970 a full research agenda. In a corporate memo dated January 4, 1971, he outlined an ambitious program for his group of twenty-three, augmented by another eight or ten professionals due to start work over the following few months. The Systems Science Lab was to take over development of a laser-driven computer printer whose inventor, a Webster engineer, had come west after failing to interest his bosses in its potential. SSL researchers would also investigate optical memories, a technology that would eventually give rise to today’s compact disc and CD-ROM, and speech recognition by computer. Taylor’s Computer Science Lab was to pursue his pet interest in graphics while developing specifications for a basic center-wide computer system. And GSL was assigned studies in solid-state technologies, including the electrical and optical qualities of crystals.

Pake warned his superiors that under the projected growth curve the Porter Drive complex, which at the time housed everyone comfortably, would certainly burst its seams by the close of 1971. He was too upbeat. In the first weeks of the year Xerox headquarters knocked the staffing projections flat by imposing a company-wide hiring freeze.

Xerox at that moment was a company in siege mode. Its pattern of consistently rising earnings, virtually unbroken since the introduction of the 914, was cracking. The year just ended had brought a general economic slowdown and, consequently, cutbacks in capital spending by its biggest customers. More troubling, 1970 had also marked the end of Xerox’s monopoly over the copier market. In April IBM had brought out its first office copier. It was a slow, clunky machine that could scarcely match the Xerox line for speed and reliability. But with one of the great names of American industrial muscle behind it, the new entry cast a very menacing shadow.

Meanwhile, Xerox’s patent was about to expire on its selenium-alloy photoreceptor, the material that lined a revolving drum inside every copier. The selenium was a critical element of xerography. Its electrostatic charge was neutralized by light and preserved by shadow in a way that mirrored the image of a page to be copied. Particles of toner stuck to the charged regions of the drum, which corresponded to dark marks on the original, and could then be transferred to a fresh page to reproduce the image. Although numerous other parts of the process—notably the composition of the toner itself—were still protected by patents or by corporate secrecy, the expiration of the selenium patent demolished one key barrier preventing interlopers from playing in Xerox’s private preserve. IBM used a different process, but others were sure to take advantage of this technological bonus. Eastman Kodak, the company’s Rochester-based big brother, was already known to be working on a rival machine. More ominously, halfway around the world, teams of American, German, and Japanese engineers were developing a small tabletop copier, ultimately to be marketed in the United States as the Savin 750. By offering high-speed office duplication to the millions of mid-sized and small customers Xerox had always ignored, the Savin would threaten the company’s very survival.

These events kicked off what corporate historians dubbed Xerox’s “lost decade.” The 1970s, a period of conspicuous creativity at PARC, would be better remembered at headquarters as an era of shriveling market share, financial stagnation, and unceasing litigation over patent and antitrust claims. Presaging the coming storm, the company had missed its revenue and profit targets for November and December 1970. The panicked Stamford headquarters, no longer under the control of the engineers and sales executives of Joe Wilson’s era but of accountants and financial engineers, moved rapidly to rein in spending.

The danger to PARC in this period was even graver than a simple hold on new hiring. Few of its tiny staff ever knew how close the research center came to being exterminated before it even reached puberty. For among the cost-cutting steps the finance-minded executives proposed to the board of directors was the closure or sale of the new Palo Alto facility. There did not seem to be anything to lose or much point in carrying on: The fixed investment was still negligible; the buildings leased; the value to Xerox still conjectural. (Had not Pake warned them not to expect a return for at least five years?)

But at the last minute one director stood up to interpose his incontestable authority before the hangman. John Bardeen was a towering figure of scientific research, perhaps the most accomplished engineer of his time. In 1971 he already had one Nobel Prize under his belt, for co-inventing the transistor at Bell Labs with William Brittain and William Schockley. (Another would follow in 1972, for his contributions to the theory of superconductivity.)

Bardeen crisply informed his fellow directors of his opinion that divesting PARC would be an irresponsibly shortsighted act. Its budget was $1.7 million, barely a flyspeck on the bottom line. By contrast, its potential was limitless. “This is the most promising thing you’ve got,” he said (as Jack Goldman, also a board member, nodded silent and relieved assent). “Keep it!” The center was saved.

While that small drama played itself out in Stamford, PARC’s first few recruits got to know each other amid rented furniture and vacant offices. In time the administrative divisions Pake established would congeal into battle lines of contentious perspectives and personalities, but that was still far in the future. “We were all intermingled with each other, so it wasn’t as if one group was in one part of a building and the systems people were in another part and the computer people were in another part,” recalled David Thornburg, who slid in just under the wire of the hiring freeze and arrived for work shortly after New Year’s Day as employee number twenty-five. “We were a small enough group so everyone knew everyone else.”

For a glittering instant it seemed as though PARC might fulfill Pake’s dream of a utopia where physicists and computer scientists communed in quest of a common science. They mixed freely in PARC’s small yet somehow all-encompassing world, a place full of possibilities and mysterious conjunctions. Thornburg was still unpacking his things on his very first day when Biegelsen, who on the strength of his three months’ tenure already ranked as a seasoned PARC veteran, showed up at his office door.

“I just came to introduce you to your next-door neighbor,” Biegelsen said, leading Thornburg into the adjoining warren. “This is George. I thought you guys should get together because you shared a similar research interest in grad school.”

Thornburg was perplexed. He understood George to be working on speech recognition and he had come in as a thin-film metallurgist.

“Really?” the neighbor asked. “What did you do you work in?”

That was all the voluble Thornburg needed to set off on a thorough explication of his doctoral career, not excepting the time he had to change themes in midcourse thanks to the preemptive publication of a thesis on the same subject by a guy from Oregon named George White.

“I’m pleased to meet you,” his neighbor said, smiling. “I’m George White.”

What particularly delighted the new staff was the atmosphere of determined informality and lack of pretension. That PARC seemed more like a university department than a corporate research facility was unsurprising, given that most of the staff were being exposed to the nonacademic world virtually for the first time in their lives. Since all but two of the principal scientists (John Urbach, an optical expert from Webster, and Lucovsky) were newcomers to Xerox, Pake and Jones took to sending them on field trips to Rochester, Webster, El Segundo, and the Electro-Optical Systems division in Pasadena, just to give them some feeling for the corporate culture. But the center of their existence remained the two buildings on Porter Drive.

“We would get together once a week and just sort of share what was going on in the lab,” Thornburg recalled. “It became almost a quasisocial event.” PARC was so new that no one had been issued security badges or company identification. With scant equipment of any value on the premises, the building stayed unlocked and hospitable to outsiders. “We were physically adjacent to Stanford University, so there were visitors dropping in and out of the lab all the time. A lot of us even came to feel we were sort of like university instructors who got to spend all our time doing research without having to teach classes. So we operated as though this were an open environment where we were free to share what we were doing with anyone we wanted to.”

Or occasionally too free. One morning in early 1971 the weekly meeting was addressed by Jack Goldman, who was in the habit of paying frequent visits to his new incubator. Goldman’s talk—perhaps inspired by PARC’s recent close call—had to do with the need to start generating formal reports and white papers to reassure Stamford that the money being spent out west was buying genuine intellectual achievement.

Someone Thornburg did not recognize interrupted Goldman with a suggestion. “He said, ‘Well, if you ask me, Jack’—the rest of us never called him anything but ‘Dr. Goldman’—‘If you ask me, Jack, what we should do is build a computer-based query system where we can tag the different levels of the report, so somebody who just wants an executive summary could get that and someone who wants more could get the full report.’ He was basically talking about a hypertext-like environment. We were all sitting there thinking this is pretty good stuff, and Goldman was up front, chomping on his cigar, saying ‘Yeah, that’s a good idea.’”

The moment the meeting broke up Thornburg saw his friend Bob Bauer shoot out into the hallway. Curious, he followed, and finally found Bauer leaned up against a wall, laughing so hard he could hardly catch his breath.

“What’s so funny?” Thornburg asked.

“You know that guy who said, ‘Well, if you ask me, Jack?’”

“Yeah, who is he?”

“He doesn’t work here,” Bauer said. “He just came over from Stanford to have lunch with somebody in computer science. They said, ‘We got a meeting, stick around,’ so he followed them in. Goldman is probably going to want to give him a bonus or something, and the guy doesn’t even work for Xerox!”

But the paradise of collegiality was more mythical than real, or at least it was destined to be short-lived. Jack Goldman had not acceded to Pake’s desire to have physicists and other traditional scientists on the premises because he subscribed to any notion of marrying the old science to the new. Instead he saw it as a way to rapidly ramp up PARC’s head count by kidnapping available talent from Webster while recruiting the computer and systems experts he was counting on to make PARC’s reputation.

“The idea was that when you brought new people in you wanted them to have someone to talk to,” Goldman said. “So we sort of seeded the two scientific departments”—that is, physics and optics—“with people from the company, a few of the shining lights from Rochester who were desirous of moving. They were very good guys and I suffered a certain amount of criticism for taking them away from Webster and essentially lowering the average IQ of the Webster group.” But he sensed that the physicists and computer scientists would end up in a profound philosophical and scientific tug of war. If Pake believed he could paper over such an elemental conflict, Goldman thought, he was mistaken.

 

The hiring freeze ended after a couple of months. In that period the downsizing in the research industries had sharply intensified, in part because the Mansfield Amendment restricting Pentagon spending to specifically military research had begun to bite nationwide. Pake and Squires resumed recruiting with the same cautious deliberation as before.

In a superb buyers’ market for research and engineering talent, PARC’s lavish budget and open-ended charter stood alone among corporate entities. Other industrial research centers might enjoy generous funding or comparably liberal charters, but none had both the open checkbook and apparent immunity from product development pressures enjoyed by PARC. From the point of view of the nation’s outstanding computer research scientists, Xerox—outside of a handful of top universities—was the only game in town. “All the super-bright guys who had swell ideas were tickled pink to go work for George Pake and Jack Goldman,” recalled George M. White, the research executive on Goldman’s staff.* “Nobody was going to float money and start a company for them, like they would today. At PARC they could get a good budget and a good lab and independence, all of which Pake and Goldman provided.”

Adding to PARC’s charm was its premium pay scale. This was partially the result of shrewd entreaties to corporate management by Pake, who feared that Xerox policy requiring PARC’s salary scale to match Webster’s, dollar for dollar, would allow the most prestigious universities to outbid PARC for the best talent.

Pake urged Jack Goldman to secure PARC a dispensation on the grounds that computer scientists were a different breed from the physicists and chemists of Webster. For one thing they were comparatively scarce. In 1970 a mere handful of academic institutions offered graduate programs in computer science. The congressional restrictions on ARPA grants foretold that the number would stay small and the inventory of first-class graduates thin. At length Goldman secured a differential for computer science Ph.D.s of 15 to 20 percent over Webster scale. That helped PARC secure the best recruits, but had the predictable side effect of generating resentment among the General Science Lab’s physicists and optical scientists, who were excluded.

Henceforth PARC could offer people with advanced computer science degrees or working experience in the field starting salaries between $30,000 and $35,000—excellent pay for Ph.D.s at the time, although the range remained wide and often depended on a recruit’s worldliness and bargaining skills. Some from Stanford University, which was known for its stinginess with salaried professionals, got low-balled. One recalled accepting a full-time PARC salary of $24,000, which was at the low end of pay for principal researchers in the computer lab but a big step up from the $16,000 he had earned at the Stanford Artificial Intelligence Lab.

As though to foreshadow the shoals ahead, it was Taylor’s pay that caused Pake the biggest headache. Despite his lack of formal credentials Pake had rostered him on the payroll as associate manager of the Computer Science Lab and, more formally, as area manager of computer graphics within CSL. The starting salary for an area manager in PARC’s order of battle was $44,000, off the scale for a non-Ph.D. anywhere at Xerox. “I had to fight with Goldman and he had to fight with headquarters to get that, because Taylor had only a master’s degree in psychology and it didn’t look right,” Pake said. “Of course, I could understand the bureaucratic problems with that myself.”

It was not only Taylor’s lack of credentials that made his salary a sore point. Within months of his arrival at PARC his personality started to grate on the other lab managers, who understandably took exception to his attitude that PARC’s sole raison d’être was to pursue computer research and that anything spent on the hard sciences was by definition money down a rathole.

A man who would never tolerate personal attacks at his ARPA conferences, Taylor seemed to tack treacherously close to the ad hominem at PARC management meetings. The other lab managers were particularly appalled by his treatment of Gunning, a warm and charming individual who had spent almost as many years in the electronics industry as Taylor had spent on Earth. “He treated Gunning with the utmost condescension,” Jones recalled. “It really created a lot of strife. Bill would say something and Bob would come out with, ‘That’s stupid!’ or, ‘I’m just wasting my time in here!’ It was very unprofessional, and not at all the general atmosphere everyone was used to.”

Before the year was out a delegation of several middle managers marched into Pake’s office to demand Taylor be fired for his behavior. On this occasion, Pake demurred. He was no more charmed by Taylor than they, but he was more acutely aware of the man’s uncommon value to the organization. The Taylor who had spun a web of carefully nurtured loyalties among the nation’s best young computer researchers seemed an entirely different character from the one who so charmlessly provoked his peers and superiors. The bottom line was that no one could match his ability to lure research talent to PARC; virtually everyone hired thus far into the Computer Science Lab was someone who knew and respected him personally. Pake felt there were many more gifted scientists yet to be snagged.

He was right about that. Toward the end of 1970 Taylor called in some of his old chits to stage a pair of dazzling heists.

The first was a raid on the only laboratory on the West Coast—possibly the country—whose work on interactive computing met his stern standards. The lab belonged to the legendary engineer Douglas C. Engelbart, an adamantine visionary who held court out of a small think tank called SRI, or the Stanford Research Institute, a couple of miles north of Palo Alto in the community of Menlo Park.

There Engelbart had established his “Augmentation Research Center.” The name derived from his conviction that the computer was not only capable of assisting the human thought process, but reinventing it on a higher plane. The “augmentation of human intellect,” as he defined it, meant that the computer’s ability to store, classify, and retrieve information would someday alter the very way people thought, wrote, and figured.

Engelbart’s vision refined and expanded a concept memorably set forth by Dr. Vannevar Bush, an MIT engineering dean and wartime science advisor to Franklin D. Roosevelt. In 1945 Bush had turned his attention to the scientific advances produced in the name of war and to how they might serve the peace. The result was a small masterpiece of scientific augury entitled “As We May Think,” which appeared in the July 1945 issue of The Atlantic Monthly.

“As We May Think” remains one of the few genuinely seminal documents of the computer age. Even today it stands out as a work of meticulous scientific and social analysis. The contemporary reader is struck by its pragmatism and farsightedness, expressed without a hint of platitude or utopianism, those common afflictions of writing about the future. Bush was not interested in drawing magical pictures in the air; he was busy scrutinizing the new technologies of the postwar world to see how they might relieve society’s pressing burdens.

His essay dealt chiefly with technology’s ability to manage information. Bush discerned the birth of what would come to be called the “information glut” and projected it forward to a cacophonous posterity. “Publication has been extended far beyond our present ability to make real use of the record,” he wrote. “The summation of human experience is being expanded at a prodigious rate, and the means we use for threading through the consequent maze to the momentarily important item is the same as was used in the days of square-rigged ships.”

Himself the inventor of a successful analog computer, Bush understood that computer technology might help society draw sense out of the chaos. He sketched out something called the “memex,” which he described as “a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility.” The mechanism of consultation would be “associative indexing…whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the memex.”

Doug Engelbart first encountered Bush’s memex in a magazine article he found in an a Red Cross library in Manila, where he was awaiting transport home from his World War II service. He succumbed to the author’s vision of a world of interlinked data as though to a sorcerer’s spell. By the time he left Berkeley a few years later with a Ph.D. in engineering, he had decided that his mission in life would be, in effect, to turn the memex into reality.

In the event, he went far beyond anything Bush himself had imagined. At SRI he propagated from Bush’s rough blueprint a full-blown system of interactive hardware and software aimed at managing, manipulating, and communicating text and video images. The achievement was all the more remarkable given that it involved an uphill battle against nearly universal skepticism. More than once Engelbart’s thinly financed project narrowly eluded extermination. Gradually, however, he acquired a sizable coterie of young engineers and scientists who felt their lives altered by their first meetings with the charismatic Doug Engelbart and who regarded his vision with an almost religious awe. “He not only made sense,” recalled Bill Duvall, one of the early disciples. “It was like someone turning on a light. Love at first sight is perhaps the wrong term to use, but it was as close to that as you can get.”

One other individual entranced by Engelbart’s work was Bob Taylor. At NASA in 1963 Taylor had saved Engelbart’s lab by scrounging enough money to overcome a budget crisis. After moving on to ARPA he turned the trickle of funding into a flood. By the end of the decade the Augmentation Research Center, fueled by ARPA’s half-million-dollar annual grant and occupying one entire wing of SRI’s Menlo Park headquarters, reigned as the think tank’s dominant research program.

What it produced was nothing short of astonishing. Obsessed with developing new ways for man and computer to interact, Engelbart linked video terminals to mainframes by cable and communicated with the machines via televised images. To allow the user to move the insertion point, or cursor, from place to place in a block of text instantaneously, he outfitted a hollowed-out block of wood with two small wheels fixed at right angles so it could be rolled smoothly over a flat surface. The wheels communicated their motion to potentiometers whose signals in turn were translated by the computer into the placement of the cursor on the screen. From this crude device would spring an entire culture. “No one is quite sure why it got named a ‘mouse,’” Engelbart said years later. “None of us thought that the name would have stayed with it, out in the world.” The entire interactive system—mouse, screen, computer, software, and underlying philosophy—was known by the acronym “NLS,” for “oNLine System.”

Until 1968 Engelbart and his aides labored in relative obscurity, their work known only within the insular fraternity of government grant-makers and computer theorists. That year he requested ninety minutes to demonstrate NLS at the Fall Joint Computer Conference of two leading engineering societies, scheduled for San Francisco in December. The result was one of the most famous events in computing history.

The mouse, making its first public appearance, was the least of it. Engelbart and his sixteen assistants stretched existing electronic technology nearly to the breaking point. He recalled later: “We built special electronics that picked up the control inputs from my mouse, keyset, and keyboard and piped them down to SRI [that is, Stanford Research Institute] over a telephone hookup. We leased two microwave lines up from our laboratory, roughly thirty miles. It took two additional antennas on the roof at SRI, four more on a truck on Skyline Boulevard, and two on the roof of the conference center. It cost money…The nice people at ARPA and NASA, who were funding us, effectively had to say, ‘Don’t tell me!’”

The effort was worth every penny. The audience was riveted, as Engelbart in his subdued drone described and demonstrated a fully operational system of interactive video conferencing, multimedia displays, and split-screen technology.

At one point half of a twenty-foot-tall projection screen was occupied by a live video image of Engelbart on stage, the other half by text transmitted live from Menlo Park (it was a shopping list including apples, oranges, bean soup, and French bread). Minutes later the screen carried a live video image of a hand rolling the unusual “mouse” around a desktop while a superimposed computer display showed how the cursor simultaneously and obediently followed its path.

The piece de resistance was Engelbart’s implementation of the memex. The screen showed how a user could select a single word in a text document and be instantly transported to the relevant portion of a second document—the essence of hypertext, found today, some thirty years later, on every World Wide Web page and countless word-processed documents. At the conclusion of the bravura performance Doug Engelbart, previously a prophet without honor, was rewarded with a standing ovation.

In 1971 Taylor, whose ARPA funds had helped pay for that demo, was intent on somehow importing Engelbart’s interactive vision into PARC. The only question was how to do it without also importing Doug Engelbart. The problem was that the master’s inspirational dreams were inseparable from his inflexible and self-righteous disposition. One admirer called him “a prophet of biblical dimensions,” a role he fit down to his physical appearance. Tall and craggy, with deepset eyes and a hawklike nose, he might have been carved from a slab of antediluvian granite. Soft-spoken but intransigent, his years of battling unbelievers had convinced him that he was fated to remain the solitary leader of a devoted cadre.

By the time Taylor was poised to strike, that cadre was showing signs of serious discontent. As the novelty of his ideas wore off (to be fair, this was a process that could take several years), some disciples started to discern the drawbacks of working for so uncompromising a boss—particularly one whose tendency to oracular pronouncements required a stratum of top assistants to periodically sit the rest of the staff down and explain what Doug had in mind.

Engelbart’s self-defined mission was not to produce a product, or even a prototype; it was an open-ended search for knowledge. Consequently, no project in his lab ever seemed to come to an end. Whenever one approached a milestone he would abruptly redefine it, condemning the lab to months or years of further work. The finish line was constantly receding, like the oasis in a desert mirage. Said one long-term member of his lab: “We were like rats running in his maze.”

The first to defect was William K. English, a brilliant engineer who had been with Engelbart almost from the start, joining him in 1962 as his hardware ace and all-around major-domo. Wiry and deliberative, Bill English had been the invisible guiding hand behind the 1968 demo. He was ferociously loyal to his boss but bridled at the lab’s perpetual lack of closure. Some also believed he was fed up with Engelbart’s way of monopolizing credit for the lab’s accomplishments.

Taylor offered English a solution to both complaints: reproduce NLS, or something like it, at PARC. English could thus fulfill his treasured goal of bringing the system to commercial fruition and be in charge of his own lab, out from under the shadow of the implacable Engelbart. Whether English hesitated leaving the leader he had followed for nearly a decade is hard to say, but he continued the raid where Taylor left off, eventually recruiting a dozen of Engelbart’s most important followers.

As a team they infused Engelbart’s principles into PARC like apostles spreading religion. Thanks to them, the Augmentation Research Center left its indelible stamp on almost every major innovation to emerge from PARC in the next decade. Yet this triumph was not without its painful ironies. English’s reworked version of NLS, the direct descendant of Vannevar Bush’s vision and Engelbart’s work, would be remembered chiefly as PARC’s biggest failure.

The agents of its ruin, as it happened, came to PARC via Bob Taylor’s second great heist. Taylor knew that up in Berkeley a handful of extraordinarily talented engineers were about to lose their jobs. In his view PARC could scarcely exist without them. Toward the end of 1970, with George Pake’s approval, he took the necessary steps to reel them in.

 

* As of 1970. In the subsequent decade Bell Labs scientists won two more.

 

* No relation to George White, the PARC researcher.