If anyone symbolized the gulf separating the inventors of the future in Palo Alto from the Xerox development drones back East, that person was Gary Starkweather.
Starkweather was highly trained in an arcane subspecialty of physics, but he did not look like anyone’s idea of a master physicist. With his stocky frame and friendly, guileless features, he more resembled your neighborhood phone lineman. But to his colleagues at PARC he was a special catch. He was the scientist outcast, the man who got branded a renegade by his bosses at Webster simply for proving that the novel technology of lasers could be used to “paint” an image onto a xerographic drum with greater speed and precision than ordinary white light.
Instead of garnering praise and encouragement he was ordered to abandon his research and threatened with the loss of his lab assistants. His bosses hinted that his future at Xerox would be bleak if he failed to redirect his energies back to the pressing issues of lenses and white light. “We had almost reached the point of maximum disconnect,” he recalled, when it was finally recognized that the only place for him was that madhouse out in Palo Alto.
And there at PARC he invented the laser printer, the success of which contradicts the canard that Xerox never earned a dime from the Palo Alto Research Center. It is one of the ironies of the story that despite Jack Goldman’s tireless efforts to keep PARC insulated from Webster’s copier-duplicator mentality, the most profitable product PARC ever produced sprang from the mind of a Webster man.
Not that they ever thought of him that way at PARC. “Gary Starkweather had been thrown out of Webster,” Alan Kay remarked with manifest approval. “We considered him one of us.”
For all his considerable skills at manipulating light, Gary Starkweather’s career in optics began more or less on a whim. In 1960, having just received his bachelor’s degree in physics from Michigan State University, he faced a limited spectrum of career options. “The choices were I could go into nuclear power, which was a hot thing in 1960, or I could go into optics. And I looked at nuclear and said, I don’t think so. I wasn’t sure how people would live with the problems, because when nuclear fails, it fails big. So I went into optics.” It was a lucky choice. Just a year or so into his master’s studies at the University of Rochester, the entire field blew wide open.
At Hughes Research Laboratory in Malibu, Theodore Maiman had coiled an electronic tube around a cylinder of pink ruby polished at either end to a mirrored sheen. He touched off a flash of electrons within the coil, exciting the ruby into firing an instantaneous burst of single-wavelength red light from one end. The science of optics was never the same.
Before the laser’s appearance, light was a crude implement. Optical scientists could knock it about with lenses and mirrors and sort it into its constituent wavelengths with prisms. But these processes bore all the delicacy of surgery performed with a jackhammer. By contrast, the laser cut like a scalpel.
White light generated thermally—by bulbs and electric arcs—comprises all the colors of the spectrum, oscillating at different wavelengths and consisting of photons generated out of phase with one another. Under such conditions light inevitably scatters and diffuses over distance, like ocean waves spending themselves on the beach. Maiman’s ruby device, however, emitted a beam immune to the scattering effect. It had spatial coherence (all the light in the beam was the same wavelength) and temporal coherence, meaning that its photons were in phase. The laser could be “tuned,” like a radio antenna, to be so bright and fine that a beam shined from the Earth could visibly illuminate a spot on the moon.
Optical scientists welcomed the new technology as a tool for making the theoretical concrete. Hypotheses of the existence of certain photoelectric effects and other phenomena could now be tested in the lab. At the University of Rochester Gary Starkweather abandoned his original master’s topic in classical optics, refocused his attention on lasers, and received his degree for a thesis exploring holography, the laser-aided creation of three-dimensional images. With great anticipation he brought his knowledge back to Xerox’s Webster lab, where he had worked his way through school, only to be instructed to stop talking like a madman.
For a company whose vast corporate fortune depended on the manipulation of light, Xerox remained resolutely behind the curve in exploiting Ted Maiman’s discovery. Everywhere Starkweather turned at Webster he saw projects coming to naught because they employed light sources too feeble. Whenever he pointed out that the laser packed 10,000 times the brightness of a conventional light source he encountered sneers, especially when he suggested that the new devices might play a role in xerographic imaging. Lasers were difficult to handle and burned out faster than a rick of dry timber, his colleagues responded. Bristling with electrodes and emitting bursts of blinding light, they seemed about as safe to put into an office machine as nuclear warheads. And they were expensive—$2,500 to $25,000 for a single unit.
For the next few years Starkweather had no choice but to experiment on his own. His instincts told him that a beam so precise could be modulated—that is, altered in intensity—to carry information, just like radio waves or the pulses on a phone line. Suppose one could educate a light beam to reliably transmit digital bits: These could then be translated into marks on a blank sheet, a feat that would allow one to consign to paper the thoughts and images created inside a machine.
Enlisting the help of a couple of lab assistants, he built a clumsy prototype, hitching a laser apparatus to an old seven-page-a-minute copier no one used anymore. Whenever he could steal an hour or two early in the morning or late at night he would run some equally clumsy tests by bombarding an unused xerographic drum with laser beams. Eventually he learned how to scan an original image and turn out a duplicate. True, his first samples were crude and pale, not at all ready for prime time. Still, they were scarcely any worse than the faded, scrawled “10-22-38 Astoria” Chester Carlson had reproduced on a coarse apparatus in his kitchen. From Carlson’s crude and pale sample, Starkweather kept reminding himself, an awesome new industry had sprung. Who was to say that his might not do the same?
Nevertheless, Starkweather got scarcely more respect than Carlson had at the start of his own researches. “The theoreticians gave me every excuse,” he recalled. “All hogwash. They told me the beam would be moving so rapidly the photoreceptor would never see it. They talked about ‘photoconductor fatigue’ and asked, How will you modulate? They thought there was no practical value in it. ‘We got copiers we need to ship, you need to work on the lenses for that…Painting laser beams, these things are expensive, they never last very long and they look like a ham radio set. It’s a completely useless application. If you paint at 200 dots per inch that’s a million bits of data, where will you ever get a million bits of information?’ In 1968 that was probably a valid question. But it wasn’t a valid question if you looked at where the technology might go.”
Over months and years of trying, fueled by the inner conviction that drives natural inventors, he fashioned experiments that answered every objection. He could modulate the beam by varying the power input and scan it by the clever application of a set of mirrors. He was proudest of disproving the old bugaboo about “photoconductor fatigue.” This referred to a hypothetical property of the selenium coating of the copier’s xerographic drum, the electrostatic charge of which must be neutralized by light in order for the duplicating process to work.
Laboratory dogma maintained that excessively bright light would drive the neutralization effect deep into the selenium layer, like a hammer driving a nail through soft wood. Once the photoconductor thus became too “fatigued” to consistently snap back to a blank, quiescent state, one would see persistent “ghosts” of earlier copies, all transferred together to the blank paper. The objection, being strictly theoretical, was hard to discount. “It was only an inkling,” Starkweather explained, “because no one had ever tried to expose things in a few billionths of a second before.”
Starkweather’s experiments proved the inkling false. He showed that bathing a photoreceptor with the laser’s extraordinarily potent beam for a fraction of a second had the same effect as applying conventional light for the much longer period employed in ordinary xerography. The brevity of the exposure canceled out the strength of the beam, and the selenium survived just fine.
As for the complaints about the devices’ cost, Starkweather figured lasers were bound to come down in price. What, after all, was the laser? A neon tube with mirrors on the ends. A sign that says “Eat at Joe’s,” unfurled into a straight line. “There’s a feeling down in your stomach where you’re sure the thing has potential,” he recalled of those solitary days and nights. “You have to believe against all odds that the thing will work.”
He also realized he might have an answer to a problem computer science had not yet solved satisfactorily: how to transform a stream of digital bits into something intelligible on paper. A laser could address a photosensitive drum with enough speed to print microscopic dots as fine as 500 to the inch, each one corresponding to a bit of digital data. “I said, what if instead of scanning the image in, as is done in office xerography, I actually just created the data on the computer? If I could modulate the beam to match the digital bits, I could actually print with this thing. I did some test experiments in Rochester, which my immediate management felt was probably the most lunatic project they’d ever seen in their lives. That’s when my section manager said, ‘Stop, or I’m going to take your people away.’”
One day in 1970 Starkweather poured out his heart to George White in White’s office high atop Rochester’s Xerox Square office tower. Starkweather complained that he had been caught in a vise. He felt as though his talents had been wasted and, worse, that they had led his career at Xerox to a dead end.
He was convinced he could learn to safely manipulate the laser beam in a way that would give Xerox the opportunity to market an entirely new kind of imaging machine. Yet no one in the company seemed willing to pay him the slightest heed. He had run out of places to turn.
There had been one glimmer of hope, he told White. During the summer he had seen an item in the employee newsletter about the new lab being built out in Palo Alto.
“I think I did the hundred-yard dash to the nearest phone and called out there,” he recounted. “They said, ‘Well, we won’t really transfer people, we’re going to hire from the West Coast.’ I said, ‘Can I come out and tell you what I’m working on?’”
His persistence won him an interview in California with George Pake, but he came home feeling like the victim of a Catch-22. The lab was fascinated with his work, but refused to put in for his transfer. Webster was already aggravated that too many of its top people had been relocated to PARC, Pake explained. “We won’t ask for you,” he said. “We don’t want to start an avalanche. But we’d take you, if you could happen to get a transfer on your own.”
His immediate boss at Webster had not only turned down his transfer but seemed infuriated at the very idea. “Forget it, Gary,” he said, “you’re never going to be moved to the West Coast. And you’re to stop playing around with that laser stuff.”
White was Starkweather’s superior a couple of levels removed, but had heard nothing of this before. He listened to the saga with mounting frustration. There was no question that the lab’s treatment of Starkweather had been asinine, exactly the sort of parochialism his own boss, Jack Goldman, was determined to eradicate. White tried to reassure Starkweather that there was an answer.
“Sit tight,” he said. “I’ll need some time.”
“How much time? This guy’s threatening to take all my people away.”
“Just hang in there,” White replied. “If he throws rocks at you, try to duck.”
By lucky chance, George White was one of the few people at Xerox who shared Starkweather’s appreciation for the laser. Having earned his Ph.D. in nuclear physics from the University of Iowa, he had experimented with the new technology himself as a young lab employee at Sperry Rand in 1962. On the strength of that work he had been recruited by a small Pasadena company called Electro-Optical Systems (EOS), which was subsequently sold to Xerox Corporation.
White also empathized with Starkweather because he had personally experienced the same narrow-mindedness as his younger colleague, at its source. “At EOS we understood lasers and we’d just been acquired by Xerox, so we hitched the two together and showed how you could take a laser beam and expose a xerographic drum,” he recalled. The man to whom White demonstrated this first raw achievement of laser xerography was John Dessauer. “He didn’t have the orientation or the context to understand the hottest new scientific breakthrough of the age,” White recalled. “He just let it drop.”
White now perceived that fate had granted Xerox another crack at the gold ring. Dessauer was gone. His successor, Jack Goldman, had appointed White head of advanced product development. As one of Goldman’s shock troops, White figured there were two components to his job: refining existing copier technology to reproduce conventional images sharper and faster; and perfecting new forms of document imaging that the old technology could not handle.
But these two goals demanded completely different mentalities. “Webster could spend an infinite amount of money doing their prissy little chemistry and fine-tuning second-order effects in copiers,” he said. “But they would never find their way to the new world.”
There was no point in forcing Gary Starkweather, a creature of that new world, to live in the old. Like anyone who tried to pursue a radical new vector at Webster, he was almost certain to get squashed. “Gary’s project at best would have limped along without enough power to allow his full productivity,” White concluded. “At worst it would have got canceled, and if he wasn’t willing to just design lenses and illuminators for classical copiers he’d have had to look for another job.”
So White went up the ladder to Goldman. “Starkweather’s doing some amazing things,” he told his boss. “But he can’t thrive at Webster. Nobody will listen to him, and even if they did they’ll never do anything that far advanced.”
With scarcely a second thought Goldman lifted the hold on Starkweather’s transfer. Webster be damned. If they could not use the man’s talents, he was not going to stand by and see them go to waste.
Starkweather arrived in January 1971 as PARC employee number 26, assigned to the optical science lab under his old Webster colleague John Urbach. Having scratched and clawed for the assignment he was appalled, as many of his fellow newcomers had been in their turn, by the sheer barrenness of the facility.
His quarters turned out to be four bare walls and a plug outlet in the lab building fronting on Porter Drive. Say what you would about Webster, every project there started out with a gleaming, fully equipped laboratory. By contrast, this place was nothing but vacant spaces partitioned off by cinder block walls. Starkweather’s glance fell on a strange feature of the walls—they all had some sort of curious rectangular opening down by where they met the floor. “What are those for?” he asked someone.
The answer was not exactly cheering. The building, it turned out, formerly had been an animal behavior lab. The openings gave its four-legged inhabitants the freedom to move from room to room. Each room was known by the name of its former inhabitants; there was a dog room, a cat room. “You’ve been assigned the rat room,” they told him.
At least everyone else also seemed to be starting from scratch. When Starkweather asked one of his co-workers how to get his hands on a few tools, the man flipped him a dog-eared catalog from a scientific supply house.
“Just order what you need.”
That night he was tormented by the thought of having given up his secure, comfortable existence in Webster in favor of…the rat room! Would going back to copier work really have been that bad?
“I was thinking, ‘You gave it all up so you could sit alone in this cement block building. You must be an idiot!’”
Yet PARC’s magic-did not take long to assert itself. Within a few days he discovered the upside of its ascetic bareness: Money to furnish the rat room seemed to flow in a limitless cascade. At Webster the lab management had pissed and moaned about the purchase of a single $2,500 laser. Here no one so much as blinked at his order for a $15,000 half-watt behemoth (or for the water lines and pump that had to be specially constructed to keep it cooled). Rather than make do with an old surplus copier for his experiments, Starkweather ordered up a Model 7000 capable of turning out sixty pages a minute. This duly arrived, attended by a Xerox field technician perplexed at his assignment to set up a top-of-the-line office copier on the bare concrete floor of an unfurnished lab.
He would have been even more surprised to see what Starkweather was planning to do to it.
Computer printers had existed for years, yet none had ever been endowed with enough brainpower to take full advantage of the digital bit. They were huge, awkward affairs, messy mechanical systems of solenoids driving hammers into carbon strips, rather like electric typewriters as imagined by a Soviet design team—the epitome of the sort of contraption engineers dismissed as a “kludge” (pronounced “klooge”). From a functional standpoint they were slow, clumsy, and lacked any graphic flexibility. Most were limited to printing the 128 characters comprising the so-called ASCII character set (the acronym stood for “American Standard Code for Information Interchange”).
ASCII encoded every numeral and English-language letter, along with a handful of line-setting characters, as a sequence of seven digital bits—hence the constraint to 128 characters, the maximum number that can be expressed in seven binary digits. If you wanted something unusual, like a German ü or French ç, much less lettering of an unconventional size and a fancy typeface, you were out of luck. Computer designers were happy enough that the seven-bit code at least allowed them to have upper-and lower-case letters.
Starkweather’s assignment was to build a machine that could print on paper almost any image a computer could create. The first problem he needed to solve was how to build a machine that could make, as he put it, “intelligent marks on the sheet at a page a second” to match the 7000’s capacity. This was essentially a speeded-up version of the task he had been working on at Webster all those long years. Solving it at PARC took another eleven months, or until November 1971.
His design was deceptively uncomplicated. At its heart was a spinning disk about the size and shape of a hockey puck. Milled around the rim were twenty-four flat mirrored facets, which gave it the appearance of a cross-sectional slice of a discotheque ball. As the disk spun, each mirror picked up the beam of the laser and redirected it onto the photoreceptor as a sweeping line of modulated light. (Think of a lighthouse beam sweeping horizontally across a wall—thousands of times per second.) The process produced an image that looked clean and solid to the naked eye, but was in fact comprised of millions of minute dots etched on the photoreceptor (and transferred in turn to a blank page) at a resolution of five hundred horizontal lines to the inch.
Considerable fine-tuning was necessary to keep this complicated system humming along. Assembling the hardware and synchronizing the components was like getting a herd of cats to sing in unison. Since the polygonal disk spun at 10,000 revolutions per minute (the original glass prototype was soon replaced by aluminum), even the way the facet edges “paddled” the air produced measurable resistance. The laser itself had to be modulated up to fifty million times a second by a “shutter” fashioned from a polarizing filter driven by a $10,000 piezoelectric cell. And because it had to conform to the speed of the copier, Starkweather’s laser apparatus had to mark more than 20 million dots on a page every second.
Still, the most troublesome problem was not electronic. Instead it fell squarely within the domain of traditional optics. Starkweather knew that if the mirrored facets were even microscopically out of alignment, the scan lines would be out of place and the resultant image distorted or unintelligible, for the same reason a wobbly tape deck makes an audio-cassette warble as though recorded under water. To produce clean images, he calculated, the facets could not be out of vertical alignment by more than an arc-second—a microscopic variance. In visual terms, the mirrors could not be off by more than the diameter of a dime as viewed from a mile away.
Disks fabricated to such an exacting standard would cost at least $10,000 each—assuming this were technically possible, which Starkweather doubted. It was true that there existed servo-mechanical and optical devices that could quite effectively redirect an errant scan back in place. But they were even more expensive and, as a further drawback, meant adding another complicated and failure-prone component to his printer. Starkweather understood that the tolerance issue was critical. If he could not solve it, he would have designed a machine that could not be cost-effectively manufactured.
For more than two months he wrestled with the puzzle. “I would sit and write out a list of all the problems that were difficult. One by one they would all drop away, but the mirrors would still be left.”
One day he was sitting glumly in his optical lab. The walls were painted matte black and the lights dimmed in deference to a photoreceptor drum mounted nearby, as sensitive to overexposure as a photographic plate. Starkweather doodled on a pad, revisiting the rudimentary principles of optics he had learned as a first-year student at Michigan State. What was the conventional means for refracting light? The prism, of course. He sketched out a pyramid of prisms, one on top of another, each one smaller than the one below to accommodate the sharper angle of necessary deflection. He held the page at arm’s length and realized the prisms reminded him of something out of the old textbooks: an ordinary cylindrical lens, wide in the middle and narrowed at the top and bottom. “I remember saying to myself, ‘Be careful, this may not work. It’s way too easy.’ I showed it to one of my lab assistants and he said, ‘Isn’t that a little too simple?’”
It was simple. But it was also dazzlingly effective. Starkweather’s brainstorm was that a cylindrical lens interposed at the proper distance between the disk and the photoreceptor drum would catch a beam coming in too high or low and automatically deflect it back to the proper point on the drum, exactly as an eyeglass lens refocuses the image of a landscape onto a person’s misaligned retina.
“I ran to the phone and called Edmund Scientific, my supply house, gave them my credit card, and bought ten bucks’ worth of war surplus lenses,” he recalled. “I could hardly sleep the two days before they arrived. But then they came, I put them in, and sure enough they worked.” The lens scheme was foolproof. It involved a simple physical relationship, so it could never fail. It had no moving parts, so it could never malfunction. And it permitted the polygonal disks to be stamped out like doughnuts—not at $10,000 apiece, but $100.
“The mirrors no longer had to conform by the diameter of a dime at a mile’s distance,” Starkweather recalled. “They could be off by the diameter of a tabletop, which was a standard anyone could meet. I made a lot of discoveries building that machine, but it was the cylindrical lens that made me say ‘Eureka!’”
Starkweather’s finished printer was a large, bulky machine. His open arrangement of plump black-tubed lasers, mirrors, and wires sat atop the clean but stolid Model 7000 copier like a ridiculous hat on a dowager aunt. He christened the machine SLOT, for “scanning laser output terminal.”
“I would have called it the scanning laser output printer,” he said, “but that wouldn’t have made a very good acronym.”
Building the SLOT solved only half the riddle of how to convert digital images to marks on paper—the back end, so to speak, of how to apply toner once the image was delivered to the laser beam. The front end involved translating the computer’s images into something the laser could actually read.
That half was solved by the invention of the so-called Research Character Generator (RCG), another healthy piece of iron and silicon, by Lampson and a newly hired engineer named Ron Rider. The RCG, which stood several feet high and nineteen inches wide, and housed 33 wire-wrapped memory cards holding nearly 3,000 integrated circuits, was a sort of super memory buffer, spacious enough to accept a digital file from a computer, evaluate it scan line by scan line, and tell the printer which dots to print at which point. This generated on paper an image created by pure electronics.
Today this procedure is trivial. Memory is so cheap that the computer and printer both come with enough to hold several pages at a time. As a page comes in from a word-processor program, it is fitted into a print buffer the way craftsmen of the old printing trades clamped lines and columns of leaded type into rectangular frames. Once in memory, the page image can be manipulated in an almost infinite number of ways. It can be fed to the printer narrow or wide end first, backwards, upside-down, or wrapped around a geometrical design. The most unassuming desktop computer can store character sets in dozens of font styles and sizes, any of which can be summoned at will and applied to a document as a paintbrush swipes color at a wall.
Nothing like this was simple in 1972 because of the cost of memory. Nor was it enough for Rider’s machine to generate only the bland standardized ASCII text of conventional line printers. The RCG had to incorporate a large number of custom typefaces that were to be drawn by hand, converted into digital bits, and stored somewhere in memory until needed, as if on an electronic shelf.
This meant an exponential increase in the complexity of the task. ASCII characters were all the same size and each fit into the same squared-off shape. The only formatting a conventional document normally required was a command instructing the printer when to move to the next line. By contrast, the custom-designed characters PARC desired to print would be proportionately spaced: some fat, some thin, some reaching above the print line, some dangling below; some roman, some italic, some BOLD.
Finally, the character generator had to adapt to the Model 7000’s system of feeding in pages wide-edge-first, which moved paper through the machine at a faster rate. For copiers this posed no problem—one simply aligned the originals along the same axis. For a printer, however, it was a horror. The image coming from the computer would somehow have to be rotated before it could be printed out. Instead of printing a page in prim linear order like a typewriter, SLOT would have to reproduce the characters in vertical slices, somehow keeping its place on twenty or thirty lines of print per page.
Rider ultimately came to see the proliferation of complications as a blessing in disguise. “It forced you to think about the problem of printing in a much more generalized fashion, so the solution turned out to be much more robust.” Despite its name, the research character generator was less about delivering images character-by-character than about transmitting digitized images in whatever form the computer dictated. Like so much PARC developed in those first few years, this turned out to be the answer to a multitude of questions no one was yet even asking.
Starkweather and Rider worked together on coordinating the SLOT and character generator until early 1972, when they were stymied not by a technical obstacle but one entirely man-made. This was the relocation of more than twenty of PARC’s seventy scientists up the hill to a building newly rented from the Singer Company and known as Building 34 (because its address was 3406 Hillview). The Computer Science Lab, including Rider, got bundled off to the new quarters while everyone else, including Starkweather, temporarily stayed behind on Porter. The move separated the two by a kilometer of real estate—too far to string an overhead line and, with the four-lane Foothill Highway in the way, impossible to link via a ground cable.
“The administrators said, ‘Don’t worry. You’ll be back together in another year,’” Starkweather recalled. “I said, ‘Great, what are we supposed to do in the meantime?’”
But one Sunday afternoon shortly after the move Starkweather got a brainstorm while sitting at home. He immediately jumped in his car, drove to Porter Drive, and mounted a stairwell to the roof. Just as he had thought, he could take line-of-sight aim from where he stood to the rooftop of Building 34. He might not be able to span the distance by cable or wire—but he could do it by laser beam.
The next day he ordered four telescopes from Edmund’s for about $300 apiece. He and Rider replaced the eyepieces of two with low-power lasers and the others with sensitive photodetectors. They bolted one laser scope and one detector on each roof, aiming each at its complement across the way, to create a visible light data link. The circuit worked flawlessly in almost any weather, even fog, although minor adjustments were often necessary after a rainstorm, when the weight of accumulated water made the roofs sag slightly.
“When SLOT was running I’d send a pulse of light up the hill to signal the character generator to send a line of data down to the detector on my roof, which would send it down to this laser and then to the printer,” Starkweather recalled. “After all, we were only encoding ones and zeros. It was like sending binary data on a long wire made out of light, instead of copper.”
The only real problem arose from the arrangement’s elemental spookiness. One morning after a foggy night Rick Jones was summoned from his office to field a complaint from a peeved Palo Alto police officer. It seemed that a local motorist startled by a ghostly red beam crossing overhead had run herself off Foothill Highway into a ditch the night before. Whatever PARC was up to, it had created a traffic hazard and would have to stop.
Jones placated the officer and brought the issue to Starkweather, who averted further mishaps by coarsening the focus just a bit. From then on the beam would be too broad to be seen even in the fog, but not so much that it could not be refocused to adequate tolerance at the receptor end.
“That way we were able to keep the experiment going for a year, until we could move everybody up the hill,” Starkweather recalled. “Outside of that and a couple of birds that got hit with a bright red flash, we never had a single problem.”
Starkweather’s SLOT and Rider’s character generator were two of the four legs of the complete interactive office environment PARC was creating on the fly. In the same period Thacker, McCreight, and Lampson were building the Alto; Alan Kay and his Learning Research Group were designing a graphical user interface aimed at making computers intuitively simple to use; and Bob Metcalfe and David Boggs were designing a network—the Ethernet—to tie all the other components together. “We had in mind that you ought to be able to create a file on the Alto and ship it via the Ethernet to a print server [that is, a communal computer managing everyone’s print orders], which would convert it to a raster and print it out,” Rider recalled. When it was finally implemented, the whole array would be known by the rather inelegant acronym EARS, which stood for “Ethernet-Alto-RCG-SLOT.”
Of the four, the laser printer was closest to being marketable, representing as it did a fairly straightforward modification of a standard Xerox copier. Yet its road to commercialization would be a long and “gory” one, as Jack Goldman later remarked—presaging other battles to come in the war to bring PARC’s inventions to market.
The first stumble occurred in 1972, even before EARS’s other components were operational. That year the Lawrence Livermore National Laboratory, an institution always primed to promote new technologies, publicly requested bids for five laser printers. Only on the surface was this a public solicitation, for Livermore knew that PARC alone had developed the applicable technology.
Jack Goldman was eager to fill the bid, figuring that the Livermore contract would guarantee instant celebrity for PARC’s first marketable product. Unexpectedly, he was overruled by James O’Neill, a former Ford Motor Company finance man who was in charge of Xerox’s engineering and manufacturing group.
Goldman was furious. “I raised a fuss with him,” he recalled. “I said, ‘Why are you turning it down?’ He said, ‘I’m turning it down because we’ll lose money. The reliability of the Xerox 7000 can’t stand the copy volume Livermore will be turning out. We’ll be sending so many repairmen out there we’ll lose $150,000 over the life of the contract.’”
O’Neill had it all wrong, Goldman argued. PARC had shown that the machine’s reliability improved by more than tenfold when it operated in laser mode, because laser printing circumvented the moving parts most prone to failure. “We had a lot of experience in the reliability of this thing,” he said. “We had turned out millions of copies already in the lab, where everyone was using it.”
Yet the two executives’ disagreement was more than a technical misunderstanding. It reflected a fundamental clash of marketing values. O’Neill saw little point in committing Xerox to selling a machine for which there was no immediate prospect of high-volume production or marketing backup. The company would not sell Livermore a prototype copier; why sell it a prototype laser printer?
Goldman’s rejoinder was that there was a world of difference between introducing a new version of an old copier and launching an entirely new technology; the only way to accomplish the latter was to feed the appetite of “early adopters”—clients willing to take a chance on unfamiliar products just to see what they might do. But he lost the argument.
“You have to take certain chances if you’re going to introduce a new product,” he said later. “O’Neill refused to let us fill that order, and look what he sacrificed. That machine would have had the world by the tail.”
Instead the laser printer spent another two years in product planning limbo, at which point Goldman had to intercede again—this time more successfully—to save it from extinction.
That happened in 1974 when Xerox’s product review committee, on which corporate staff planners were overrepresented and engineers almost nonexistent, debated which kind of computer printer Xerox should bring to market. At the eleventh hour Goldman discovered that the committee planned to recommend a Webster-designed machine known as the “Superprinter,” which used CRTs, or cathode ray tubes—thousands of times dimmer than a laser—to project an image onto a photoreceptor.
“A bunch of horse’s asses who didn’t know anything about technology were making the decision,” Goldman recollected. The Superprinter, he contended, was hopelessly unequal to the demands of high-speed printing. “Here laser printing had already been developed by Starkweather, and the guys back in Rochester were thinking in terms of CRTs, which was absolutely a backward way of doing it.”
This time Goldman did more than argue. Commandeering a company plane, he hustled two key committee members onto it—Don Pendery, the planning vice president, and his boss, a staff vice president named Bill Souders—for a hastily arranged demo of laser printing at PARC.
“It was Monday night. I said, ‘We’re going out tonight and coming back tomorrow night in time for Wednesday morning’s meeting.’ And we made believers out of them. The guys at Palo Alto did a masterful job of presenting it. Everything worked without a hitch. These two guys looked at it and said, ‘Hey, this is really the way to go.’ And we were able to override the proposal from Webster.”
Still, it was a Xerox-style victory, Pyrrhic at best. Although the committee accepted laser technology, it rejected Goldman’s appeal to build laser-adapted Model 7000 copiers, as Starkweather had done. This would have allowed the company to market a laser printer within a year. The panel decided instead to wait until the launch of Xerox’s next generation of high-speed copiers, the 9000 series—which was not scheduled for another three years.
It was a perilous delay. The plan to commercialize the laser printer would be killed and resurrected three times in that period, saved only by the obstinacy of an executive named Jack Lewis, who ran the company’s printing division and ignored the orders from higher-ups to deep-six the project. Finally launched in 1977 as the 9700 printer, Gary Starkweather’s laser device fulfilled its inventor’s faith by becoming one of Xerox’s best-selling products of all time.
Even so, for the white-light copier engineers of Webster the laser printer never shed the frightening aspect of an alien technology.
“Years afterwards I went back there,” Starkweather said. “I ran into my old boss, the one who had tried to keep me from leaving. His last words to me were, ‘Are you still playing around with that laser stuff?’
“By then the laser printer was a $2 billion-a-year business.”