I read The Tao of Physics in high school, and it left me hungry to understand the mathematical rigor that inspired mystical statements about quantum physics. I was equally unsatisfied in college physics courses, which had plenty of mathematical rigor but no mystical statements whatsoever. I wrote a term paper about quantum entanglement, which is mysterious if not quite mystical. While working on the term paper, I read classic articles about entanglement, but the information sank into my mind no further than the level that handles paraphrasing.
One reason I didn’t understand quantum entanglement is that I had never done an experiment with entangled particles. Indeed, the laboratory is the place where abstract concepts crystallize into palpable significance between your hands. The laboratory is where nature answers the questions posed by theorists. It’s impractical, however, for every interested person to do every interesting experiment. Now that I’ve done experiments with entangled particles, I hope I’m able to explain the phenomenon to anyone who’s curious.
Physics lab instructors sometimes feel the need to justify their existence—our existence. We insist that laboratory education is illuminating in ways that can never be fully conveyed in the lecture hall. Gesturing wildly for emphasis, we lavish praise on instructional experiments. Lab teaches hands-on skills and proves that physics actually works. Direct experience with an experiment gets you to think about the underlying physics more than anything else does. Certainly, doing experiments with entangled particles intensified my fascination with quantum mysteries. And I never would have done the experiments without the assistance and encouragement of several organizations and individuals.
Teaching physics lab isn’t nerdy enough, so every three years physics lab instructors come together to learn from one another, and generally geek out, at a conference organized by the Advanced Laboratory Physics Association (ALPhA). In summer 2012, the lab conference happened to be in Philadelphia when I was there anyway, visiting my parents. If the conference had been anywhere else, I probably wouldn’t have gone. I guard my summer vacation as greedily as Gollum guards the ring. I decided to go to the conference only because it practically arrived at my door. It almost would have been more effort to avoid going.
I expected to feel a bit disgruntled about being at the conference. Although I genuinely enjoy physics, I enjoy vacation even more. To my amazement, the conference was as enjoyable as a vacation. The talks and workshops were illuminating and inspiring. At that conference, I learned about the entanglement experiments for instructional labs. I also learned that ALPhA sponsors three-day “immersions” to teach instructors how to set up the experiment. In summer 2015, I attended the immersion led by Professor Enrique Galvez at Colgate University. I think I learned more physics in those three days than in any other three-day interval in my life.
After completing an immersion, instructors are eligible to apply to the Jonathan F. Reichert Foundation for a grant to help purchase the lab equipment. I’m grateful for the assistance that the Reichert Foundation provided for my instructional lab. The Emory physics department, where I work, covered the rest of the cost.
The final catalyst for this book was Emory’s Interdisciplinary Exploration and Scholarship (IDEAS) program, which organizes “sidecar” courses, each of them geared to explore a topic that intersects with (and is cosponsored by) two existing courses in different departments. I wanted to teach a sidecar course about quantum entanglement. I expected it to be cosponsored by my Advanced Lab course and a philosophy course. But I couldn’t find any philosophy professors who were interested. Luckily, I found a willing collaborator in the English department: Dave Fisher, who was scheduled to teach Technical Writing. We created a sidecar course to examine the different ways people write about quantum entanglement. If I hadn’t delved into the existing literature to prepare for the sidecar course, I never would have thought to write this book.
Erin Bonning, Michael Weissman, Alissa Bans, and Tom Bing generously read and commented on a draft of this book. I’m grateful for additional helpful discussions with colleagues, especially Sergei Urazhdin, Daniel Weissman, Keith Berland, Vincent Huynh, Luiz Santos, Ajit Srivastava, and Justin Burton. I take full responsibility, however, for any errors or imprecision.
Albert Einstein memorably described quantum entanglement as “spooky action at a distance.”1 I recall another memorable Einstein quote, this one from a letter he wrote to the philosopher Erik Gutkind in 1954. There Einstein explained his view that the scientist’s “religious feeling takes the form of a rapturous amazement at the harmony of natural law, which reveals an intelligence of such superiority that, compared with it, all the systemic thinking and acting of human beings is an utterly insignificant reflection.” In a book about physics, it may be irrelevant to observe that the rapturous harmony of the natural world is increasingly imperiled. And yet, I dedicate this book to the preservation and restoration of the natural world.