4.1 Introduction
Harmonic balance method [1] is one of the commonly used methods for analyzing the periodic solution of nonlinear systems. It transforms the problem of solving nonlinear differential equations into solving nonlinear algebraic equations, which greatly simplifies the analysis. However, the harmonic balance method has the following disadvantages: (1) It is only suitable for obtaining a steady-state solution but cannot be used for transient analysis; (2) If a periodic solution is approximated by harmonics containing orders from 0 (DC component) to N, then there will be (2N + 1) nonlinear algebraic equations to be solved. Hence, the amount of calculation using this method will increase sharply as N increases.
The general averaging method [2] proposed in [3] generalizes the harmonic balance method to transient analysis, and successfully analyzes the resonant converter and PWM (Pulse Width Modulation) switching converter. For a PWM switching converter with a duty cycle D close to 0 (or 1), it is not enough to estimate the waveform with only one harmonic. Therefore, it is often necessary to solve the higher harmonics. The general average method is not easy to solve higher harmonics. The reason is similar to the harmonic balance method, that is, if a solution needs to be approximated by harmonics containing orders from 0 (DC component) to N, then there will be (2N + 1) nonlinear algebraic equations to be solved. Thus, it is quite difficult to have the solutions, which usually need to be obtained numerically. For an open-loop PWM switching converter, although the problem is shown in the form of the linear differential equations, the number of orders is higher bringing about large amount of calculation. It is obvious that this method fails to overcome the second shortcoming of the harmonic balance method.
The equivalent-small-parameter method [4] introduces the perturbation technique into the harmonic balance method, and approximately converts the periodic solution into an expanded triangular series according to the (equivalent) small parameter. According to the order of the small parameters and the type of harmonics, the corresponding algebraic equations can be obtained. Hence, there is no need to solve nonlinear algebraic equations with many variables. In fact, the equivalent-small-parameter method is only applied to solve the nonlinear equations of the main oscillation. The other higher harmonics and corresponding correction terms can be obtained by solving the linear equations. The main oscillation only contains one or two harmonics, and the corresponding algebraic equation has fewer variables. It can be seen that the calculation amount is greatly reduced.
In this chapter, the equivalent-small-parameter method is used to analyze the PWM switching converters operating in CCM (continuous current mode) and DCM (discontinuous current mode), and the analytical expression of the steady-state periodic solution is obtained.
Furthermore, applying the idea in [2, 3], the equivalent-small-parameter method is generalized to the transient analysis of the PWM converter to obtain the equivalent differential (rather than algebraic) equations. Moreover, for open-loop PWM switching converters, only linear differential equations need to be solved. In [5], the progressive method is applied to the switching converter for analyzing transient process and ripple. However, the asymptotic method combines the transient and steady-state solutions, which results in complicated solution. The equivalent-small-parameter method clearly distinguishes the transient and steady-state solutions. Hence, the solution can be easily obtained.
4.2 General Method for Analysis of PWM Switching Power Converter by ESPM




















![$$\delta^{(n)} = b_{0}^{(n)} + \sum\limits_{m = 1}^{\infty } {\left[ {b_{m}^{(n)} \exp (jm\tau ) + \bar{b}_{m}^{(n)} \exp ( - jm\tau )} \right]}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ7.png)
![$$\begin{aligned} b_{0}^{(n)} & = d^{(n)} ,\quad b_{m}^{(n)} = \tfrac{1}{2}(\alpha_{m}^{(n)} - j\beta_{m}^{(n)} ),\quad m = 1,\,2\, \ldots \\ \alpha_{m}^{(n)} & = \left[ {\sin 2(\sum\limits_{k = 0}^{n} {d^{(k)} )m\pi } - \sin 2(\sum\limits_{k = 0}^{n - 1} {d^{(k)} )m\pi } } \right]/m\pi \\ \beta_{m}^{(n)} & = \left[ {\cos 2(\sum\limits_{k = 0}^{n - 1} {d^{(k)} )m\pi } - \cos 2(\sum\limits_{k = 0}^{n} {d^{(k)} )m\pi } } \right]/m\pi \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ8.png)







Using the same method as in Chap. 3, the main term and the remainder
of each nonlinear function vector
are got according to Eq. (4.11), and then the steady-state periodic solution of the system is obtained according to Eq. (3.46).
4.3 Analysis of the Open-Loop Boost Converter Under CCM Operation
4.3.1 Modeling of the CCM-Boost Converter

CCM-Boost converter with its two equivalent topologies during one cycle
- (1)
The input power supply is ideal, that is, its internal resistance is ignored;
- (2)
Inductors and capacitors are considered as ideal components, that is, their parasitic parameters are not taken into account;
- (3)
Both the controllable switch ST and the diode SD are ideal switches, their on-resistance is zero, and the resistance is infinite when disconnected.




![$$\delta (t) = \left\{ {\begin{array}{ll} 1 & {t \in [nT,\,(n + d)T]} \\ 0 & {t \in [(n + d)T,\,(n + 1)T]} \\ \end{array} } \right.$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ12.png)

Nonlinear equivalent circuit of CCM-Boost converter



![$${\mathbf{x}} = \left[ {\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq28.png)

![$$G_{0} \left( p \right) = \left[ {\begin{array}{*{20}c} p & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & {p + \frac{1}{RC}} \\ \end{array} } \right],\quad G_{1} \left( p \right) = \left[ {\begin{array}{*{20}c} 0 & {\frac{ - 1}{L}} \\ {\frac{1}{C}} & 0 \\ \end{array} } \right],\quad {\mathbf{u}} = \left[ {\begin{array}{*{20}c} {E/L} \\ 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ15.png)

4.3.2 The Equivalent Mathematical Model Based on ESPM




Similarly, f0 and fi represent the main components and corrections of nonlinear vector function f(x) respectively.




![$$\delta = b_{0}^{{}} + \sum\limits_{m = 1}^{\infty } {\left[ {b_{m} \exp (jm\tau ) + \bar{b}_{m} \exp ( - jm\tau )} \right]}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ22.png)









Each equation in (4.26) can be solved step by step by using the method of harmonic balance, where the first equation is used to obtain the main wave x0, and following equations are used to solve the corrections x1, x2, …, etc. If the harmonic amplitude in the kth correction xk is much smaller than those in the (k − 1)th correction xk−1, the calculation process is terminated. Hence, according to discussions above, the steady-state solution for the vector state variable Eq. (4.14) can be approximated by x ≈ x0 + x1 + x2 + …. Usually, as the low-pass filtering property of DC/DC converters, the magnitudes of harmonics with much higher frequencies are small, so they are neglected, and only the first three equations in Eq. (4.26) need to be solved, these solutions suffice for most technical applications.
4.3.3 The Steady-State Periodic Solution of the Boost Converter Based on ESPM
4.3.3.1 Solution of the Main Term
![$${\mathbf{x}}_{0} = {\mathbf{a}}_{00} = \left[ {\begin{array}{*{20}c} {I_{00} } & {V_{00} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ27.png)


![$$\left[ {{\mathbf{G}}_{0} (0) + {\mathbf{G}}_{1} (0)b_{0} } \right]{\mathbf{a}}_{00} = {\mathbf{u}}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ30.png)


![$$\left( {\left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ { - \frac{1}{C}} & {\frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{00} } \\ {V_{00} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {E/L} \\ 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ31.png)

4.3.3.2 Solution of the First Correction Term





![$$[{\mathbf{G}}_{0} (j\omega ) + {\mathbf{G}}_{1} (j\omega )b_{0} ]{\mathbf{a}}_{11} = - {\mathbf{G}}_{1} (j\omega ) \cdot b_{1} {\mathbf{a}}_{00}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ35.png)



![$$\left( {\left[ {\begin{array}{*{20}c} {j\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j\omega + \frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{11} } \\ {V_{11} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {b_{1} I_{00} } \\ {b_{1} V_{00} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ36.png)
![$$\left\{ {\begin{array}{*{20}l} {I_{11} = \frac{{b_{1} V_{00} - (1 - D)V_{11} }}{j\omega L}} \hfill \\ {V_{11} = \frac{{b_{1} [(1 - D)V_{00} - j\omega LI_{00} ]}}{{(1 - D)^{2} + (j\omega )^{2} LC + j\omega L/R}}} \hfill \\ \end{array} } \right.$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ37.png)
4.3.3.3 Solution of the Second Correction Term

Here a20 = [I20 V20]Tr is the vector of dc values, it will give the corrections of dc components in a00, and a22 = [I22 V22]Tr and a23 = [I23 V23]Tr correspond to the amplitudes second- and third-harmonics of state variable x respectively.



![$$[G_{0} (0) + G_{1} (0)b_{0} ]{\mathbf{a}}_{20} = - G_{1} (0)(b_{1} {\bar{\mathbf{a}}}_{11} + \bar{b}_{1} {\mathbf{a}}_{11} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ40.png)
![$$[G_{0} (j2\omega ) + G_{1} (j2\omega )b_{0} ]{\mathbf{a}}_{22} = - G_{1} (j2\omega ) \cdot (b_{2} {\mathbf{a}}_{00} + b_{1} {\mathbf{a}}_{11} + b_{3} {\bar{\mathbf{a}}}_{11} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ41.png)
![$$[G_{0} (j3\omega ) + G_{1} (j3\omega )b_{0} ]{\mathbf{a}}_{23} = - G_{1} (j3\omega ) \cdot (b_{3} {\mathbf{a}}_{00} + b_{2} {\mathbf{a}}_{11} + b_{1} {\mathbf{a}}_{22} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ42.png)
Likewise, the coefficient matrix and
can be obtained by setting the differential operator
in Eq. (4.15), as for the derivative of the exponential function, there is
pejkωt = (jkω)ejkωt (here k = 0, 2, 3).
It should be noticed that during the derivation process, the term in Eq. (4.40b) can be omitted with respect to the term
, as the magnitudes of harmonics with higher frequencies are smaller than those with lower frequencies.
![$$\left( {\left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ { - \frac{1}{C}} & {\frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{20} } \\ {V_{20} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\bar{b}_{1} I_{11} + b_{1} \bar{I}_{11} } \\ {\bar{b}_{1} V_{11} + b_{1} \bar{V}_{11} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ43.png)

![$$\left( {\left[ {\begin{array}{*{20}c} {j2\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j2\omega + \frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{22} } \\ {V_{22} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {b_{1} I_{11} + b_{2} I_{00} + b_{3} \bar{I}_{11} } \\ {b_{1} V_{11} + b_{2} V_{00} + b_{3} \bar{V}_{11} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ45.png)
![$$\left( {\left[ {\begin{array}{*{20}c} {j3\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j3\omega + \frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{23} } \\ {V_{23} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {b_{1} I_{22} + b_{2} I_{11} + b_{3} I_{00} } \\ {b_{1} V_{22} + b_{2} V_{11} + b_{3} V_{00} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ46.png)


Values of aik for CCM-Boost converter
i | k | aik | |
---|---|---|---|
Vik | Iik | ||
0 | 0 |
|
|
1 | 1 |
|
|
2 | 0 |
|
|
2 |
|
| |
3 |
|
|

![$$\begin{aligned} {\mathbf{x}} & = \left[ {\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} } \right]^{Tr} \\ & = \left( {{\mathbf{a}}_{00} + {\mathbf{a}}_{02} } \right) + \left( {{\mathbf{a}}_{11} e^{j\tau } + {\mathbf{a}}_{22} e^{j2\tau } + {\mathbf{a}}_{32} e^{j3\tau } + c.c} \right) \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ51.png)


4.3.4 Simulations
Circuit parameters of the open-loop Boost converter
Parameters | Values |
---|---|
Input voltage E | 37.5 V |
Switching frequency f | 1 kHz |
Inductance L | 6 mH |
Capacitance C | 45 μF |
Load resistance R | 30 Ω |
Duty ratio D | 0.25 |
![$${\mathbf{x}} = \left[ {\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq62.png)







Steady-state ripple waveforms of state variables for CCM-Boost converter with fs = 1 kHz

Steady-state ripple waveforms of state variables for CCM-Boost converter with fs = 10 kHz
4.4 Analysis of the Open-Loop Buck Converter Under CCM Operation
4.4.1 Modeling of the CCM-Buck Converter

CCM-Buck converter with its two equivalent topologies during one cycle

Nonlinear equivalent circuit of CCM-Buck converter



![$${\mathbf{x}} = \left[ {\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq70.png)


![$$G_{0} \left( p \right) = \left[ {\begin{array}{*{20}c} p & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & {p + \frac{1}{RC}} \\ \end{array} } \right],\quad G_{1} \left( p \right) = \left[ {\begin{array}{*{20}c} 0 & {\frac{ - 1}{L}} \\ 0 & 0 \\ \end{array} } \right],\quad {\mathbf{e}} = \left[ {\begin{array}{*{20}c} 0 \\ E \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ58.png)
4.4.2 The Equivalent Mathematical Model Based on ESPM


4.4.3 The Steady-State Periodic Solution of the Buck Converter Based on ESPM
![$${\mathbf{x}}_{0} = {\mathbf{a}}_{00} = \left[ {\begin{array}{*{20}c} {I_{00} } & {V_{00} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ61.png)



![$$\left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ { - \frac{1}{C}} & {\frac{1}{RC}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {I_{00} } \\ {V_{00} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{{b_{0} }}{L}} \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ E \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ64.png)





![$$\left[ {\begin{array}{*{20}c} {j\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j\omega + \frac{1}{RC}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {I_{11} } \\ {V_{11} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{{b_{1} }}{L}} \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ E \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ68.png)





![$$\left[ {\begin{array}{*{20}c} {j2\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j2\omega + \frac{1}{RC}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {I_{22} } \\ {V_{22} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{{b_{2} }}{L}} \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ E \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ72.png)
![$$\left[ {\begin{array}{*{20}c} {j3\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {j3\omega + \frac{1}{RC}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {I_{23} } \\ {V_{23} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{{b_{3} }}{L}} \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ E \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ73.png)
Values of aik for CCM-Buck converter
i | k | aik | |
---|---|---|---|
Vik | Iik | ||
0 | 0 |
|
|
1 | 1 |
|
|
2 |
|
| |
3 |
|
|
And the coefficient bi are still determined by Eq. (4.48).
4.4.4 Simulations
The circuit parameters of the open-loop Buck converter is list in Table 4.5.
![$${\mathbf{x}} = \left[ {\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq83.png)


Circuit parameters of the open-loop Buck converter
Parameters | Values |
---|---|
Input voltage E | 15 V |
Switching frequency f | 50 kHz |
Inductance L | 150 μH |
Capacitance C | 4.7 μF |
Load resistance R | 10 Ω |
Duty ratio D | 0.35 |

It should be noted that, as the amplitude of the 3rd harmonic is quite small, which is ignored in (4.69).

Steady-state ripple waveforms of state variables for CCM-Buck converter
4.5 Analysis of the Open-Loop Cuk Converter Under CCM Operation
4.5.1 Modeling of the CCM-Cuk Converter

CCM-Cuk converter with its two equivalent topologies during one cycle

Nonlinear equivalent circuit of CCM-Cuk converter





![$${\mathbf{x}} = \left[ {\begin{array}{*{20}c} {i_{1} } & {i_{2} } & {v_{1} } & {v_{2} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq90.png)


![$$G_{0} \left( p \right) = \left[ {\begin{array}{*{20}l} p \hfill & 0 \hfill & {\frac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & p \hfill & 0 \hfill & {\frac{1}{{L_{2} }}} \hfill \\ {\frac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & p \hfill & 0 \hfill \\ 0 \hfill & {\frac{ - 1}{C}} \hfill & 0 \hfill & {p + \frac{1}{RC}} \hfill \\ \end{array} } \right],\quad G_{1} \left( p \right) = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\frac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\frac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ {\frac{1}{{C_{1} }}} \hfill & {\frac{1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right],\quad {\mathbf{u}} = \left[ {\begin{array}{*{20}c} {E/L_{1}} \\ \begin{aligned} 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{aligned} \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ78.png)
Equations (4.71) and (4.72) are identical in form to Eqs. (4.14) and (4.16) respectively. And the equivalent mathematical model of the CCM-operated Cuk converter is also the same as Eq. (4.26), which can be solved in exactly the same way as in Sect. 4.3.
4.5.2 The Steady-State Periodic Solution of the Cuk Converter Based on ESPM
![$${\mathbf{x}}_{0} = {\mathbf{a}}_{00} = \left[ {\begin{array}{*{20}c} {I_{100} } & {I_{200} } & {V_{100} } & {V_{200} } \\ \end{array} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equd.png)
![$$\left[ {{\mathbf{G}}_{0} (0) + {\mathbf{G}}_{1} (0)b_{0} } \right]{\mathbf{a}}_{00} = {\mathbf{u}}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ79.png)


![$$\left( {\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {\tfrac{1}{{L_{2} }}} \hfill \\ {\tfrac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tfrac{ - 1}{C}} \hfill & 0 \hfill & {\tfrac{1}{RC}} \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{D}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]} \right) \cdot \left[ {\begin{array}{*{20}c} {I_{100} } \\ {I_{200} } \\ {V_{100} } \\ {V_{200} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\tfrac{1}{{L_{1} }}E} \\ \begin{aligned} 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{aligned} \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ80.png)



![$$[{\mathbf{G}}_{0} (j\omega ) + {\mathbf{G}}_{1} (j\omega )b_{0} ]{\mathbf{a}}_{11} = - {\mathbf{G}}_{1} (j\omega ) \cdot b_{1} {\mathbf{a}}_{00}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ81.png)



![$$\left( {\left[ {\begin{array}{*{20}l} j\omega \hfill & 0 \hfill & {\tfrac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & j\omega \hfill & 0 \hfill & {\tfrac{1}{{L_{2} }}} \hfill \\ {\tfrac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & j\omega \hfill & 0 \hfill \\ 0 \hfill & {\tfrac{ - 1}{C}} \hfill & 0 \hfill & {j\omega+\tfrac{1}{RC}} \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{D}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]} \right) \cdot \left[ {\begin{array}{*{20}c} {I_{111} } \\ {I_{211} } \\ {V_{111} } \\ {V_{211} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{1}{{C_{1} }}} \hfill & {\tfrac{1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {b_{1} I_{100} } \\ \begin{aligned} b_{1} I_{200} \hfill \\ b_{1} V_{100} \hfill \\ b_{1} V_{200} \hfill \\ \end{aligned} \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ82.png)

Here a20 = [I120 I220 V120 V220]Tr is the vector of DC values, it will give the corrections of DC components in a00, and a22 = [I122 I222 V122 V222]Tr and a23 = [I123 I223 V123 V223]Tr correspond to the amplitudes of second- and third-harmonics of state variable x respectively.
![$$[G_{0} (0) + G_{1} (0)b_{0} ]{\mathbf{a}}_{20} = - G_{1} (0)(b_{1} {\bar{\mathbf{a}}}_{11} + \bar{b}_{1} {\mathbf{a}}_{11} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ83.png)
![$$[G_{0} (j2\omega ) + G_{1} (j2\omega )b_{0} ]{\mathbf{a}}_{22} = - G_{1} (j2\omega ) \cdot (b_{2} {\mathbf{a}}_{00} + b_{1} {\mathbf{a}}_{11} + b_{3} {\bar{\mathbf{a}}}_{11} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ84.png)
![$$[G_{0} (j3\omega ) + G_{1} (j3\omega )b_{0} ]{\mathbf{a}}_{23} = - G_{1} (j3\omega ) \cdot (b_{3} {\mathbf{a}}_{00} + b_{2} {\mathbf{a}}_{11} + b_{1} {\mathbf{a}}_{22} )$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ85.png)



![$$\left( {\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {\tfrac{1}{{L_{2} }}} \hfill \\ {\tfrac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {\tfrac{ - 1}{C}} \hfill & 0 \hfill & {\tfrac{1}{RC}} \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{D}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {I_{120} } \\ {I_{220} } \\ {V_{120} } \\ {V_{220} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{1}{{C_{1} }}} \hfill & {\tfrac{1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}l} {\bar{b}_{1} I_{111} + b_{1} \bar{I}_{111} } \hfill \\ {\bar{b}_{1} I_{211} + b_{1} \bar{I}_{211} } \hfill \\ {\bar{b}_{1} V_{111} + b_{1} \bar{V}_{111} } \hfill \\ {\bar{b}_{1} V_{211} + b_{1} \bar{V}_{211} } \hfill \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ86.png)
![$$\begin{aligned} & \left( {\left[ {\begin{array}{*{20}l} {j2\omega } \hfill & 0 \hfill & {\tfrac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & {j2\omega } \hfill & 0 \hfill & {\tfrac{1}{{L_{2} }}} \hfill \\ {\tfrac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & {j2\omega } \hfill & 0 \hfill \\ 0 \hfill & {\tfrac{ - 1}{C}} \hfill & 0 \hfill & {j2\omega + \tfrac{1}{RC}} \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{D}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]} \right) \cdot \left[ {\begin{array}{*{20}c} {I_{122} } \\ {I_{222} } \\ {V_{122} } \\ {V_{222} } \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{1}{{C_{1} }}} \hfill & {\tfrac{1}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}l} {b_{1} I_{111} + b_{2} I_{100} + b_{3} \bar{I}_{111} } \hfill \\ {b_{1} I_{211} + b_{2} I_{200} + b_{3} \bar{I}_{211} } \hfill \\ {b_{1} V_{111} + b_{2} V_{100} + b_{3} \bar{V}_{111} } \hfill \\ {b_{1} V_{211} + b_{2} V_{200} + b_{3} \bar{V}_{211} } \hfill \\ \end{array} } \right] \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ87.png)
![$$\begin{aligned} & \left( {\left[ {\begin{array}{*{20}l} {j3\omega } \hfill & 0 \hfill & {\tfrac{1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & {j3\omega } \hfill & 0 \hfill & {\tfrac{1}{{L_{2} }}} \hfill \\ {\tfrac{ - 1}{{C_{1} }}} \hfill & 0 \hfill & {j3\omega } \hfill & 0 \hfill \\ 0 \hfill & {\tfrac{ - 1}{{C_{{}} }}} \hfill & 0 \hfill & {j3\omega + \tfrac{1}{RC}} \hfill \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - D}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{D}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]} \right) \cdot \left[ {\begin{array}{*{20}c} {I_{123} } \\ {I_{223} } \\ {V_{123} } \\ {V_{223} } \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\tfrac{ - 1}{{L_{1} }}} \hfill & 0 \hfill \\ {\tfrac{1}{{C_{1} }}} \hfill & {\tfrac{D}{{C_{1} }}} \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {b_{1} I_{122} + b_{2} I_{111} + b_{3} I_{100} } \hfill \\ {b_{1} I_{222} + b_{2} I_{211} + b_{3} I_{200} } \hfill \\ {b_{1} V_{122} + b_{2} V_{111} + b_{3} V_{100} } \hfill \\ {b_{1} V_{222} + b_{2} V_{211} + b_{3} V_{200} } \hfill \\ \end{array} } \right] \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ88.png)
According to Eqs. (4.75), (4.77) and (4.79), the analytic form solutions of the state variables can be obtained by using some symbolic analysis software tools.
4.5.3 Simulations
Circuit parameters of the open-loop Cuk converter
Parameters | Values |
---|---|
Input voltage E | 25 V |
Switching frequency f | 50 kHz |
Inductance L1, L2 | 1.9, 0.96 mH |
Capacitance C1, C | 850, 47 μF |
Load resistance R | 30 Ω |
Duty ratio D | 0.55 |






DC values of CCM-Cuk converter from the ESPM and simulations
DC components of state variables | |
---|---|
ESPM | I1 = 1.306 A, I2 = 1.0108 A, V1 = 55.55 V, V2 = 30.55 V |
Numerical simulation | I1 = 1.250 A, I2 = 1.030 A, V1 = 55.56 V, V2 = 30.56 V |

Comparison of ripples of state variables of Cuk in CCM
The analysis method for the steady-state periodic solution of the converter operating in discontinuous-conduction-mode (DCM) is similar and will not be repeated in this chapter. We can also refer to Chap. 6, which provides a detailed description of the steady-state periodic solution of a closed-loop converter operating in DCM.
4.6 Transient Analysis of the Open-Loop PWM Converter by ESPM
4.6.1 The Solution Procedure

![$${\mathbf{x}} = [x_{1} ,x_{2} , \cdots x_{l} ]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq105.png)










































![$${\mathbf{f}}_{0m} = \sum\limits_{{k \in E_{0} }} {\left[ {{\mathbf{h}}_{n0} (\tau )e^{jn\tau } + {\bar{\mathbf{h}}}_{n0} (\tau )e^{ - jn\tau } } \right] \, }$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ96.png)
![$${\mathbf{f}}_{im} = \sum\limits_{{k \in E_{i} }} {\left[ {{\mathbf{h}}_{ki} (\tau )e^{jk\tau } + {\bar{\mathbf{h}}}_{ki} (\tau )e^{ - jk\tau } } \right] \, }$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ97.png)
![$${\mathbf{R}}_{i + 1} = \sum\limits_{{k \in E_{i + 1} }} {\left[ {{\mathbf{h}}_{k(i + 1)}^{{\prime }} (\tau )^{jk\tau } + {\bar{\mathbf{h}}}_{k(i + 1)}^{{\prime }} (\tau )e^{ - jk\tau } } \right]}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ98.png)
It still should be noted that, the amplitude coefficients of each harmonic in the above equations are time-dependent variables, which are quite different with those in the steady-state periodic solution.






![$$\begin{aligned} p[{\mathbf{a}}_{ki} (\tau )e^{jk\omega t} ] & = \frac{{d[{\mathbf{a}}_{ki} (\tau )e^{jk\omega t} ]}}{dt} = \frac{{d[{\mathbf{a}}_{ki} (\tau )]}}{dt} \cdot e^{jk\omega t} + jk\omega \cdot {\mathbf{a}}_{ki} (\tau )\,e^{jk\omega t} \\ & \,{ = }\, (p{ + }jk\omega ){\mathbf{a}}_{ki} (\tau )\,e^{jk\omega t} \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ102.png)
Therefore, when finding the coefficients of the harmonic components with the transient solution, we use (p + jkω) instead of the differential operator p in Eq. (4.89).



4.6.2 Initial Value Determination


In the case of simple estimation, can be used to obtain the transient solution
of the first equation in Eq. (4.89), and then the forced solutions
and
… of the second and the third equations in Eq. (4.89) …, etc. However, the transient solution obtained in this way usually does not satisfy the initial conditions (4.94).
- (1)
Let
, and find
by the first equation of Eq. (4.89);
- (2)
Solve the second equation of Eq. (4.89) and get the special solution
, then let
;
- (3)
Similarly, after solving Eq. (4.89) to obtain the special solutions
and
, …, etc., let
. Then use the modified
as the initial value to find
, and according to the correction equation, the special solutions
and
, …, etc. are obtained one by one, and finally the transient solution of Eq. (4.89) is obtained.
It must be noted that when using the equivalent small-parameter method, as long as the appropriate main component is selected, the initial has little effect on the special solution
. Thus, if
is selected, then
can be made to simplify the analysis process of the transient solution.
4.6.3 Transient Analysis of Open-Loop PWM Boost Converter
We still take the Boost converter shown in Fig. 4.1 as an example to illustrate the analysis of the transient solution of a switching converter using the ESPM. The circuit parameters are chosen as: L = 6 mH, C = 45 μF, R = 30 Ω, E = 37.5 V, fs = 1 kHz, and the duty ratio is set to be D = 0.25.

![$$G_{0} \left( p \right) = \left[ {\begin{array}{*{20}c} p & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & {p + \frac{1}{RC}} \\ \end{array} } \right],\quad G_{1} \left( p \right) = \left[ {\begin{array}{*{20}c} 0 & {\frac{ - 1}{L}} \\ {\frac{1}{C}} & 0 \\ \end{array} } \right],\quad {\mathbf{u}} = \left[ {\begin{array}{*{20}c} {E/L} \\ 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ107.png)



![$${\mathbf{x}}_{0} = a_{00} (t) = \left[ {i_{00} ,v_{00} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equh.png)
![$$\left[ {{\mathbf{G}}_{0} (p) + {\mathbf{G}}_{1} (p)b_{0} } \right]{\mathbf{a}}_{00} (\tau ) = {\mathbf{u}}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ109.png)
![$$\left( {\left[ {\begin{array}{*{20}c} p & {\frac{1}{L}} \\ { - \frac{1}{C}} & {p + \frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{{b_{0} }}{L}} \\ {\frac{{b_{0} }}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {i_{00} } \\ {v_{00} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {E/L} \\ 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ110.png)

![$${\mathbf{A}}_{0} = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1 - D}{L}} \\ {\frac{1 - D}{C}} & {\frac{ - 1}{RC}} \\ \end{array} } \right],\quad {\mathbf{u}} = \left[ {\begin{array}{*{20}c} {E/L} \\ 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equi.png)
![$$\begin{aligned} i_{00} & = 2.222 - {\text{e}}^{ - 0.059\tau } [2.222\,{ \cos }\,0.222\tau + 3.89\,{ \sin }\,0.222\tau ] \\ v_{00} & = 50 - {\text{e}}^{ - 0.059\tau } [50\,{ \cos }\,0.222\tau - 13.276\,{ \sin }\,0.222\tau ] \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ112.png)


Zero-order approximation of the transient solution of CCM-Boost converter

![$${\mathbf{a}}_{11} (t) = \left[ {i_{11} ,v_{11} } \right]^{Tr}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_IEq172.png)
![$$[{\mathbf{G}}_{0} (p + {\text{j}}\omega ) + {\mathbf{G}}_{1} (p + {\text{j}}\omega ){\text{b}}_{0} ]{\mathbf{a}}_{11} = - {\mathbf{G}}_{1} (p + {\text{j}}\omega ) \cdot b_{1} {\mathbf{a}}_{00}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ113.png)
![$$\left( {\left[ {\begin{array}{*{20}c} {p + j\omega } & {\frac{1}{L}} \\ { - \frac{1}{C}} & {p + j\omega + \frac{1}{RC}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 & { - \frac{D}{L}} \\ {\frac{D}{C}} & 0 \\ \end{array} } \right]} \right)\left[ {\begin{array}{*{20}c} {i_{11} } \\ {v_{11} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{1}{L}} \\ {\frac{ - 1}{C}} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {b_{1} i_{00} } \\ {b_{1} v_{00} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ114.png)

![$${\mathbf{A}}_{1} = \left[ {\begin{array}{*{20}c} { - j\omega } & { - \frac{1 - D}{L}} \\ {\frac{1 - D}{C}} & { - j\omega - \frac{1}{RC}} \\ \end{array} } \right],\quad {\mathbf{B}}_{1} = \left[ {\begin{array}{*{20}c} 0 & {\frac{{b_{1} }}{L}} \\ {\frac{{ - b_{1} }}{C}} & 0 \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equk.png)
![$$\begin{aligned} i_{11} & = {\text{e}}^{ - 0.059\tau } [0.2209\,{\text{cos(}}0.222\tau ) + 0.2547\,{\text{sin(}}0.222\tau ) + 0.7298\,\cos (1.222\tau ) \\ & \quad - 0.1333\,\sin (1.222\tau )] - 0.5007\,\cos \tau + 0.4031\,\sin \tau \\ v_{11} & = {\text{e}}^{ - 0.059\tau } [ - 2.188\,{\text{cos(}}0.222\tau ) + 3.22\,{\text{sin(}}0.222\tau ) + 1.22\,\cos ( 1.222\tau ) \\ & \quad + 3.365\,\sin ( 1.222\tau )] + 0.968\,\cos \tau - 3.945\,\sin \tau \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ116.png)
![$${\mathbf{x}} \approx {\mathbf{x}}_{0} + {\mathbf{x}}_{1} = \left[ {\begin{array}{*{20}c} {i_{00} + i_{11} } \\ {v_{00} + v_{11} } \\ \end{array} } \right]$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ117.png)

First-order approximation of the transient solution of CCM-Boost converter
![$${\mathbf{x}} = [\begin{array}{*{20}c} {i_{L} } & {v_{C} } \\ \end{array} ]^{Tr} \approx {\mathbf{x}}_{0} + {\mathbf{x}}_{1} + {\mathbf{x}}_{2}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ118.png)
![$$\begin{aligned} i_{L} & \approx 2.1734 + {\text{e}}^{ - 0.059\tau } [ - 2.1335\,{\text{cos(0}} . 2 2 2\tau ) + 4.1547\,{\text{sin(0}} . 2 2 2\tau ) + 0.021\tau \,{\text{cos(0}} . 2 2 2\tau ) \\ & \quad + 0.0018\tau \,\sin ( 0. 2 2 2\tau ) + 0.1810\,{ \cos }(0.778\tau ) - 0.0238\,\sin (0.778\tau ) \\ & \quad + 0.2733\,\cos (1.222\tau ) - 0.1333\,\sin (1.222\tau )] - 0.5007\,\cos \tau + 0.4031\,\sin \tau \\ & \quad - 0.2051\,\cos 2\tau - 0.002\,\sin 2\tau - 0.0476\,{ \cos }3\tau - 0.0408\,\sin 3\tau \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ119.png)
![$$\begin{aligned} v_{C} & \approx 49.368 + {\text{e}}^{ - 0.059\tau } [ - 51.636\,{\text{cos(0}} . 2 2 2\tau ) - 12.352\,{\text{sin(0}} . 2 2 2\tau ) \\ & \quad + 0.0438\tau \,{\text{cos(0}} . 2 2 2\tau ) + 0.2431\tau \,\sin ( 0. 2 2 2\tau ) + 0.0768\,{ \cos }(0.778\tau ) \\ & \quad + 0.2672\,\sin (0.778\tau ) + 1.22\,\cos (1.222\tau ) + 3.3648\,\sin (1.222\tau )] + 0.0968\,\cos \tau \\ & \quad - 3.945\,\sin \tau + 1. 2 3 9 7\,\cos 2\tau - 0.026\,\sin 2\tau + 0.1878\,{ \cos }3\tau + 0.3523\,\sin 3\tau \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ120.png)

Second-order approximation of the transient solution of CCM-Boost converter
4.6.4 Simplified Calculation

![$$\begin{aligned} i & \approx {\text{e}}^{ - 0.059\tau } [ - 2.222\,{ \cos }\,0.222\tau + 3.89\,{ \sin }\,0.222\tau ] + i_{steady} \\ v & \approx {\text{e}}^{ - 0.059\tau } [ - 50\,{ \cos }\,0.222\tau - 13.276\,{ \sin }\,0.222\tau ] + v_{steady} \\ \end{aligned}$$](../images/419194_1_En_4_Chapter/419194_1_En_4_Chapter_TeX_Equ122.png)

Approximated transient solution of CCM-Boost converter from simplified method
4.7 Summary
In this chapter, the equivalent-small-parameter method is used to analyze the PWM converters operating in CCM (continuous current mode) and DCM (discontinuous current mode) for obtaining the analytical expressions of steady-state periodic solutions and transient solutions. The equivalent-small-parameter method overcomes the shortcoming of dealing with large amount of calculation, which exists in the general average method. It is only necessary to solve the linear algebra or differential equations with lower order. It shows that even if the switching frequency is low and the ripple is large, the ESPM can still be applicable with high precision.