CHAPTER 11
HYPOTHESIS TESTING
At the start of their collaboration, Egon Pearson asked Jerzy Neyman how he could be sure that a set of data was normally distributed if he failed to find a significant p-value when testing for normality. Their collaboration started with this question, but Pearson’s initial question opened the door to a much broader one. What does it mean to have a nonsignificant result in a significance test? Can we conclude that a hypothesis is true if we have failed to refute it?
R. A. Fisher had addressed that question in an indirect way. Fisher would take large p-values (and a failure to find significance) as indicating that the data were inadequate to decide. To Fisher, there was never a presumption that a failure to find significance meant that the tested hypothesis was true. To quote him:

For the logical fallacy of believing that a hypothesis has been proved to be true, merely because it is not contradicted by the available facts, has no more right to insinuate itself in statistical than in other kinds of scientific reasoning … . It would, therefore, add greatly to the clarity with which the tests of significance are regarded if it were generally understood that tests of significance, when used accurately, are capable of rejecting or invalidating hypotheses, in so far as they are contradicted by the data: but that they are never capable of establishing them as certainly true … .
e9781466801783_i0016.jpg

Karl Pearson had often used his chi square goodness of fit test to “prove” that data followed particular distributions. Fisher had introduced more rigor into mathematical statistics, and Karl Pearson’s methods were no longer acceptable. The question still remained. It was necessary to assume that the data fit a particular distribution, in order to know which parameters to estimate and determine how those parameters relate to the scientific question at hand. The statisticians were frequently tempted to use significance tests to prove that.
In their correspondence, Egon Pearson and Jerzy Neyman explored several paradoxes that emerged from significance testing, cases where unthinking use of a significance test would reject a hypothesis that was obviously true. Fisher never fell into those paradoxes, because it would have been obvious to him that the significance tests were being applied incorrectly. Neyman asked what criteria were being used to decide when a significance test was applied correctly. Gradually, between their letters, with visits that Neyman made to England during the summers and Pearson’s visits to Poland, the basic ideas of hypothesis testing emerged.12
A simplified version of the Neyman-Pearson formulation of hypothesis testing can now be found in all elementary statistics text-books. It has a simple structure. I have found that it is easy for most first-year students to understand. Since it has been codified, this version of the formulation is exact and didactic. This is how it must be done, the texts imply, and this is the only way it can be done. This rigid approach to hypothesis testing has been accepted by regulatory agencies like the U.S. Food and Drug Administration and the Environmental Protection Agency, and it is taught in medical schools to future medical researchers. It has also wormed its way into legal proceedings when dealing with certain types of discrimination cases.
When the Neyman-Pearson formulation is taught in this rigid, simplified version of what Neyman developed, it distorts his discoveries by concentrating on the wrong aspects of the formulation. Neyman’s major discovery was that significance testing made no sense unless there were at least two possible hypotheses. That is, you could not test whether data fit a normal distribution unless there was some other distribution or set of distributions that you believed it would fit. The choice of these alternative hypotheses dictates the way in which the significance test is run. The probability of detecting that alternative, if it is true, he called the “power” of the test. In mathematics, clarity of thought is developed by giving clear, well-defined names to specific concepts. In order to distinguish between the hypothesis being used to compute Fisher’s p-value and the other possible hypothesis or hypotheses, Neyman and Pearson called the hypothesis being tested the “null hypothesis” and the other hypotheses the “alternative.” In their formulation, the p-value is calculated for testing the null hypothesis but the power refers to how this p-value will behave if the alternative is, in fact, true.
This led Neyman to two conclusions. One was that the power of a test was a measure of how good the test was. The more powerful of two tests was the better one to use. The second conclusion was that the set of alternatives cannot be too large. The analyst cannot say that the data come from a normal distribution (the null hypothesis) or that they come from any other possible distribution. That is too wide a set of alternatives, and no test can be powerful against all possible alternatives.
In 1956, L. J. Savage and Raj Raghu Bahadur at the University of Chicago showed that the class of alternatives does not have to be very wide for hypothesis testing to fail. They constructed a relatively small set of alternative hypotheses against which no test had any power. During the 1950s, Neyman developed the idea of restricted hypothesis tests, where the set of alternative hypotheses is very narrowly defined. He showed that such tests are more powerful than ones dealing with more inclusive sets of hypotheses.
In many situations, hypothesis tests are used against a null hypothesis that is a straw man. For instance, when two drugs are being compared in a clinical trial, the null hypothesis to be tested is that the two drugs produce the same effect. However, if that were true, then the study would never have been run. The null hypothesis that the two treatments are the same is a straw man, meant to be knocked down by the results of the study. So, following Neyman, the design of the study should be aimed at maximizing the power of the resulting data to knock down that straw man and show how the drugs differ in effect.
Unfortunately, to develop a mathematical approach to hypothesis testing that was internally consistent, Neyman had to deal with a problem that Fisher had swept under the rug. This is a problem that continues to plague hypothesis testing, in spite of Neyman’s neat, purely mathematical solution. It is a problem in the application of statistical methods to science in general. In its more general form, it can be summed up in the question: What is meant by probability in real life?
The mathematical formulations of statistics can be used to compute probabilities. Those probabilities enable us to apply statistical methods to scientific problems. In terms of the mathematics used, probability is well defined. How does this abstract concept connect to reality? How is the scientist to interpret the probability statements of statistical analyses when trying to decide what is true and what is not? In the final chapter of this book I shall examine the general problem and the attempts that have been made to answer these questions. For the moment, however, we will examine the specific circumstances that forced Neyman to find his version of an answer.
Recall that Fisher’s use of a significance test produced a number Fisher called the p-value. This is a calculated probability, a probability associated with the observed data under the assumption that the null hypothesis is true. For instance, suppose we wish to test a new drug for the prevention of a recurrence of breast cancer in patients who have had mastectomies, comparing it to a placebo. The null hypothesis, the straw man, is that the drug is no better than the placebo. Suppose that after five years, 50 percent of the women on placebos have had a recurrence and none of the women on the new drug have. Does this prove that the new drug “works”? The answer, of course, depends upon how many patients that 50 percent represents.
If the study included only four women in each group, that means we had eight patients, two of whom had a recurrence. Suppose we take any group of eight people, tag two of them, and divide the eight at random into two groups of four. The probability that both of the tagged people will fall into one of the groups is around .30. If there were only four women in each group, the fact that all the recurrences fell in the placebo group is not significant. If the study included 500 women in each group, it would be highly unlikely that all 250 with recurrences were on the placebo, unless the drug was working. The probability that all 250 would fall in one group if the drug was no better than the placebo is the p-value, which calculates to be less than .0001.
The p-value is a probability, and this is how it is computed. Since it is used to show that the hypothesis under which it is calculated is false, what does it really mean? It is a theoretical probability associated with the observations under conditions that are most likely false. It has nothing to do with reality. It is an indirect measurement of plausibility. It is not the probability that we would be wrong to say the drug works. It is not the probability of any kind of error. It is not the probability that a patient will do as well on the placebo as on the drug. But, to determine which tests are better than others, Neyman had to find a way to put hypothesis testing within a framework wherein probabilities associated with the decisions made from the test could be calculated. He needed to connect the p-values of the hypothesis test to real life.
In 1872, John Venn, the British philosopher, had proposed a formulation of mathematical probability that would make sense in real life. He turned a major theorem of probability on its head. This is the law of large numbers, which says that if some event has a given probability (like throwing a single die and having it land with the six side up) and if we run identical trials over and over again, the proportion of times that event occurs will get closer and closer to the probability.
Venn said the probability associated with a given event is the long-run proportion of times the event occurs. In Venn’s proposal, the mathematical theory of probability did not imply the law of large numbers; the law of large numbers implied probability. This is the frequentist definition of probability. In 1921, John Maynard Keynes13 demolished this as a useful or even meaningful interpretation, showing that it has fundamental inconsistencies that make it impossible to apply the frequentist definition in most cases where probability is invoked.
When it came to structuring hypothesis tests in a formal mathematical way, Neyman fell back upon Venn’s frequentist definition. Neyman used this to justify his interpretation of the p-value in a hypothesis test. In the Neyman-Pearson formulation, the scientist sets a fixed number, such as .05, and rejects the null hypothesis whenever the significance test p-value is less than or equal to .05. This way, in the long run, the scientist will reject a true null hypothesis exactly 5 percent of the time. The way hypothesis testing is now taught, Neyman’s invocation of the frequentist approach is emphasized. It is too easy to view the Neyman-Pearson formulation of hypothesis testing as a part of the frequentist approach to probability and to ignore the more important insights that Neyman provided about the need for a well-defined set of alternative hypotheses against which to test the straw man of the null hypothesis.
Fisher misunderstood Neyman’s insights. He concentrated on the definition of significance level, missing the important ideas of power and the need to define the class of alternatives. In criticism of Neyman, he wrote:

Neyman, thinking he was correcting and improving my own early work on tests of significance, as a means to the “improvement of natural knowledge,” in fact reinterpreted them in terms of that technological and commercial apparatus which is known as an acceptance procedure. Now, acceptance procedures are of great importance in the modern world. When a large concern like the Royal Navy receives material from an engineering firm it is, I suppose, subjected to sufficiently careful inspection and testing to reduce the frequency of the acceptance of faulty or defective consignments … . But, the logical differences between such an operation and the work of scientific discovery by physical or biological experimentation seem to me so wide that the analogy between them is not helpful, and the identification of the two sorts of operations is decidedly misleading.

In spite of these distortions of Neyman’s basic ideas, hypothesis testing has become the most widely used statistical tool in scientific research. The exquisite mathematics of Jerzy Neyman have now become an idée fixe in many parts of science. Most scientific journals require that the authors of articles include hypothesis testing in their data analyses. It has extended beyond the scientific journals. Drug regulatory authorities in the United States, Canada, and Europe require the use of hypothesis tests in submissions. Courts of law have accepted hypothesis testing as an appropriate method of proof and allow plaintiffs to use it to show employment discrimination. It permeates all branches of statistical science.
The climb of the Neyman-Pearson formulation to the pinnacle of statistics did not go unchallenged. Fisher attacked it from its inception and continued to attack it for the rest of his life. In 1955, he published a paper entitled “Statistical Methods and Scientific Induction” in the Journal of the Royal Statistical Society, and he expanded on this with his last book, Statistical Methods and Scientific Inference. In the late 1960s, David Cox, soon to be the editor of Biometrika, published a trenchant analysis of how hypothesis tests are actually used in science, showing that Neyman’s frequentist interpretation was inappropriate to what is actually done. In the 1980s, W. Edwards Deming attacked the entire idea of hypothesis testing as nonsensical. (We shall come back to Deming’s influence on statistics in chapter 24.) Year after year, articles continue to appear in the statistical literature that find new faults with the Neyman-Pearson formulation as frozen in the textbooks.
Neyman himself took no part in the canonization of the Neyman-Pearson formulation of hypothesis tesing. As early as 1935, in an article he published (in French) in the Bulletin de la Société Mathématique de France, he raised serious doubts about whether optimum hypothesis tests could be found. In his later papers, Neyman seldom made use of hypothesis tests directly. His statistical approaches usually involved deriving probability distributions from theoretical principles and then estimating the parameters from the data.
Others picked up the ideas behind the Neyman-Pearson formulation and developed them. During World War II, Abraham Wald expanded on Neyman’s use of Venn’s frequentist definitions to develop the field of statistical decision theory. Erich Lehmann produced alternative criteria for good tests and then, in 1959, wrote a definitive textbook on the subject of hypothesis testing, which remains the most complete description of Neyman-Pearson hypothesis testing in the literature.
Just before Hitler invaded Poland and dropped a curtain of evil upon continental Europe, Neyman came to the United States, where he started a statistics program at the University of California at Berkeley. He remained there until his death in 1981, having created one of the most important academic statistics departments in the world. He brought to his department some of the major figures in the field. He also drew from obscurity others who went on to great achievements. For example, David Blackwell was working alone at Howard University, isolated from other mathematical statisticians. Because of his race, he had been unable to get an appointment at “White” schools, in spite of his great potential; Neyman invited Blackwell to Berkeley. Neyman also brought in a graduate student who had come from an illiterate French peasant family; Lucien Le Cam went on to become one of the world’s leading probabilists.
Neyman was always attentive to his students and fellow faculty members. They describe the pleasures of the afternoon departmental teas, which Neyman presided over with a courtly graciousness. He would gently prod someone, student or faculty, to describe some recent research and then genially work his way around the room, getting comments and aiding the discussion. He would end many teas by lifting his cup and toasting, “To the ladies!” He was especially good to “the ladies,” encouraging and furthering the careers of women. Prominent among his female protégées were Dr. Elizabeth Scott, who worked with Neyman and was a coauthor on papers ranging from astronomy to carcinogenesis to zoology, and Dr. Evelyn Fix, who made major contributions to epidemiology.
Until R. A. Fisher died in 1962, Neyman was under constant attack by this acerbic genius. Everything Neyman did was grist for Fisher’s criticism. If Neyman succeeded in showing a proof of some obscure Fisherian statement, Fisher attacked him for misunderstanding what he had written. If Neyman expanded on a Fisherian idea, Fisher attacked him for taking the theory down a useless path. Neyman never responded in kind, either in print or, if we are to believe those who worked with him, in private.
In an interview toward the end of his life, Neyman described a time in the 1950s when he was about to present a paper in French at an international meeting. As he went to the podium, he realized that Fisher was in the audience. While presenting the paper, he steeled himself for the attacks he knew would come. He knew that Fisher would pounce upon some unimportant minor aspect of the paper and tear it and Neyman to pieces. Neyman finished and waited for questions from the audience. A few came. But Fisher never stirred, never said a word. Later, Neyman discovered that Fisher could not speak French.