4.1 Introduction
- 1.
in the first stage: one player, henceforth called the leader, chooses an action x in his action set X;
- 2.
in the second stage: one player, henceforth called the follower, observes the action x chosen by the leader in the first stage and then chooses an action y in his action set Y ;
- 3.
after the two-stage interaction: the leader receives L(x, y) where
is the leader’s payoff function, and the follower receives F(x, y) where
is the follower’s payoff function.
Assume that players aim to minimize their payoff functions, as traditionally used in optimization literature where the payoff functions embed players’ costs. However, since , we could assume equivalently that players maximize their payoff functions (which usually appears in economics contexts, where payoff functions represent players’ profits). At the moment, we set no assumptions on the structure of the actions sets X and Y : they could be of finite or infinite cardinalities, subsets of finite or infinite dimensional spaces, strict subsets or whole spaces, etc. Their nature will be specified each time in the sequel of the chapter.
![$$\displaystyle \begin{aligned} (P_x)\colon\min_{y\in Y} F(x,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equa.png)
![$$\displaystyle \begin{aligned} {M}(x)=\operatorname*{\mbox{Arg min}}_{y\in Y}F(x,y)=\left\{y\in Y \text{ such that } F(x,y)=\inf_{z\in Y}F(x,z)\right\}. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equb.png)
![$$M\colon X\rightrightarrows Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq4.png)
The leader, if he can foresee the optimal response chosen for any action x by the follower, will pick an action in the set
according to such a forecast.
Given the informative structure of the game, predicting the follower’s optimal responses (or, equivalently, the response function y(⋅) of the follower) is typically a hard task for the leader, unless some additional information is available. Therefore, depending on the additional information of the leader about the single-valuedness of M or, when M is not single-valued, about how the follower chooses an optimal response in the set M(x) for any x ∈ X, one can associate to the Stackelberg game Γ different kinds of mathematical problems.
In Sect. 4.2 such mathematical problems and the related solution concepts are presented, together with illustrative examples and their possible roles in bilevel optimization.
In Sect. 4.3 we describe and discuss the main crucial issues arising in the just mentioned problems, focusing on the following ones: existence of solutions, “variational” stability, well-posedness, approximation, numerical approximation and selection of solutions. The crucial issues negatively answered are illustrated by counterexamples.
Regularizing the follower’s optimal reaction sets;
Regularizing the follower’s payoff function.
In Sect. 4.5 we investigate the second approach, that enables both to overcome the non-uniqueness of the follower’s optimal response and to select among the solutions. To get these goals, we construct sequences of Stackelberg games with a unique second-stage solution which approximate in some sense the original game by exploiting first the Tikhonov regularization and then the proximal regularization, two well-known regularization techniques in convex optimization.
A conclusive section concerns various extensions of the Stackelberg game notion considered in this chapter.
4.2 Models and Solution Concepts
We will illustrate five problems and solution concepts connected to the Stackelberg game defined in the previous section. The first one appears if the follower’s best reply correspondence M is assumed to be single-valued (and the leader knows it), whereas the others concern situations where M is not single-valued. Their connections will be emphasized and illustrated by examples. In this section, we only refer to seminal papers and to the first ones on regularization and approximation methods.
4.2.1 Stackelberg Problems
![$$\displaystyle \begin{aligned} (SP)\, \begin{cases} \underset{x\in X}{\min}\,\,L(x,m(x)) \\ \text{where } m(x) \text{ is the solution to }(P_x). \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equc.png)
Let us recall the solution concepts associated to (SP).
The infimum value infx ∈ XL(x, m(x)) is the Stackelberg value of (SP).
- A leader’s action
is a Stackelberg solution to (SP) if
An action profile
is a Stackelberg equilibrium of (SP) if
is a Stackelberg solution and
. △
![$$\displaystyle \begin{aligned} L(q_1,q_2)=q_1P(Q)-C_1(q_1)\quad \text{and}\quad F(q_1,q_2)=q_2P(Q)-C_2(q_2), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Eque.png)
![$$P(Q)=\max \{0,a-bQ\}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq11.png)
![$$\displaystyle \begin{aligned} m(q_1)=\max\left\{0,\frac{a-bq_1-c}{2b}\right\},\quad \text{for any }q_1\in[0,+\infty[ \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equf.png)
![$$ \operatorname *{\mbox{Arg max}}_{q_1\in [0,+\infty [}L(q_1,m(q_1))=\{(a-c)/2b\}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq12.png)
![$$\displaystyle \begin{aligned} \bar q_1=\frac{a-c}{2b}\quad \text{and}\quad \bar q_2=\frac{a-c}{4b}. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equg.png)
![$$\displaystyle \begin{aligned} (GSP)\, \begin{cases} \underset{x\in X,\,g(x,m(x))\leq 0}{\min}\,\,L(x,m(x)) \\ \mbox{where } m(x) \mbox{ is the solution to }(P_x), \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equh.png)
![$$g\colon X\times Y\to \mathbb {R}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq13.png)
From now on, in the next subsections of this section we assume that M is not single-valued.
4.2.2 Pessimistic Leader: Weak Stackelberg Problem
![$$\displaystyle \begin{aligned} (PB) \,\begin{cases} \underset{x\in X}{\min}\,\,\underset{y\in {M}(x)}{\sup}\,\,L(x,y) \\ \mbox{where }{M}(x)=\underset{y\in Y}{\operatorname*{\mbox{Arg min}}}\,\,F(x,y). \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equi.png)
The infimum value w =infx ∈ Xsupy ∈ M(x)L(x, y) is the security (or pessimistic) value of (PB).
- A leader’s action
is a weak Stackelberg (or pessimistic) solution to (PB) if
that is,.
An action profile
is a weak Stackelberg (or pessimistic) equilibrium of (PB) if
is a weak Stackelberg solution and
. △
For first investigations about regularization and approximation of problem (PB) see [51, 69, 71, 89].
4.2.3 Optimistic Leader: Strong Stackelberg Problem
![$$\displaystyle \begin{aligned} (OB) \,\begin{cases} \underset{x\in X}{\min}\,\,\underset{y\in {M}(x)}{\inf}\,\,L(x,y) \\ \text{where }{M}(x)=\underset{y\in Y}{\operatorname*{\mbox{Arg min}}}\,\,F(x,y). \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equk.png)
The infimum value s =infx ∈ Xinfy ∈ M(x)L(x, y) is the optimistic value of (OB).
- A leader’s action
is a strong Stackelberg (or optimistic) solution to (OB) if
that is,.
An action profile
is a strong Stackelberg (or optimistic) equilibrium of (OB) if
is a strong Stackelberg solution and
. △
The use of terms “weak Stackelberg” and “strong Stackelberg” goes back to [20] where a concept of sequential Stackelberg equilibrium in a general dynamic games framework is introduced. For a first investigation on regularization and approximation of problem (OB) see [52].
![$$(\bar x,\bar y)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq24.png)
![$$\displaystyle \begin{aligned} \min_{x\in X,\,y\in M(x)}L(x,y) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equm.png)
![$$\bar x\in X$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq25.png)
![$$\bar y\in M(\bar x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq26.png)
![$$L(\bar x,\bar y)=\inf _{x\in X,\,y\in M(x)}L(x,y)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq27.png)
The following examples show that the pessimistic and the optimistic behaviours of the leader can design different solutions, values and equilibria.
![$$\displaystyle \begin{aligned} L(T,Q)&= 2, &L(T,R)&= 3, & L(B,Q)&= 1, & L(B,R)&= 4,\\ F(T,Q)&= 0, &F(T,R)&= 0, & F(B,Q)&= 0, & F(B,R)&= 0. \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equn.png)
![../images/480569_1_En_4_Chapter/480569_1_En_4_Equo_HTML.png](../images/480569_1_En_4_Chapter/480569_1_En_4_Equo_HTML.png)
![$$\displaystyle \begin{aligned} x=T\Longrightarrow & \sup_{y\in M(x)}L(x,y)=3\quad \text{and}\quad \inf_{y\in M(x)}L(x,y)=2, \\ x=B\Longrightarrow & \sup_{y\in M(x)}L(x,y)=4\quad \text{and}\quad \inf_{y\in M(x)}L(x,y)=1, \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equp.png)
![$$\displaystyle \begin{aligned} L(x,y)=-x-y\quad \text{and}\quad F(x,y)=\begin{cases} (x+7/4)y, & \mbox{if } x\in[-2,-7/4[ \\ 0, & \mbox{if } x\in [-7/4,7/4[ \\ (x-7/4)y, & \mbox{if } x\in[7/4,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equq.png)
![$$\displaystyle \begin{aligned} M(x)=\begin{cases} \{1\}, & \mbox{if } x\in [-2,-7/4[ \\ {} [-1,1], & \mbox{if } x\in [-7/4,7/4] \\ \{-1\}, & \mbox{if } x\in ]7/4,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equr.png)
![$$\displaystyle \begin{aligned} \sup_{y\in M(x)}L(x,y)=\begin{cases} -x-1, & \mbox{if } x\in[-2,-7/4[ \\ -x+1, & \mbox{if } x\in[-7/4,2], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equs.png)
![$$\displaystyle \begin{aligned} \inf_{y\in M(x)}L(x,y)=\begin{cases} -x-1, & \mbox{if } x\in[-2,7/4] \\ -x+1, & \mbox{if } x\in]7/4,2], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equt.png)
4.2.4 Intermediate Stackelberg Problem
![$$\displaystyle \begin{aligned}M(x)=\{y_1(x),\dots,y_{k(x)}(x)\}.\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equu.png)
![$$\displaystyle \begin{aligned} (IS_D) \,\,\,\,\min_{x\in X}\sum_{i=1}^{k(x)}p_i(x)L(x,y_i(x)). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equv.png)
Let us recall the solution concepts related to (IS D).
The infimum value
is the intermediate value of (IS D).
- A leader’s action
is an intermediate Stackelberg solution with respect to D if
An action profile
is an intermediate Stackelberg equilibrium with respect to D if
is an intermediate Stackelberg solution with respect to D and
. △
Depending on the probability distribution D(x) on M(x) for any x ∈ X, problem (IS D) could become (PB) or (OB). Examples on the connections among weak, strong and intermediate Stackelberg solutions are illustrated in [83], one of which is presented below for the sake of completeness.
![$$\displaystyle \begin{aligned} \operatorname*{\mbox{Arg min}}_{x\in X}\left(\alpha L(x,x^2)+(1-\alpha)L(x,-x^2)\right)=\begin{cases} \{-1\}, & \mbox{if } \alpha\in[0,{3}/{4}] \\ \{-{1}/{2(2\alpha-1)}\}, & \mbox{if }\alpha\in]{3}/{4},1]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equx.png)
![$$\displaystyle \begin{aligned} v_D=\inf_{x\in X}\left(\alpha L(x,x^2)+(1-\alpha)L(x,-x^2)\right)=\begin{cases} 2\alpha-2, & \mbox{if } \alpha\in[0,{3}/{4}] \\ -{1}/{4(2\alpha-1)}, & \mbox{if }\alpha\in]{3}/{4},1], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equy.png)
![$$\displaystyle \begin{aligned} -2=s\leq v_D\leq w=-{1}/{4} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equz.png)
4.2.5 Subgame Perfect Nash Equilibrium Problem
The equilibrium concepts presented until now consist of action profiles, that is pairs composed by one action of the leader and one action of the follower and, moreover, they are focused primarily on the leader’s perspectives. Such concepts are broadly used in an engineering setting or by optimization practitioners, see for example [10, 28, 41, 81]. However, as traditional in a game-theoretical framework, we are now interested in an equilibrium concept which takes more into account the strategic aspects of the game. The equilibrium concept naturally fitting such goal is the subgame perfect Nash equilibrium (henceforth SPNE), which represents the most widely employed solution concept in an economic setting. The SPNE solution concept was introduced by the Nobel laureate Selten in [101] who suggested that players should act according to the so-called principle of sequential rationality: “the equilibria to select are those whereby the players behave optimally from any point of the game onwards”. For the notions of strategy, subgame and SPNE in a general game-theoretical framework and for further discussion on the behavioural implications and procedures to find SPNEs see, for example, [39, Chapter 3] and [87, Chapter 7].
We first recall the notion of player’s strategy only for a two-player Stackelberg game Γ = (X, Y, L, F). In such a game, the set of leader’s strategies coincides with the set of leader’s actions X, whereas the set of follower’s strategies is the set of all the functions from X to Y , i.e. Y X = {φ: X → Y }.
The set of strategy profiles is X × Y X and the definition of subgame perfect Nash equilibrium is characterized in the following way.
![$$(\bar x,\bar \varphi )\in X\times Y^X$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq33.png)
- (SG1)
- for each choice x of the leader, the follower minimizes his payoff function,
- (SG2)
- the leader minimizes his payoff function taking into account his hierarchical advantage, i.e.
Note that the denomination “subgame perfect Nash equilibrium” is due to the following key features: first the SPNE notion is a refinement of the Nash equilibrium solution concept (introduced by the Nobel laureate Nash in [95]), secondly the restriction of an SPNE to any subgame constitutes a Nash equilibrium.
We emphasize that an SPNE consists of a strategy profile, that is a pair composed by one strategy of the leader (or equivalently one action of the leader) and one strategy of the follower (which is a function from the actions set of the leader to the actions set of the follower), as illustrated in Definition 4.2.5 and differently from all the equilibrium concepts defined before where only action profiles are involved. However, we can connect SPNEs and the equilibrium notions described above in this section, as pointed out in the following examples.
The set of SPNEs of a Stackelberg game Γ = (X, Y, L, F) where the follower’s optimal response to any choice of the leader is unique can be fully characterized in terms of the solutions to the associate problem (SP) defined in Sect. 4.2.1.
![$$\displaystyle \begin{aligned}\begin{array}{c} (\bar x,\bar\varphi)\in X\times Y^X \text{ is an SPNE of } \Gamma \end{array}\Longleftrightarrow\begin{array}{c} \bar{x}\text{ is a solution to } (SP) \text{ and}\\ \bar\varphi(x)=m(x)\text{ for any } x\in X \end{array}\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equac.png)
![$$\displaystyle \begin{aligned} (\bar x,\bar\varphi)\in X\times Y^X \text{ is an SPNE of } \Gamma \Longrightarrow (\bar{x},\bar\varphi(\bar x))\in X\times Y\text{ is a Stackelberg equilibrium.} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equad.png)
![$$(\bar q_1,\bar m)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq34.png)
![$$\bar q_1\in [0,+\infty [$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq35.png)
![$$\bar m\colon [0,+\infty [\to [0,+\infty [$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq36.png)
![$$\displaystyle \begin{aligned} \bar q_1=\frac{a-c}{2b}\quad \text{and}\quad \bar m(q_1)=\max\left\{0,\frac{a-bq_1-c}{2b}\right\}. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equae.png)
![$$\bar q_1$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq37.png)
![$$(\bar q_1,\bar m(\bar q_1))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq38.png)
In the case where the follower’s best reply correspondence is not single-valued, the solutions to the associate problem (PB) as well as to the associate problem (OB) defined in Sects. 4.2.2 and 4.2.3, respectively, can be part of an SPNE.
![$$(T,\bar \varphi _1)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq39.png)
![$$(T,\bar \varphi _2)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq40.png)
![$$\bar \varphi _1$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq41.png)
![$$\bar \varphi _2$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq42.png)
![$$\displaystyle \begin{aligned} \bar\varphi_1(x)=\begin{cases} R, & \mbox{if } x=T \\ R, & \mbox{if } x=B \end{cases}\quad \text{and}\quad \bar\varphi_2(x)=\begin{cases} Q, & \mbox{if } x=T \\ R, & \mbox{if } x=B, \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equaf.png)
![$$(B,\bar \varphi _3)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq43.png)
![$$(B,\bar \varphi _4)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq44.png)
![$$\bar \varphi _3$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq45.png)
![$$\bar \varphi _4$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq46.png)
![$$\displaystyle \begin{aligned} \bar\varphi_3(x)=\begin{cases} Q, & \mbox{if } x=T \\ Q, & \mbox{if } x=B \end{cases}\quad \text{and}\quad \bar\varphi_4(x)=\begin{cases} R, & \mbox{if } x=T \\ Q, & \mbox{if } x=B, \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equag.png)
![$$(T,\bar \varphi _1)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq47.png)
![$$(B,\bar \varphi _3)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq48.png)
![$$\displaystyle \begin{gathered} \{\bar\varphi_1(T)\}=\operatorname*{\mbox{Arg max}}_{y\in\{Q,R\}}L(T,y)\quad \text{and}\quad \{\bar\varphi_1(B)\}=\operatorname*{\mbox{Arg max}}_{y\in\{Q,R\}}L(B,y), \\ \{\bar\varphi_3(T)\}=\operatorname*{\mbox{Arg min}}_{y\in\{Q,R\}}L(T,y)\quad \text{and}\quad \{\bar\varphi_3(B)\}=\operatorname*{\mbox{Arg min}}_{y\in\{Q,R\}}L(B,y), \end{gathered} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equah.png)
Therefore, having also in mind to deal with the issue of how reducing the number of SPNEs, we will take into account these latter types of SPNEs “induced” by weak or strong Stackelberg solutions.
- A strategy profile
is an SPNE of Γ induced by a weak Stackelberg solution if
is an SPNE of Γ which satisfies
- A strategy profile
is an SPNE of Γ induced by a strong Stackelberg solution if
is an SPNE of Γ which satisfies
△
Coming back to the second example on page 13, is an SPNE induced by a weak Stackelberg solution,
is an SPNE induced by a strong Stackelberg solution,
and
are SPNEs that are not induced either by a weak or by a strong Stackelberg solution and the game has no further SPNEs.
Let us provide below an example where the SPNEs induced by weak or strong Stackelberg solutions are derived in a continuous setting, differently from the above example.
![$$(2,\bar \varphi )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq57.png)
![$$(7/4,\bar \psi )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq58.png)
![$$\bar \varphi \colon [-2,2]\to [-1,1]$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq59.png)
![$$\bar \psi \colon [-2,2]\to [-1,1]$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq60.png)
![$$\displaystyle \begin{aligned} \bar\varphi(x)=\begin{cases} 1, & \mbox{if } x\in [-2,-7/4[ \\ -1, & \mbox{if } x\in [-7/4,2] \end{cases}\quad \text{and}\quad \bar\psi(x)=\begin{cases} 1, & \mbox{if } x\in [-2,7/4] \\ -1, & \mbox{if } x\in ]7/4,2], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equak.png)
![$$(2,\bar \vartheta )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq61.png)
![$$\bar \vartheta \colon [-2,2]\to [-1,1]$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq62.png)
![$$\displaystyle \begin{aligned} \bar\vartheta(x)=\begin{cases} 1, & \mbox{if } x\in[-2,-7/4[ \\ -4x/7, & \mbox{if } x\in[-7/4,7/4[ \\ -1, & \mbox{if } x\in [7/4,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equal.png)
4.3 Crucial Issues in Stackelberg Games
Existence: do the solutions of the problem exist under not too restrictive assumptions on the actions sets and on the payoff functions (possibly discontinuous, as not unusual in economic frameworks)?
“Variational” stability: the data of the problem could be affected by uncertainty, hence given a perturbation of the original problem acting on the actions sets and/or on the payoff functions, does a sequence of solutions of the perturbed problems converge to a solution of the original problem? And what about the values? Such analysis, which helps to predict the “behaviour” of the game when one is not able to deal with exact equilibria, and similar analyses that compare outcomes before and after a change in exogenous parameters are known in economics as comparative statics.
Well-posedness: does the problem have a unique solution? And does any method which constructs an “approximating sequence” automatically allow to approach a solution?
Approximation: how constructing appropriate concepts of approximate solutions in order to both obviate the lack of solutions of a problem and to manage problems where infinite dimensional spaces are involved?
Approximation via numerical methods: how transforming the original problem into a better-behaved equivalent problem? And how overcoming the numerical difficulties which derive from the possible non-single-valuedness of the follower’s best reply correspondence?
Selection: if the problem has more than one solution, is it possible to construct a procedure which allows to reduce the number of solutions or, better yet, to pick just one solution? Which are the motivations that would induce the players to act according to such a procedure in order to reach the designed solution?
Now, we discuss which of the issues displayed above can be positively or negatively answered.
4.3.1 Stackelberg Problems
Problem (SP) is well-behaved regarding all the topics just summarized. In particular, by applying the maximum theorem in [6, 16], the existence of Stackelberg solutions and Stackelberg equilibria is guaranteed provided that the action sets X and Y are compact subsets of two Euclidean spaces and that the payoff functions L and F are continuous over X × Y .
L is lower semicontinuous over X × Y ,
F is lower semicontinuous over X × Y ,
- for any (x, y) ∈ X × Y and any sequence (x n)n converging to x in X, there exists a sequence
in Y such that
![$$\displaystyle \begin{aligned} {(SP)_n} \,\begin{cases} \underset{x\in X}{\min}\,\,L_n(x,m_n(x)) \\ \text{where } m_n(x)\text{ is the solution to }\underset{y\in Y}{\min}\,\,F_n(x,y), \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equan.png)
![$$\displaystyle \begin{aligned}\lim_{n\to +\infty}L_n(x_n,y_n)=L(x,y)\quad \mathit{\text{and}}\quad \lim_{n\to +\infty}F_n(x_n,y_n)=F(x,y).\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equao.png)
![$$\displaystyle \begin{aligned} \lim_{n\to +\infty}m_n(x_n) = m(x)\quad \mathit{\text{and}}\quad \lim_{n\to +\infty}F_n(x_n,m_n(x_n)) = F(x,m(x)). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equap.png)
- for any sequence
such that
and
converges to
in X for a selection of integers (n k)k, we have
.
![$$(\bar x_n,\bar y_n)\in X\times Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq69.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq70.png)
![$$(\bar x_n,\bar y_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq71.png)
![$$(\bar x,\bar y)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq72.png)
![$$\displaystyle \begin{aligned} \lim_{n\to +\infty}L_n(\bar x_n,\bar y_n)=L(\bar x,\bar y)\quad \mathit{\text{and}}\quad \lim_{n\to +\infty}F_n(\bar x_n,\bar y_n)=F(\bar x,\bar y).\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equar.png)
△
- the continuous convergence of (L n)n to L can be substituted by the following two conditions:
- (a)for any (x, y) ∈ X × Y and any sequence (x n, y n)n converging to (x, y) in X × Y , we have
- (b)for any x ∈ X there exists a sequence
converging to x in X such that, for any y ∈ Y and any sequence (y n)n converging to y in Y , we have
- (a)
- whereas, the continuous convergence of (F n)n to F can be substituted by the following two conditions:
- (c)for any (x, y) ∈ X × Y and any sequence (x n, y n)n converging to (x, y) in X × Y , we have
- (d)for any (x, y) ∈ X × Y and any sequence (x n)n converging to x in X, there exists a sequence
in Y such that
- (c)
△
Results on well-posedness of (SP) can be found in [68, 91], whereas in [28, Chapter 6] numerical approximation and algorithmic issues are widely investigated.
Concerning problem (GSP) defined in Sect. 4.2.1, we mention that in [103] a first approximation technique based on a barrier method has been proposed, then in [67] a general approximation scheme involving conditions of minimal character has been introduced together with applications to barrier methods, whereas in [72] also external penalty methods have been considered.
4.3.2 Weak Stackelberg (or Pessimistic Bilevel Optimization) Problem
Problem (PB) is the worst-behaved among the problems illustrated in Sect. 4.2. In fact, the compactness of the action sets and the continuity of the payoff functions do not guarantee, in general, the existence of weak Stackelberg solutions and weak Stackelberg equilibria even in a finite dimensional setting, as proved in many folk examples in literature (see [15, 80] and [10, Remark 4.3]) and in the following one.
![$$\displaystyle \begin{aligned} M(x)=\begin{cases} \{-1\}, & \mbox{if } x\in[-1,0[ \\ {} [-1,1], & \mbox{if } x=0 \\ \{1\}, & \mbox{if } x\in ]0,1]. \end{cases} \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ1.png)
![$$\displaystyle \begin{aligned} \sup_{y\in M(x)}L(x,y)=\begin{cases} -x-1, & \mbox{if } x\in[-1,0[ \\ -x+1, & \mbox{if } x\in [0,1], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equaw.png)
![$$ \operatorname *{\mbox{Arg min}}_{x\in X}\sup _{y\in M(x)}L(x,y)=\emptyset $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq75.png)
Nevertheless, existence results for very special classes of problem (PB) can be found in [2, 3, 80].
In a more general framework, to overcome the lack of solutions, for any 𝜖 > 0 the concept of 𝜖-approximate solution of (PB) has been investigated in a sequential setting by Loridan and Morgan in [71], where the existence of such solutions is analyzed under mild convexity assumptions on the follower’s payoff function, and in [74] where quasi-convexity assumptions are considered.
Then, in [76] the notion of strict 𝜖-approximate solution has been introduced and related existence results have been provided without requiring convexity assumptions. A crucial property of these two concepts is the convergence of the approximate pessimistic values towards the pessimistic value of (PB) as 𝜖 tends to zero. We point out that all the results in the papers just mentioned have been obtained in the case of non-parametric constraints.
Afterwards, Lignola and Morgan in [51] extensively investigated all the possible kinds of constraints (including those defined by parametric inequalities) in a topological setting. More recently, new notions of approximate solutions have been introduced in [63, 64] in an easier-to-manage sequential setting which allow to construct a surrogate for the solution of (PB) called viscosity solution. Such concepts will be presented in Sect. 4.4 together with their properties.
![$$\displaystyle \begin{aligned} {(PB)_n} \,\begin{cases} \underset{x\in X}{\min}\,\,\underset{y\in {M_n}(x)}{\sup}\,\,L_n(x,y) \\ \text{where }{M_n}(x)=\underset{y\in Y}{\operatorname*{\mbox{Arg min}}}\,\,F_n(x,y), \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equax.png)
Consider X = Y = [−1, 1], L(x, y) = x + y, F(x, y) = 0 and let L
n(x, y) = x + y + 1∕n and F
n(x, y) = y∕n for any .
Although the sequence of functions (L n)n continuously converges to L and the sequence (F n)n continuously converges to F, the sequence of pessimistic values of (PB)n does not converge to the pessimistic value of (PB).
![$$\displaystyle \begin{aligned} \inf_{x\in X}\sup_{y\in {M_n}(x)} L_n(x,y)=-2+{1}/{n}\quad \text{and}\quad \inf_{x\in X}\sup_{y\in {M}(x)} L(x,y)=0. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equay.png)
![$$\displaystyle \begin{aligned} -2=\lim_{n\to +\infty} \bigg(\inf_{x\in X}\sup_{y\in {M_n}(x)} L_n(x,y)\bigg)\neq \inf_{x\in X}\sup_{y\in {M}(x)} L(x,y)=0.\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equaz.png)
However, convergence results of the exact solutions to (PB)n towards a solution to (PB) have been obtained in [69] for a special class of problems.
In a more general framework, in order to obviate the lack of stability, a first attempt to manage the stability issue (intended in the Hausdorff’s sense) of (PB) can be found in [89] by means of approximate solutions. Afterwards, “variational” stability (in the sense of the above example) for such approximate solutions has been investigated under conditions of minimal character and assuming non-parametric constraints in [71] (under mild convexity assumptions on the follower’s payoff function) and in [74] (under quasi-convexity assumptions). For applications to interior penalty methods see [70, Section 5] and to exterior penalty methods see [74, Section 5].
Then, a comprehensive analysis on all the types of follower’s constraints has been provided in [51] for a general topological framework. Such results will be presented in Sect. 4.4.
Furthermore, (PB) is hard to manage even regarding well-posedeness properties, investigated in [91].
Concerning the numerical approximation issue of (PB), various regularization methods involving both the follower’s optimal reaction set and the follower’s payoff function have been proposed in order to approach problem (PB) via a sequence of Stackelberg problems; for first results, see [29, 75, 77, 78, 88]. These methods, their properties and the results achieved will be presented in Sect. 4.5.
4.3.3 Strong Stackelberg (or Optimistic Bilevel Optimization) Problem
Problem (OB) is ensured to have strong Stackelberg solutions under the same assumptions stated for the existence of solutions of (SP), i.e. by assuming that the action sets X and Y are compact subsets of two Euclidean spaces and that the payoff functions L and F are continuous over X × Y .
The continuity assumptions can be weakened as in Remark 4.3.1, by applying Proposition 4.1.1 in [49] about the lower semicontinuity of the marginal function. △
We remind that results concerning the existence of strong Stackelberg solutions have been first obtained in [53].
![$$\displaystyle \begin{aligned} {(OB)_n} \,\begin{cases} \underset{x\in X}{\min}\,\,\underset{y\in {M_n}(x)}{\inf}\,\,L_n(x,y) \\ \text{where }{M_n}(x)=\underset{y\in Y}{\operatorname*{\mbox{Arg min}}}\,\,F_n(x,y), \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equba.png)
We point out that problem (OB), as well as (PB), can exhibit under perturbation a lack of convergence of the strong Stackelberg solutions and of the optimistic values, as illustrated in Example 4.1 in [52], rewritten below for the sake of completeness.
Consider X = Y = [0, 1], L(x, y) = x − y + 1, F(x, y) = x and let L
n(x, y) = L(x, y) and F
n(x, y) = y∕n + x for any .
Though the sequences of functions (L n)n and (F n)n continuously converge to L and F, respectively, the sequence of optimistic values of (OB)n does not converge to the optimistic value of (OB).
![$$\displaystyle \begin{aligned} \inf_{x\in X}\inf_{y\in {M_n}(x)} L_n(x,y)=1\quad \text{and}\quad \inf_{x\in X}\inf_{y\in {M}(x)} L(x,y)=0. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbb.png)
![$$\displaystyle \begin{aligned} \lim_{n\to +\infty} \left(\inf_{x\in X}\inf_{y\in {M_n}(x)} L_n(x,y)\right)\neq \inf_{x\in X}\inf_{y\in {M}(x)} L(x,y).\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbc.png)
However, notions of approximate solutions have been introduced and investigated in [52] in order to face the lack of stability in (OB), whereas achievements on well-posedness can be derived by applying results obtained in [54, 55].
Obviously, as well as in (PB), the non-single-valuedness of the follower’s best reply correspondence M gives rise to difficulties from the numerical point of view in (OB).
4.3.4 Intermediate Stackelberg Problem
Sufficient conditions for the existence of intermediate Stackelberg solutions of (IS D) are investigated in [83, Section 3] in the general case where M(x) is not a discrete set for at least one x ∈ X. However, we point out that problem (IS D) inherits all the difficulties illustrated for (PB) about existence, stability, well-posedness and approximation issues.
4.3.5 Subgame Perfect Nash Equilibrium Problem
When the follower’s best reply correspondence M is not a single-valued map, infinitely many SPNEs could come up in Stackelberg games, as shown in the following example.
![$$\displaystyle \begin{aligned} \varphi^\sigma(x)=\begin{cases} -1, & \mbox{if } x\in[-1,0[ \\ \sigma, & \mbox{if } x=0 \\ 1, & \mbox{if } x\in ]0,1], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbd.png)
![$$ \operatorname *{\mbox{Arg min}}_{x\in X}L(x,\varphi ^\sigma (x))=\{-1\}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq78.png)
Hence, restricting the number of SPNEs becomes essential and the selection issue arises. For further discussion on the theory of equilibrium selection in games, see [40].
We showed via the second example on page 13 and the example on page 14 that starting from a solution to the associated (PB) or to the associated (OB) one can induce an SPNE motivated according to each of the two different behaviours of the leader. Finding such SPNEs induced by weak or strong Stackelberg solutions, as defined in Definition 4.2.6, provides two methods to select an SPNE in Stackelberg games. Nevertheless such methods can be exploited only in the two extreme situations illustrated before. Anyway they require to the leader of knowing the follower’s best reply correspondence and, at the best of our knowledge, they do not exhibit a manageable constructive approach to achieve an SPNE. △
Furthermore, also the numerical approximation issue matters for the SPNEs in Stackelberg games since M can be not single-valued. Therefore, it would be desirable to design constructive methods in order to select an SPNE with the following features: relieving the leader of knowing M, allowing to overcome the difficulties deriving from the possible non-single-valuedness of M, providing some behavioural motivations of the players (different from the extreme situations described above). Results in this direction have been first obtained in [93], where an SPNE selection method based on Tikhonov regularization is proposed, and more recently in [22], where proximal regularization is employed.
In the rest of the chapter we will again present results under easy-to-manage continuity or convergence assumptions, but we point out that the papers quoted in the statements involve conditions of minimal character, as in Remarks 4.3.1 and 4.3.3.
4.4 Regularizing the Follower’s Optimal Reaction Set in Stackelberg Games
The first attempts for approximating a Stackelberg game Γ = (X, Y, L, F) by a general sequence of perturbed or regularized games have been carried out by Loridan and Morgan. They started in [67, 68, 73] with the case where the second-stage problem (P x) has a unique solution for any x and there is no difference between the optimistic and the pessimistic bilevel optimization problem; then, they extensively investigated in [69–71, 74–77] pessimistic bilevel problems in which the follower’s constraints do not depend on the leader’s actions.
![$$\displaystyle \begin{aligned} K(x) \ = \ \bigcap\limits_{i=1}^k\,K_i(x) \ \ = \ \bigcap\limits_{i=1}^k\left\{y \in Y \ \mbox{such that} \ g_i(x,y) \leq 0 \right\}, \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ2.png)
![$$\mathbb {R}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq79.png)
the set of solutions to the optimistic bilevel problem (OB), i.e. the set of strong Stackelberg solutions of (OB).
the set of solutions to the pessimistic bilevel problem (PB), i.e. the set of weak Stackelberg solutions of (PB).
4.4.1 Regularization of Pessimistic Bilevel Optimization Problems
![$$\displaystyle \begin{aligned}e(x) \ = \ \sup\limits_{y \in M(x)}\,L(x,y) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Eqube.png)
Let X and Y be nonempty subsets of two Euclidean spaces.
![$$\,T: x \in X \rightrightarrows T(x)\subseteq Y\,$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq82.png)
![$$\displaystyle \begin{aligned} T(x) \ \subseteq \ \operatorname*{\mbox{Lim inf}}_n\,T(x_n). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbf.png)
![$$n \in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq83.png)
![$$\displaystyle \begin{aligned} \operatorname*{\mbox{Lim sup}}_n\,T(x_n) \ \subseteq \ T(x). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbg.png)
![$$ \operatorname *{\mbox{Lim inf}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq84.png)
![$$ \operatorname *{\mbox{Lim sup}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq85.png)
Then, let us recall the well-known maximum theorem [6, 16].
the function L is lower semicontinuous over X × Y ;
the set-valued map
is lower semicontinuous over X;
![$$\displaystyle \begin{aligned} \sup\limits_{y \in T(x)}\,L(x,y) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbh.png)
is lower semicontinuous over X.△
4.4.1.1 Approximate and Strict Approximate Solutions
An attempt to present a complete discussion, which aimed to unify all previous results in a general scheme, was given in [51] in the setting of topological vector spaces and by analyzing the second-stage problem in the presence and in the absence of general or inequality constraints. Unfortunately, using Γ-limits and working in a topological setting have restricted the readability and the applicability of that paper, so, here we recall the main idea and the principal results in a simplified form but under more restrictive assumptions.
![$$\displaystyle \begin{aligned}M^\varepsilon: \ x \in X \rightrightarrows M^\varepsilon(x) \ = \ \left\{y \in K(x) \ \mbox{such that} \ F(x,y) \ \leq \ \inf\limits_{z \in K(x)} F(x,z) + \varepsilon \right\},\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbi.png)
![$$\widetilde {M}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq87.png)
![$$\displaystyle \begin{aligned} \widetilde{M}^\varepsilon: \ x \in X \rightrightarrows \widetilde{M}^\varepsilon(x) \ = \ \left\{y \in K(x) \ \mbox{such that} \ F(x,y) \ < \ \inf\limits_{z \in K(x)} F(x,z) + \varepsilon \right\}, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbj.png)
![$$\widetilde {M}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq88.png)
and
for every x ∈ ]0, 1];
;
;
![../images/480569_1_En_4_Chapter/480569_1_En_4_IEq93_HTML.gif](../images/480569_1_En_4_Chapter/480569_1_En_4_IEq93_HTML.gif)
![../images/480569_1_En_4_Chapter/480569_1_En_4_IEq94_HTML.gif](../images/480569_1_En_4_Chapter/480569_1_En_4_IEq94_HTML.gif)
![$$\displaystyle \begin{aligned}y^2-(x+1)y+\varepsilon=0.\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbk.png)
![$$\widetilde {M}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq97.png)
In order to prove the lower semicontinuity of , a crucial role is played both by the lower semicontinuity and closedness of the constraints map K and by the continuity of the follower’s payoff function F, as shown by the next lemmas, which concern, respectively, the continuity and convexity properties of inequality constraints maps and the lower semicontinuity of
and M
ε. The first lemma can be found in [13, theorems 3.1.1 and 3.1.6].
- (C1)
for every i = 1, …, k, the function g iis lower semicontinuous over X × Y ; then, the set-valued map K is closed on X.
If the following assumptions are satisfied:
- (C2)
for every i = 1, …, k and y ∈ Y , the function g i(⋅, y) is upper semicontinuous over X
- (C3)
for every i = 1, …, k and x ∈ X, the function g i(x, ⋅) is strictly quasiconvex (see [ 13]) and upper semicontinuous on Y , which is assumed to be convex;
- (C4)
for every x ∈ X there exists y ∈ Y such that
;
then, the set-valued map K is lower semicontinuous and convex-valued over X. △
![$$\displaystyle \begin{aligned} K_i(x) \ \subseteq \text{cl}\,(\text{int}\,K_i(x)) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbl.png)
Under the assumptions (C
1) − (C
4), if the set X is closed, the set Y is convex and compact and the function F is continuous over X × Y , then the map
is lower semicontinuous over X.△
In order to get the lower semicontinuity of M
ε, a crucial role is also played by suitable convexity properties of the data which guarantee that for any x ∈ X.
- (H1)
the function F(x, ⋅) is strictly quasiconvex on K(x), for every x ∈ X
then, the map M εis lower semicontinuous over X.△
![$$\displaystyle \begin{aligned} e^\varepsilon \ : x \in X \rightarrow \sup\limits_{y \in M^\varepsilon(x)}L(x,y) \ \ \ \ \ \ \ \ \ \widetilde{e}^\varepsilon \ : x \in X \rightarrow \sup\limits_{y \in \widetilde{M}^\varepsilon(x)}L(x,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbm.png)
![$$\mathcal {W}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq103.png)
![$$\widetilde {\mathcal {W}}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq104.png)
![$$\displaystyle \begin{gathered} x^\varepsilon \in \mathcal{W}^\varepsilon \Longleftrightarrow e^\varepsilon(x^\varepsilon) = \inf\limits_{x \in X}e^\varepsilon(x) \Longleftrightarrow \sup_{y \in M^\varepsilon(x^\varepsilon)}L(x^\varepsilon,y) = \inf\limits_{x \in X}\sup_{y \in M^\varepsilon(x)}L(x,y), \\ \widetilde{x}^\varepsilon \in \widetilde{\mathcal{W}}^\varepsilon \Longleftrightarrow \widetilde{e}^\varepsilon(\widetilde{x}^\varepsilon) = \inf\limits_{x \in X}\widetilde{e}^\varepsilon(x) \Longleftrightarrow \sup_{y \in \widetilde{M}^\varepsilon(\widetilde{x}^\varepsilon)}L(\widetilde{x}^\varepsilon,y) = \inf\limits_{x \in X}\sup_{y \in \widetilde{M}^\varepsilon(x)}L(x,y). \end{gathered} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbn.png)
Assume that the set X is compact and the function L is lower semicontinuous over X × Y .
If assumptions of Lemma
4.4.5hold, then the approximate solutions set
is nonempty for any ε > 0.
If assumptions of Lemma
4.4.6hold, then the approximate solutions set
is nonempty for any ε > 0. △
- do the approximate security values w ε and
, defined respectively by
converge towards the security value w of the original problem when ε tends to zero? are such approximate solutions stable with respect to perturbations of the data, for any fixed ε > 0?
![$$\displaystyle \begin{aligned} (PB)_n \ \ \ \mbox{find} \ x_n \in X \ \mbox{such that} \ \sup\limits_{y \in M_n(x_n)}L_n(x_n,y) \ = \ \inf\limits_{x \in X}\sup\limits_{y \in M_n(x)} L_n(x,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbp.png)
![$$\mathbb {R}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq108.png)
![$$M^\varepsilon _n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq109.png)
![$$\displaystyle \begin{aligned} K_n(x) \ = \ \bigcap\limits_{i=1}^k\,\left\{y \in Y \ \mbox{such that} \ g_{i,n}\,(x,y) \ \leq 0 \right\} \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ3.png)
![$$M^\varepsilon _n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq110.png)
![$$\displaystyle \begin{aligned} M^\varepsilon_n : x \in X \rightrightarrows M^\varepsilon_n(x)= \left\{y \in K_n(x) : F_n(x,y) \leq \inf\limits_{z \in K_n(x)} F_n(x,z) + \varepsilon \right\} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbq.png)
![$$\mathcal {W}^\varepsilon _n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq111.png)
![$$\displaystyle \begin{aligned} \mathcal{W}^\varepsilon_n = \left\{x \in X \ : \ \sup_{y \in M^\varepsilon_n(x)}L_n(x,y) = \inf\limits_{u \in X}\sup_{y \in M^\varepsilon_n(u)}L_n(u,y) \ = \ w^\varepsilon_n \right\}. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbr.png)
![$$(x^{\varepsilon }_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq112.png)
![$$x^\varepsilon \in \mathcal {W}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq113.png)
![$$\displaystyle \begin{aligned} \underset{n}{\mbox{Limsup}} \,\mathcal{W}^\varepsilon_n \subseteq \mathcal{W}^\varepsilon, \ \ \ \forall \ \varepsilon >0. \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ4.png)
![$$\displaystyle \begin{aligned} \lim\limits_{\varepsilon \rightarrow 0}\, \widetilde{w}^\varepsilon \ = w \ = \ \lim\limits_{\varepsilon \rightarrow 0}\, w^\varepsilon. \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbs.png)
△
under the assumptions of Proposition 4.4.8, the map M ε may not be lower semicontinuous over X, so this property is not necessary for the approximate security values convergence;
no convexity assumption is made on g i, F and L.
![$$n \in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq114.png)
- (C 3,n )
for every i = 1, …, k and x ∈ X, the function g i,n(x, ⋅) is strictly quasi-convex on Y ;
- (C 4,n )
for every x ∈ X there exists y ∈ Y such that
;
- (H 2,n )
- for any (x, y) ∈ X × Y and any sequence (x n, y n)nconverging to (x, y) in X × Y one has
the ε-solutions are stable, i.e. inclusion in (4.4.3) holds,
the ε-values are stable, i.e.
.△
We stress that, in general, one cannot prove a result analogous to (4.4.3) also for the strict approximate solutions , due to the open nature of them. A natural extension of the previous investigations was the research of possible candidates to substitute the lacking weak Stackelberg solutions to (PB), which will be presented in the next subsection.
We mention that the approximate solutions presented above have been afterwards employed in [1, 4] (about the strong-weak Stackelberg problem, which generalizes problems (PB) and (OB)) and in [45].
4.4.1.2 Inner Regularizations and Viscosity Solutions
defining regularizing problems which have solutions under not too restrictive conditions;
utilizing sequences of solutions to the regularizing problems admitting convergent subsequences;
considering a limit point of one of such subsequences as a surrogate solution to (PB) provided that the supremum values of the objective functions calculated in such approximating solutions converge to the security value w.
To accomplish the first step, we identify the set-valued map properties that are helpful in this regularization process.
![$$\mathfrak {T}= \left \{\mathcal {T}^\varepsilon , \, \varepsilon >0\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq118.png)
![$$\displaystyle \begin{aligned} \mathcal{T}^\varepsilon: x \in X \rightrightarrows \mathcal{T}^\varepsilon(x) \subseteq Y, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbu.png)
![$$\left \{(P_x), x \in X\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq119.png)
- (R 1 )
for every x ∈ X and 0 < ε < η;
- (R 2 )
- for any x ∈ X, any sequence (x n)n converging to x in X and any sequence of positive numbers (ε n)n decreasing to zero, one has
- (R 3 )
is a lower semicontinuous set-valued map on X, for every ε > 0. △
The above definition is related to the pessimistic nature of the problem (PB) and we are aware that different problems at the upper level would require different definitions of inner regularizations for the family .
The strict and large ε-argmin maps, and
, constitute inner regularization classes under appropriate conditions.
The family
is an inner regularization whenever the assumptions of Lemma
4.4.5are satisfied.
The family
is an inner regularization whenever the assumptions of Lemma
4.4.6are satisfied. △
![$$\displaystyle \begin{gathered} M^\varepsilon_d \colon x \in X \rightrightarrows M^\varepsilon_d(x)= \left\{y \in Y : d(y,K(x)) \leq \varepsilon,\ F(x,y) \leq \inf\limits_{z \in K(x)}F(x,z) + \varepsilon \right\},\\ \widetilde{M}^\varepsilon_d \colon x \in X \rightrightarrows \widetilde{M}^\varepsilon_d(x)= \left\{y \in Y : d(y,K(x)) < \varepsilon,\ F(x,y) < \inf\limits_{z \in K(x)}F(x,z) + \varepsilon \right\}. \end{gathered} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbw.png)
The family
is an inner regularization whenever the assumptions of Lemma
4.4.5are satisfied.
The family
is an inner regularization whenever the assumptions of Lemma
4.4.6are satisfied. △
![$$M^\varepsilon _d$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq129.png)
![$$\widetilde {M}^\varepsilon _d$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq130.png)
![$$\displaystyle \begin{gathered} G^\varepsilon\colon x \in X \rightrightarrows G^\varepsilon(x)= \bigcap_{i=1}^k\left\{y \in Y : g_i(x,y) \leq \varepsilon, \ F(x,y) \leq \inf\limits_{z \in K(x)}F(x,z) + \varepsilon \right\},\\ \widetilde{G}^\varepsilon\colon x \in X \rightrightarrows \widetilde{G}^\varepsilon(x)= \bigcap_{i=1}^k\left\{y \in Y : g_i(x,y) < \varepsilon, \ F(x,y) < \inf\limits_{z \in K(x)}F(x,z) + \varepsilon \right\}. \end{gathered} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbx.png)
- the family
is an inner regularization whenever assumptions (C 1)–(C 3) and the following hold:
- (C 5 )
for every ε > 0 and x ∈ X there exists y ∈ Y such that
;
the family
is an inner regularization whenever the assumptions (C 1)–(C 3), (C 5) and (H 1) are satisfied.△
![$$\displaystyle \begin{aligned} x \in X \rightrightarrows \bigcap_{i=1}^k\left\{y \in Y : g_i(x,y) < \varepsilon \right\} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equby.png)
![$$\displaystyle \begin{aligned} x \in X \rightrightarrows \bigcap_{i=1}^k\left\{y \in Y : g_i(x,y) \leq \varepsilon \right\}\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equbz.png)
The next steps consist in introducing the concept of viscosity solution for pessimistic bilevel optimization problems related to an inner regularization class and in stating a related existence result.
![$$\mathfrak {T}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq134.png)
![$$\left \{(P_x), x \in X\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq135.png)
![$$\bar {x} \in X$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq136.png)
![$$\mathfrak {T}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq137.png)
![$$(x^{\varepsilon _{n}})_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq138.png)
![$$\ x^{\varepsilon _{n}} \in X$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq139.png)
![$$n \in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq140.png)
- (V 1 )
a subsequence of
converges to
;
- (V 2 )
- (V 3 )
△
If
is an inner regularization for the family
, the sets X and Y are compact and the function L is continuous over X × Y , then there exists a
-viscosity solution for the pessimistic problem (PB). △
Suitable existence results of viscosity solutions with respect to each of the families considered above can be derived from Theorem 4.4.15 and Propositions 4.4.11, 4.4.12, and 4.4.13.
The next example illustrates the above procedure in a simple case.
the argmin map M of the minima to (P x) is not lower semicontinuous at x = 0, since M(0) = Y and
for every x ∈ ]0, 1];
the marginal function e(⋅) is not lower semicontinuous at x = 0, since e(0) = 1 and e(x) = x − 1 for every x ∈ ]0, 1];
the problem (PB) does not have a solution since
but e(x) > −1 for every x ∈ [0, 1];
the map
is lower semicontinuous over X since
if x ∈ [0, ε∕2[ and
if x ∈ [ε∕2, 1];
- the minimum point of the marginal function
is
and
the family
is an inner regularization even if the function g 1(x, ⋅) is not strictly quasiconvex (see Remark 4.4.4);
the data satisfy the conditions in Theorem 4.4.15;
the
-viscosity solution for (PB) is x = 0.
4.4.2 Regularization of Optimistic Bilevel Optimization Problems
As we observed in Sect. 4.3.3, a strong Stackelberg equilibrium exists under not too restrictive conditions. However, when such a problem has to be approached by a sequence of perturbed problems (e.g. in discretization process of (OB) in an infinite dimensional setting), the perturbed solutions may not converge towards a solution of the original problem, that is such problems are lacking in stability in the sense specified in Sect. 4.4.1.1.
![$$\displaystyle \begin{aligned} (OB)_n \ \ \mbox{find} \ x_n \in X \ \mbox{such that} \ \inf\limits_{y \in M_n(x_n)}\ L_n(x_n,y) \ = \ \inf\limits_{x \in X}\inf\limits_{y \in M_n(x)} L_n(x,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcb.png)
![$$\mathbb {R}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq157.png)
![$$\mathcal {S}_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq158.png)
![$$n \in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq159.png)
![$$\displaystyle \begin{aligned} \underset{n}{\operatorname*{\mbox{Lim sup}}}\,\mathcal{S}_n \subseteq \mathcal{S} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcc.png)
(F n)n and (L n)n uniformly converge, and therefore also continuously converge, to the functions defined by F(x, y) = 0 and L(x, y) = −xy respectively;
M(x) = [0, 1] and, for any
,
for every x ∈ [0, 1];
and, for any
,
.
![$$\underset {n}{ \operatorname *{\mbox{Lim sup}}} \,\mathcal {S}_n \not \subseteq \mathcal {S}.$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq165.png)
Nevertheless, also in the optimistic case, regularizing the follower’s reaction set turns out to be useful to obtain satisfactory approximation results for the strong Stackelberg values and solutions.
![$$\displaystyle \begin{gathered} s^\varepsilon \ = \ \inf\limits_{x \in X}\,\inf\limits_{y \in M^\varepsilon(x)}\,L(x,y) \ \ \ \ \mbox{and} \ \ \ \ \widetilde{s}^\varepsilon \ = \ \inf\limits_{x \in X}\,\inf\limits_{y \in \widetilde{M}^\varepsilon(x)}\,L(x,y),\\ \mathcal{S}^\varepsilon = \left\{x \in X : \inf\limits_{y \in M^\varepsilon(x)}L(x,y) = \inf\limits_{u \in X}\inf\limits_{y \in M^\varepsilon(u)}L(u,y)\right\},\\ \widetilde{\mathcal{S}}^\varepsilon = \left\{x \in X : \inf\limits_{y \in \widetilde{M}^\varepsilon(x)}L(x,y) = \inf\limits_{u \in X}\inf\limits_{y \in \widetilde{M}^\varepsilon(u)}L(u,y) \right\},\\ \mathcal{S}^\varepsilon_n = \left\{x \in X \ : \ \inf\limits_{y \in M^\varepsilon_n(x)}L_n(x,y) = \inf\limits_{u \in X}\inf\limits_{y \in M^\varepsilon_n(u)}L_n(u,y) \ = \ s^\varepsilon_n \right\}. \end{gathered} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcd.png)
![$$\displaystyle \begin{aligned} \underset{\varepsilon \rightarrow 0}{\lim}\,s^\varepsilon \ = \ s \ = \ \underset{\varepsilon \rightarrow 0}{\lim}\,\widetilde{s}^\varepsilon \ \ \ \ \mathit{\mbox{and}} \ \ \ \ \underset{\varepsilon \rightarrow 0}{\operatorname*{\mathit{\mbox{Lim sup}}}} \,\mathcal{S}^\varepsilon \ \subseteq \mathcal{S}.\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equce.png)
△
![$$n \in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq166.png)
- (H 3,n )
- for any (x, y) ∈ X × Y and any sequence (x n, y n)nconverging to (x, y) in X × Y one has
![$$\displaystyle \begin{aligned} \underset{n}{\operatorname*{\mathit{\mbox{Lim sup}}}} \,\mathcal{S}^{\varepsilon}_n \subseteq \mathcal{S}^\varepsilon \ \ \mathit{\text{and}} \ \ \lim\limits_{n\to +\infty}\, s^\varepsilon_n \ = \ s^\varepsilon. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcg.png)
![$$\displaystyle \begin{aligned} \underset{\varepsilon \rightarrow 0}{\operatorname*{\mathit{\mbox{Lim sup}}}}\left(\underset{n}{\operatorname*{\mathit{\mbox{Lim sup}}}}\,\mathcal{S}^{\varepsilon}_n\right) \ \subseteq \mathcal{S}.\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equch.png)
△
![$$\displaystyle \begin{aligned} \underset{n}{\operatorname*{\mbox{Lim sup}}} \,\mathcal{S}^{\varepsilon_n}_n \subseteq \mathcal{S}, \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ5.png)
(F n)n and (L n)n continuously converge on X × Y to the functions defined by F(x, y) = 0 and L(x, y) = x(x − y) respectively;
M(x) = M ε(x) = [0, 1] for every x ∈ X;
for any
,
if nε ≤ 1 and
if nε > 1;
and, for any
,
if nε ≤ 1 and
if nε > 1.
![$$\displaystyle \begin{aligned} \underset{\varepsilon \rightarrow 0}{\operatorname*{\mbox{Lim sup}}}\left(\underset{n}{\operatorname*{\mbox{Lim sup}}} \,\mathcal{S}^\varepsilon_n\right) \ = \ \mathcal{S} \ \ \ \ \ \mbox{and} \ \ \ \ \ \underset{n}{\operatorname*{\mbox{Lim sup}}}\left(\underset{\varepsilon \rightarrow 0}{\operatorname*{\mbox{Lim sup}}} \,\mathcal{S}^\varepsilon_n \right)\ = \ \left\{0\right\} \not\subseteq \mathcal{S}, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equci.png)
![$$\underset {n}{ \operatorname *{\mbox{Lim sup}}} \,\mathcal {S}^{\varepsilon _n}_n \subseteq \mathcal {S}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq174.png)
It would be interesting defining suitable viscosity solutions also for optimistic bilevel optimization problems aimed to reach an inclusion analogous to (4.4.4).
This is a still unexplored topic, but given an optimistic bilevel problem approached by a sequence of approximating optimistic bilevel problems (OB)n, it seems to be reasonable investigating the limit points of sequences of solutions to (OB)n that are not so far from the solution set to (OB).
We mention that algorithms to approach approximate solutions to (OB) have been developed in [66], where the reformulation of (OB) via the optimal value function is exploited, and in [44], where a reformulation of (OB) as a generalized Nash equilibrium problem is employed.
4.4.3 Regularization of Bilevel Problems with Equilibrium Constraints
Stackelberg games are models that can be naturally extended to the case where there are one leader and one, or more than one, follower who solve a second-stage problem described by a parametric variational inequality, Nash equilibrium, quasi-variational inequality or more generally quasi-equilibrium. The critical issues of pessimistic and optimistic approach are still present and regularizing the problem solved by the follower(s) is useful also in this case. First we present the case where one solves a variational inequality in the second stage. The set of solutions of such a parametric variational inequality can be considered as the follower’s constraints in the first stage, so traditionally the associate bilevel problem is called bilevel problem with variational inequality constraints, and analogously for the other problems considered in the second stage.
4.4.3.1 Variational Inequality Constraints
![$$\left \{(V_x), x \in X\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq175.png)
![$$\displaystyle \begin{aligned} y \in K(x) \ \ \mbox{such that} \ \ \langle A(x,y),y-w \rangle \, \leq \,0 \ \ \forall \ w \in K(x). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcj.png)
![$$\displaystyle \begin{aligned} (PBVI) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \sup\limits_{y \in \mathcal{V}(x)}L(x,y) \ = \ \inf\limits_{u \in X}\sup\limits_{y \in \mathcal{V}(u)}L(u,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equck.png)
![$$\displaystyle \begin{aligned} (OBVI) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \inf\limits_{y \in \mathcal{V}(x)}L(x,y) \ = \ \inf\limits_{u \in X}\inf\limits_{y \in \mathcal{V}(u)}L(u,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcl.png)
![$$\mathcal {V}(x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq176.png)
![$$\displaystyle \begin{aligned} y \in K(x) \ \ \mbox{such that} \ \ \langle A(x,y),y-w \rangle \, \leq \,\varepsilon \ \ \forall \, w \in K(x) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcm.png)
![$$\displaystyle \begin{aligned}y \in K(x) \ \ \mbox{such that} \ \ \langle A(x,w),y-w \rangle \, \leq \,\varepsilon \ \ \forall \, w \in K(x), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcn.png)
![$$\mathcal {V}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq177.png)
![$$\displaystyle \begin{aligned} y \in K(x) \ \ \mbox{such that} \ \ \langle A(x,w),y-w \rangle \, \leq \,0 \ \ \forall w \in K(x), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equco.png)
The above regularizations have been employed for investigating, in a theoretical setting, well-posedness in [54] and stability properties in [50] of (OBV I) in Banach spaces; moreover, we mention that an exact penalization scheme has been proposed in [112] for deriving necessary optimality conditions of (OBV I). Convergence properties of the approximate weak Stackelberg values of (PBV I) can be found in [57] in finite dimensional spaces. They have been also considered, in applied framework as truss topology optimization in [36] or climate regulation policy in [34].
4.4.3.2 Nash Equilibrium Constraints
![$$Y=\prod \limits _{j=1}^l\,Y_j$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq178.png)
![$$(N\!E_x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq179.png)
![$$\displaystyle \begin{aligned} \boldsymbol{y} \ \in \ Y \ \mbox{such that} \ F_j(x,\boldsymbol{y}) \leq \inf\limits_{u_j \in Y_j}F_j(x,u_j,\boldsymbol{y}_{-j}) \ \ \forall \, j=1,..,l, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcp.png)
![$$\displaystyle \begin{aligned} (PBNE) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \sup\limits_{\boldsymbol{y} \in \mathcal{N}(x)}L(x,\boldsymbol{y}) \ = \ \inf\limits_{u \in X}\sup\limits_{\boldsymbol{y} \in \mathcal{N}(u)}L(u,\boldsymbol{y}), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcq.png)
![$$\displaystyle \begin{aligned} (OBNE) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \inf\limits_{\boldsymbol{y} \in \mathcal{N}(x)}L(x,\boldsymbol{y}) \ = \ \inf\limits_{u \in X}\inf\limits_{\boldsymbol{y} \in \mathcal{N}(u)}L(u,\boldsymbol{y}), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcr.png)
![$$\mathcal {N}(x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq180.png)
![$$(N\!E_x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq181.png)
![$$\displaystyle \begin{aligned} \mathcal{N}^\varepsilon(x)= \left\{ \boldsymbol{y} \ \in \ Y \ : \ F_j(x,\boldsymbol{y}) \leq \inf\limits_{u_j \in Y_j}F_j(x,u_j,\boldsymbol{y}_{-j}) + \varepsilon \ \ \forall \, j=1,..,l \right\},\end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcs.png)
![$$\displaystyle \begin{aligned} \widehat{\mathcal{N}}^\varepsilon(x)= \left\{ \boldsymbol{y} \ \in \ Y \ : \ \sum\limits_{j=1}^l\,F_j(x,\boldsymbol{y}) \leq \inf\limits_{u_j \in Y_j}\sum\limits_{j=1}^l\,F_j(x,u_j,\boldsymbol{y}_{-j}) + \varepsilon \right\}, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equct.png)
![$$\displaystyle \begin{aligned}\lim\limits_{\varepsilon \rightarrow 0}\,\mbox{diam}\,\mathcal{N}^\varepsilon(x)= \ 0 \ \Longleftrightarrow \ \lim\limits_{\varepsilon \rightarrow 0}\,\mbox{diam}\,\widehat{\mathcal{N}}^\varepsilon(x)= \ 0. \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcu.png)
4.4.3.3 Quasi-Variational Inequality Constraints
![$$\left \{(Q_x), x \in X\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq182.png)
![$$\displaystyle \begin{aligned} y \in Y \ \ \mbox{such that} \ y \in T(x,y) \text{ and } \langle A(x,y),y-w \rangle \, \leq \,0 \ \ \forall \, w \in T(x,y). \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcv.png)
![$$\displaystyle \begin{aligned} (PBQI) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \sup\limits_{y \in \mathcal{Q}(x)}L(x,y) \ = \ \inf\limits_{u \in X}\sup\limits_{y \in \mathcal{Q}(u)}L(u,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcw.png)
![$$\displaystyle \begin{aligned} (OBQI) \ \ \ \ \mbox{find} \ x \in X \ \mbox{such that} \ \inf\limits_{y \in \mathcal{Q}(x)}L(x,y) \ = \ \inf\limits_{u \in X}\inf\limits_{y \in \mathcal{Q}(u)}L(u,y), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcx.png)
![$$\mathcal {Q}(x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq183.png)
![$$\displaystyle \begin{aligned} y \in Y \, \mbox{such that} \, d\left(y,T(x,y)\right) \leq \varepsilon \ \mbox{and} \ \langle A(x,y),y-w \rangle \, \leq \,\varepsilon \ \ \forall \, w \in T(x,y) \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcy.png)
![$$\displaystyle \begin{aligned} y \in Y \, \mbox{such that} \, d(y,T(x,y)) \leq \varepsilon \ \mbox{and} \ \langle A(x,w),y-w \rangle \, \leq \,\varepsilon \ \ \forall \, w \in T(x,y) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equcz.png)
Requiring that an approximate solution to (Q x) may violate the constraints, provided that it remains in a neighborhood of them, is quite necessary in quasi-variational inequality setting where a fixed-point problem is involved, as shown in [48, Ex. 2.1]. The above regularizations have been used in [59] for establishing convergence results of the weak Stackelberg values of (PBQI) in finite dimensional spaces, and in [61] for a complete investigation in infinite dimensional spaces of convergence properties of approximate solutions and values of (OBQI) problems, there called semi-quasivariational optimistic bilevel problems.
4.4.3.4 Quasi-Equilibrium Constraints
![$$(Q\!E_x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq184.png)
![$$\displaystyle \begin{aligned} y \in T(x,y) \ \ \mbox{and} \ \ h(x,y,w) \ \leq \ 0 \ \ \forall \ w \in T(x,y). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equda.png)
![$$\left \{(Q\!E_x), x \in X\right \}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq185.png)
![$$\widetilde {\mathcal {Q}}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq186.png)
![$$\displaystyle \begin{aligned} \widetilde{\mathcal{Q}}^\varepsilon(x) \ = \ \left\{y \in Y : d(y,T(x,y)) \, < \, \varepsilon \ \ \mbox{and} \ \ \ h(x,y,w) \, < \, \varepsilon \ \ \forall \ w \in T(x,y)\right\} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdb.png)
![$$\widetilde {\mathcal {Q}}^\varepsilon $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq187.png)
4.5 Regularizing the Follower’s Payoff Function in Stackelberg Games
The general non-single-valuedness of the follower’s best reply correspondence M brings out the difficulties in the numerical approximation of problems (PB) and (OB), as mentioned in Sect. 4.3.3, as well as the need to define constructive methods for selecting an SPNE in Stackelberg games, as emphasized in Sect. 4.3.5. For these reasons and possibly also for behavioural motivations (see, for example, [22]), regularization methods involving the follower’s payoff function have been introduced. Such methods allow to construct sequences of perturbed problems where the solution of the second-stage problem is unique by exploiting well-known regularization techniques in convex optimization. For the sake of brevity, we will present only two approaches for regularizing the follower’s payoff function: the first one is based on the Tikhonov regularization, the second one on the proximal regularization.
In this section we assume that the leader’s and follower’s action sets X and Y are subsets of the Euclidean spaces and
, respectively, and we denote by
and
the norm of
and
, respectively. Furthermore, for the sake of brevity, both leader’s and follower’s constraints are assumed to be constant.
4.5.1 Regularizing the Follower’s Payoff Function via Tikhonov Method
Let us recall preliminarily the Tikhonov regularization method for the approximation of solutions to convex optimization problems. Then, we illustrate how it has been employed to regularize bilevel optimization problems (PB) or (OB) and to select SPNEs.
4.5.1.1 Tikhonov Regularization in Convex Optimization
![$$\displaystyle \begin{aligned} (P)\colon\min_{a\in A}J(a), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdc.png)
![$$\mathbb {A}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq194.png)
![$$ \left \lVert {\cdot } \right \rVert _{\mathbb {A}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq195.png)
![$$\displaystyle \begin{aligned} (P)^{\mathcal T}_{\lambda_n}\colon\min_{a\in A}\left({J(a)+\frac{1}{2\lambda_n} \left\lVert {a} \right\rVert ^2_{\mathbb{A}}}\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdd.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq196.png)
![$${(P)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq197.png)
Assume that the set A is compact and convex, the function J is lower semicontinuous and convex over A and limn→+∞λ n = +∞.
![$${(P)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq198.png)
![$$\bar a^{\mathcal {T}}_n \in A$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq199.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq200.png)
![$$(\bar a^{\mathcal {T}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq201.png)
![$$\displaystyle \begin{aligned} \left|\left|\lim_{n\to +\infty}\bar a^{\mathcal{T}}_n\right|\right|{}_{\mathbb{A}}=\inf_{a\in V} \left\lVert {a} \right\rVert _{\mathbb{A}}, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equde.png)
where
. △
Therefore, the Tikhonov regularization method allows to approach a solution of a convex minimization problem by constructing a sequence of perturbed problems, in general better-behaved than the original problem, that have a unique solution. Furthermore, the limit of the sequence generated accordingly is uniquely characterized in the set of solutions to the original problem.
We mention that, afterwards, Tikhonov regularization has been broadly exploited for finding Nash equilibria in one-stage games where players move simultaneously: see [7, 47] for zero-sum games (with applications also to differential games) and [93, Section 4], [25, 43] for general N-players games.
4.5.1.2 Tikhonov Regularization of the Follower’s Payoff Function in Stackelberg Games
![$$\displaystyle \begin{aligned} (P_x)^{\mathcal T}_{\lambda_n}\colon\min_{y\in Y}\left(F(x,y)+\frac{1}{2\lambda_n} \left\lVert {y} \right\rVert ^2_{\mathbb{Y}}\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdf.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq203.png)
![$${(P_x)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq204.png)
Assume that the set Y is compact and convex, the function F is continuous over X × Y and limn→+∞λ n = +∞.
;
.△
We highlight that the sequence of functions generated by Tikhonov-regularizing the follower’s payoff function satisfies assumptions (F1), (F2) and in [71, Section 4], therefore additional results involving ε-solutions and strict ε-solutions hold by applying propositions 4.2, 4.4 and 6.1 in [71]. For instance, the inclusion stated in Proposition 4.5.2 above is still valid even when considering ε-argmin maps. △
More specific results concerning problems and the connections with (P
x) are achieved by adding a convexity assumption, usual in a Tikhonov regularization framework.
Assume that the function F(x, ⋅) is convex over Y for any x ∈ X and hypotheses of Proposition 4.5.2are satisfied.
- problem
has a unique solution
for any
, that is
(4.5.1) , where
is the minimum norm element of the set M(x), that is
(4.5.2)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq214.png)
![$$\displaystyle \begin{aligned} \underset{k\to +\infty}{\lim}\,\,\bar\varphi^{\mathcal{T}}_n(x_k)=\bar\varphi^{\mathcal{T}}_n(x)\quad \mathit{\text{and}}\quad \underset{k\to +\infty}{\lim}\,\,F(x_k,\bar\varphi^{\mathcal{T}}_n(x_k))=F(x,\bar\varphi^{\mathcal{T}}_n(x)).\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdg.png)
△
Under the assumptions of Proposition 4.5.4 additional results regarding ε-solutions have been proved in [77, Proposition 3.3] for the Tikhonov-regularized problem . △
We point out that, in general, the sequence is not continuously convergent to
(for the definition of continuous convergence see Proposition 4.3.2), as shown in [77, Remark 3.1] and in the example below.
![$$(\bar \varphi ^{\mathcal {T}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq218.png)
![$$\displaystyle \begin{aligned} \bar\varphi^{\mathcal{T}}_n(x)=\begin{cases} -1, & \mbox{if } x\in[-1,-1/n[ \\ nx, & \mbox{if } x\in[-1/n,1/n] \\ 1, & \mbox{if } x\in ]1/n,1] \end{cases}\quad \text{and}\quad \hat\varphi(x)=\begin{cases} -1, & \mbox{if } x\in[-1,0[ \\ 0, & \mbox{if } x=0 \\ 1, & \mbox{if } x\in ]0,1]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdh.png)
![$$(\bar \varphi ^{\mathcal {T}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq219.png)
![$$\hat \varphi $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq220.png)
![$$\hat \varphi $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq221.png)
![$$\displaystyle \begin{aligned} {(SP)^{\mathcal T}_{\lambda_n}} \,\begin{cases} \underset{x\in X}{\min}\,\,L(x,\bar\varphi^{\mathcal{T}}_n(x)) \\ \text{where } \bar\varphi^{\mathcal{T}}_n(x)\text{ is the solution to } {{(P_x)^{\mathcal T}_{\lambda_n}}}. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdi.png)
![$${(SP)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq222.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq223.png)
- 1.
Are there solutions to
?
- 2.
What happens when n → +∞?
Assume that the set X is compact, Y is compact and convex, the functions L and F are continuous over X × Y and the function F(x, ⋅) is convex over Y for any x ∈ X.
Then, the Tikhonov-regularized Stackelberg problem
has at least one solution, for any
. △
As regards to investigation on the connections between and (PB) as n goes to + ∞, the second question is addressed in the following result.
Assume that limn→+∞λ
n = +∞ and hypotheses of Proposition
4.5.6are satisfied. Denote with
a solution to
for any
.
![$$(\bar x^{\mathcal {T}}_n, \bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq231.png)
![$$(\bar x,\bar y)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq232.png)
![$$\displaystyle \begin{aligned} L(\bar x,\bar y)\leq w\quad \mathit{\text{and}}\quad \bar y\in M(\bar x),\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ8.png)
where w is the security value of (PB) defined in Definition 4.2.2. △
An action profile satisfying (4.5.3) is a lower Stackelberg equilibrium pair for problem (PB).△
The lower Stackelberg equilibrium pair solution concept was introduced in [69, Remark 5.3] in the context of approximation of (PB) via ε-solutions. Note that a result analogous to Proposition 4.5.7 has been obtained in [75] for the least-norm regularization of the second-stage problem of (PB). In fact such a regularization, which is an adaptation of the method introduced in [104] and which involves the regularization both of the follower’s optimal reaction set and of the follower’s payoff function, generates sequences of action profiles whose limit points are lower Stackelberg equilibrium pairs, as proved in propositions 2.6 and 3.5 in [75].
We observe that if is a weak Stackelberg equilibrium of (PB), then
is a lower Stackelberg equilibrium pair. The converse is not true, in general, as illustrated in the following example.
![$$\displaystyle \begin{aligned} L(x,y)=-x-y\quad \text{and}\quad F(x,y)=\begin{cases} 0, & \mbox{if } x\in[1/2,1[ \\ (x-1)y, & \mbox{if } x\in [1,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdj.png)
It is worth to emphasize that, in general, the sequence , where
is a solution to
, converges neither to a weak Stackelberg (or pessimistic) solution of (PB) nor to a strong Stackelberg (or optimistic) solution of (OB); analogously, the sequence
converges, in general, neither to a weak Stackelberg equilibrium nor to a strong Stackelberg equilibrium, as illustrated in the next example also used in [93]. △
![$$(\bar x^{\mathcal {T}}_n, \bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq240.png)
![$$\displaystyle \begin{aligned} L(x,y)=-x-y\quad \text{and}\quad F(x,y)=\begin{cases} (x+1/4)y, & \mbox{if } x\in[-1/2,-1/4[ \\ 0, & \mbox{if } x\in[-1/4,1/4] \\ (x-1/4)y, & \mbox{if } x\in ]1/4,1/2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdk.png)
![$$(\bar x^{\mathcal {T}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq241.png)
![$$(\bar x^{\mathcal {T}}_n, \bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq242.png)
Afterwards, the Tikhonov regularization approach illustrated up to now has been employed in [27] where, by requiring stronger assumptions on the payoff functions, further regularity properties for the Tikhonov-regularized second-stage problem have been shown. Moreover, an algorithm have been designed for the solutions of the Tikhonov-regularized Stackelberg problem
as n goes to + ∞.
![$${(P_x)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq245.png)
![$$\displaystyle \begin{aligned} \min_{y\in Y}\left(F(x,y)+\frac{1}{2\lambda_n}L(x,y)\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdl.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq246.png)
We highlight that the idea of using the leader’s payoff function in the regularization of the second-stage problem goes back to Molodtsov in [88]: he introduced a “mixed” regularization method, by combining both the regularization of the follower’s reaction set and the regularization of the follower’s payoff function, which allows to approximate problem (PB) via a sequence of strong Stackelberg problems. Then, more general properties of the Molodtsov regularization have been obtained in [78], where perturbations of the data of problem (PB) have been also considered.
4.5.1.3 Selection of SPNEs via Tikhonov Regularization
A Stackelberg game where the follower’s best reply correspondence M is not single-valued could have infinitely many SPNEs, as illustrated in the example on page 23. Therefore, let us focus on how restricting the number of SPNEs or, better yet, picking just one. The first attempt to select an SPNE via a constructive approach that allows to overcame the non-single-valuedness of M is due to Morgan and Patrone in [93], where the Tikhonov regularization approach presented in Sect. 4.5.1.2 was exploited.
![$$\displaystyle \begin{aligned} \Gamma^{\mathcal T}_{\lambda_n}=(X,Y,L,F^{\mathcal T}_{\lambda_n}), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdm.png)
![$$F^{\mathcal T}_{\lambda _n}\colon X\times Y\to \mathbb {R}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq247.png)
![$$\displaystyle \begin{aligned} F^{\mathcal T}_{\lambda_n}(x,y)=F(x,y)+\frac{1}{2\lambda_n} \left\lVert {y} \right\rVert ^2_{\mathbb{Y}}, \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdn.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq248.png)
![$${\Gamma ^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq249.png)
![$${(P_x)^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq250.png)
![$${\Gamma ^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq251.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq252.png)
the follower’s best reply correspondence in
is single-valued;
the game
has at least one SPNE: the strategy profile
, where
is defined in (4.5.1) and
is a solution to
, is an SPNE of
.
Moreover, the sequence of strategies
is pointwise convergent to the function
defined in (4.5.2). △
It is natural to ask if the limit of the sequence of SPNEs , associated to the sequence of perturbed Stackelberg games
, is an SPNE of the original game Γ. The answer is negative, in general, as displayed in the example below.
![$$(\bar x^{\mathcal {T}}_n,\bar \varphi ^{\mathcal {T}}_n(\cdot ))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq264.png)
![$${\Gamma ^{\mathcal T}_{\lambda _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq265.png)
![$$(\bar x^{\mathcal {T}}_n,\bar \varphi ^{\mathcal {T}}_n(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq266.png)
![$$\bar x^{\mathcal {T}}_n=-1/n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq267.png)
![$$\bar \varphi ^{\mathcal {T}}_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq268.png)
![$$\displaystyle \begin{aligned} \lim_{n\to +\infty}\bar x^{\mathcal{T}}_n=0\quad \text{and}\quad \lim_{n\to +\infty}\bar\varphi^{\mathcal{T}}_n(x)=\hat\varphi(x)\text{ for any }x\in X,\end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdo.png)
In order to achieve an SPNE of Γ we need to take into account the limit of the sequence of action profiles .
Assume that limn→+∞λ
n = +∞ and hypotheses of Proposition
4.5.6are satisfied. Denote with
an SPNE of
, as defined in Corollary
4.5.10, for any
.
![$$(\bar x^{\mathcal {T}}_n,\bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq278.png)
![$$(\bar x^{\mathcal {T}},\bar y^{\mathcal {T}})$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq279.png)
![$$(\bar x^{\mathcal {T}},\widetilde \varphi ^{\mathcal {T}}(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq280.png)
![$$\displaystyle \begin{aligned} \widetilde\varphi^{\mathcal{T}}(x)=\begin{cases} \bar y^{\mathcal{T}}, & \mathit{\mbox{if }} x=\bar x^{\mathcal{T}} \\ \hat\varphi(x), & \mathit{\mbox{if }} x\neq\bar x^{\mathcal{T}} \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdp.png)
with
defined in (4.5.2), is an SPNE of Γ. △
![$$(\bar x^{\mathcal {T}}_n,\bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))=(-1/n,-1)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq282.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq283.png)
![$$(\bar x^{\mathcal {T}},\bar y^{\mathcal {T}})=(0,-1)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq284.png)
![$$(0,\widetilde \varphi ^{\mathcal {T}}(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq285.png)
![$$\widetilde \varphi ^{\mathcal {T}}\colon X\to Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq286.png)
![$$\displaystyle \begin{aligned} \widetilde\varphi^{\mathcal{T}}(x)=\begin{cases} -1, & \mbox{if } x\in [-1,0] \\ 1, & \mbox{if } x\in ]0,1]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdq.png)
![$$\widetilde \varphi ^{\mathcal {T}}(x)\in M(x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq287.png)
![$$0\in \operatorname *{\mbox{Arg min}}_{x\in X}L(x,\widetilde \varphi ^{\mathcal {T}}(x))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq288.png)
The following example shows that the SPNE selected according to Theorem 4.5.11 does not coincide, in general, with the SPNEs induced by a weak or a strong Stackelberg solution, as defined in Definition 4.2.6.
![$$(\bar x^{\mathcal {T}}_n,\bar \varphi ^{\mathcal {T}}_n(\bar x^{\mathcal {T}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq289.png)
![$$(7/4,\widetilde \varphi ^{\mathcal {T}}(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq290.png)
![$$\displaystyle \begin{aligned} \widetilde\varphi^{\mathcal{T}}(x)=\begin{cases} 1, & \mbox{if } x\in[-2,-7/4[ \\ 0, & \mbox{if } x\in[-7/4,7/4] \\ -1, & \mbox{if } x\in]7/4,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdr.png)
The Tikhonov approach to select SPNEs presented in this subsection has been extended also to the class of one-leader two-follower Stackelberg games in [93, Section 4]. In this case the two followers, after having observed the action x chosen by the leader, face a parametric two-player Nash equilibrium problem (see Sect. 4.4.3.2). By Tikhonov-regularizing the followers’ payoff functions in problem
, a sequence of perturbed one-leader two-follower Stackelberg games has been defined where the solution to the Nash equilibrium problem in the second-stage is unique. This allows to select an SPNE similarly to Theorem 4.5.11, as proved in theorems 4.1 and 4.2 in [93].
4.5.2 Regularizing the Follower’s Payoff Function via Proximal Method
Let us recall firstly the proximal regularization method for approximating the solutions of a convex optimization problem. Then, we show how it can be employed to regularize bilevel optimization problems (PB) or (OB) and to select SPNEs involving behavioural motivations.
4.5.2.1 Proximal-Point Algorithm in Convex Optimization
![$$\displaystyle \begin{aligned} (P)\colon\min_{a\in A}J(a), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equds.png)
![$$\mathbb {A}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq293.png)
![$$ \left \lVert {\cdot } \right \rVert _{\mathbb {A}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq294.png)
![../images/480569_1_En_4_Chapter/480569_1_En_4_Figa_HTML.png](../images/480569_1_En_4_Chapter/480569_1_En_4_Figa_HTML.png)
The well-definedness of algorithm (PA) and its convergence properties are recalled in the following well-known result stated in [99].
Assume that the set A is compact and convex, the function J is lower semicontinuous and convex over A and
.
![$$(\bar a^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq296.png)
![$$\displaystyle \begin{aligned} \lim_{n\to +\infty}\bar a^{\mathcal{P}}_n \in\operatorname*{\mathit{\mbox{Arg min}}}_{a\in A} J(a). \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdt.png)
△
![$$J_{\gamma }^{\mathcal {P}}\colon A\to [-\infty ,+\infty ]$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq297.png)
![$$\displaystyle \begin{aligned} J_{\gamma}^{\mathcal{P}}(a)=\inf_{x\in A}\left(J(x)+\frac{1}{2\gamma} \left\lVert {x-a} \right\rVert ^2_{\mathbb{A}}\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdu.png)
![$$\displaystyle \begin{aligned} (P)^{\mathcal{P}}_{\gamma_n}\colon \min_{a\in A}\left(J(a)+\frac{1}{2\gamma_{n}} \left\lVert {a-\bar a^{\mathcal{P}}_{n-1}} \right\rVert ^2_{\mathbb{A}}\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdv.png)
the proximal-regularized problems
are recursively defined, differently from the Tikhonov-regularized problems
in Sect. 4.5.1.1;
the limit of the sequence generated by (PA) is “just” a minimizer of J over A, while in the Tikhonov approach the limit point is characterized as the minimum norm element in the set of minimizers of J over A;
as regards to the assumptions ensuring the convergence of algorithm (PA) and of Tikhonov method, the hypothesis on the sequence of parameters (γ n)n in Theorem 4.5.13 is weaker than the corresponding hypothesis on (λ n)n in Theorem 4.5.1.
4.5.2.2 Proximal Regularization of the Follower’s Payoff Function in Stackelberg Games
![$$\bar y_0\in Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq300.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq301.png)
![$$\displaystyle \begin{aligned} \{\bar\varphi^{\mathcal{P}}_n(x)\}=\operatorname*{\mbox{Arg min}}_{y\in Y}\left(F(x,y)+\frac{1}{2\gamma_{n}} \left\lVert {y-\bar\varphi^{\mathcal{P}}_{n-1}(x)} \right\rVert ^2_{\mathbb{Y}}\right)\quad \text{for any }x\in X, \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ9.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq302.png)
![$$\bar \varphi ^{\mathcal {P}}_0(x)=\bar y_0$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq303.png)
Assume that Y is compact and convex, the function F is continuous over X × Y , the function F(x, ⋅) is convex over Y for any x ∈ X and . From Theorem 4.5.13 it straightforwardly follows that, for any x ∈ X, the sequence
is well-defined and
. △
![$$\displaystyle \begin{aligned} (P_x)^{\mathcal{P}}_{\gamma_n}\colon \operatorname*{\mbox{Arg min}}_{y\in Y}\left(F(x,y)+\frac{1}{2\gamma_{n}} \left\lVert {y- \bar\varphi^{\mathcal{P}}_{n-1} (x)} \right\rVert ^2_{\mathbb{Y}}\right), \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdw.png)
![$$\displaystyle \begin{aligned} (SP)^{\mathcal P}_{\gamma_n} \,\begin{cases} \underset{x\in X}{\min}\,\,L(x,\bar\varphi^{\mathcal{P}}_n(x)) \\ \text{where } \bar\varphi^{\mathcal{P}}_n(x)\text{ is the solution to } {{(P_x)^{\mathcal{P}}_{\gamma_n}}} \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdx.png)
![$${(SP)^{\mathcal {P}}_{\gamma _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq307.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq308.png)
- 1.
Are there solutions to
?
- 2.
What happens when n → +∞?
![$$\bar \varphi ^{\mathcal {P}}_n\colon X\to Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq310.png)
Assume that the set X is compact, Y is compact and convex, the functions L and F are continuous over X × Y and the function F(x, ⋅) is convex over Y for any x ∈ X.
Then, the proximal-regularized Stackelberg problem
has at least one solution, for any
. △
Concerning the second question, the limit of the sequence generated by the solutions to for any
has no connections, in general, either with weak Stackelberg (or pessimistic) solutions to (PB) or with strong Stackelberg (or optimistic) solutions to (OB), as illustrated in the following example also used in [22].
![$${(SP)^{\mathcal {P}}_{\gamma _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq315.png)
![$$\displaystyle \begin{aligned} L(x,y)=x+y\quad \text{and}\quad F(x,y)=\begin{cases} 0, & \mbox{if } x\in[1/2,1[ \\ (x-1)y, & \mbox{if } x\in [1,2]. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdy.png)
![$$\bar y_0=1$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq316.png)
![$$\displaystyle \begin{aligned} \bar\varphi^{\mathcal{P}}_n(x)=\begin{cases} 1, & \mbox{if } x\in [{1}/{2},1] \\ c_n-c_nx+1, & \mbox{if } x\in ]1,1+{2}/{c_n}] \\ -1, & \mbox{if } x\in ]1+{2}/{c_n},2], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equdz.png)
![$${(SP)^{\mathcal {P}}_{\gamma _n}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq317.png)
![$$\displaystyle \begin{aligned} \bar u^{\mathcal{P}}_n=\begin{cases} {1}/{2}, & \mbox{if } n=1 \\ 1+{2}/{c_n}, & \mbox{if } n\geq 2. \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equea.png)
![$$(\bar u^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq318.png)
![$$(\bar u^{\mathcal {P}}_n,\bar \varphi ^{\mathcal {P}}_n(\bar u^{\mathcal {P}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq319.png)
![$$(\bar \varphi ^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq320.png)
![$$(\bar \varphi ^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq321.png)
![$$\displaystyle \begin{aligned} \lim_{n\to+\infty}\bar\varphi^{\mathcal{P}}_n(x)=\begin{cases} 1, & \mbox{if } x\in[1/2,1] \\ -1, & \mbox{if } x\in ]1,2], \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equeb.png)
![$$\displaystyle \begin{aligned} (SBP) \,\begin{cases} \underset{x\in E}{\min}\,\,l(x) \\ \text{where }{E}=\underset{x\in \Delta}{\operatorname*{\mbox{Arg min}}}\,\,f(x), \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equec.png)
![$$\mathbb {R}^n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq322.png)
![$$\mathbb {R}^n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq323.png)
4.5.2.3 Selection of SPNEs via Proximal Regularization
Let us present now how proximal regularization has been employed in Stackelberg games in order to select SPNEs. Caruso, Ceparano and Morgan introduced in [22] a behavioural motivated constructive method which involves the proximal regularization both in the second-stage and in the first-stage problem (the additional regularization of the leader’s payoff function has been done in order to strongly motivate the behavioural interpretation of the method). Anyway, if the proximal regularization is carried out only in the second-stage problem, by arguing analogously as in the proofs in [22], a selection result for SPNEs can be proved even in such a case.
Let Γ = (X, Y, L, F) be a Stackelberg game and consider the following procedure.
![../images/480569_1_En_4_Chapter/480569_1_En_4_Figb_HTML.png](../images/480569_1_En_4_Chapter/480569_1_En_4_Figb_HTML.png)
Procedure (SGP) allows to construct recursively a sequence of strategies , where
is a function from X to Y , and a sequence of leader’s actions
, where
. We point out that looking only at the follower’s stage in procedure (SGP), one can recognize the same approach illustrated in Sect. 4.5.2.2 (for this reason here we kept unchanged the notation
used previously).
In the next proposition, the well-definedness of procedure (SGP) and its regularity and convergence properties are stated.
procedure (SGP) is well-defined;
- for any sequence (x k)kconverging to x in X, we have
for any x ∈ X the sequence
is convergent in Y to a solution of problem (P x).△
![$$(\Gamma ^{\mathcal P}_{\upsilon _n})_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq330.png)
![$$\displaystyle \begin{aligned} \Gamma^{\mathcal P}_{\upsilon_n}=(X,Y,L^{\mathcal{P}}_{\beta_n},F^{\mathcal{P}}_{\gamma_n}) \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equee.png)
![$$L^{\mathcal {P}}_{\beta _n}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq331.png)
![$$F^{\mathcal {P}}_{\gamma _n}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq332.png)
![$$n\in \mathbb {N}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq333.png)
![$$\Gamma ^{\mathcal P}_{\upsilon _n}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq334.png)
![$$(\bar x^{\mathcal {P}}_n,\bar \varphi ^{\mathcal {P}}_n(\cdot ))\in X\times Y^X$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq335.png)
![$$(\mathcal {A}_n)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq336.png)
![$$\Gamma ^{\mathcal P}_{\upsilon _n}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq337.png)
![$$(\bar x^{\mathcal {P}}_{n-1},\bar \varphi ^{\mathcal {P}}_{n-1}(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq338.png)
![$$\Gamma ^{\mathcal P}_{\upsilon _{n-1}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq339.png)
Before stating the SPNE selection result, we highlight that procedure (SGP) has a behavioural interpretation linked to the costs that players face when deviating from their current actions, which is presented below.
At the generic step of procedure (SGP), the follower chooses his strategy
taking into account his previous strategy
. In making such a choice, he finds an action that compromises between minimizing F(x, ⋅) and being near to
, for any x ∈ X. The latter purpose is motivated according to an anchoring effect, explained in [5, Subsection 1.4], which is formulated by adding a quadratic slight cost to move that reflects the difficulty of changing the previous action. The coefficient γ
n is linked to the per unit of distance cost to move of the follower and it is related to the trade-off parameter between minimizing F(x, ⋅) and minimizing the distance from
. Since the same arguments apply for the preceding steps until going up to step
, it follows that
as well as the limit of
embed the willingness of being near to
. Analogous observations hold also for the leader, who chooses an action having in mind to be near to his previous choices, and therefore even with the purpose of being near to
.
By taking into account the limit of the sequence of action profiles , the following existence result of an SPNE’s selection holds.
Assume that hypotheses of Proposition
4.5.16are satisfied and let
be the sequence of strategy profiles generated by procedure (SGP).
![$$(\bar x^{\mathcal {P}}_n,\bar \varphi ^{\mathcal {P}}_n(\bar x^{\mathcal {P}}_n))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq352.png)
![$$(\bar x^{\mathcal {P}},\bar y^{\mathcal {P}})$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq353.png)
![$$(\bar x^{\mathcal {P}},\widetilde \varphi ^{\mathcal {P}}(\cdot ))$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq354.png)
![$$\displaystyle \begin{aligned} \widetilde\varphi^{\mathcal{P}}(x)=\begin{cases} \bar y^{\mathcal{P}}, & \mathit{\mbox{if }} x=\bar x^{\mathcal{P}} \\ \underset{n\to +\infty}{\lim}\,\,\bar\varphi^{\mathcal{P}}_n(x), & \mathit{\mbox{if }} x\neq\bar x^{\mathcal{P}}, \end{cases} \end{aligned}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equef.png)
is an SPNE of Γ. △
![$$(\bar x^{\mathcal {P}}_n,\bar \varphi ^{\mathcal {P}}_n(\cdot ))_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq355.png)
![$$(\Gamma ^{\mathcal P}_{\upsilon _n})_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq356.png)
![$$\widetilde \varphi ^{\mathcal {P}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq357.png)
![$$(\bar \varphi ^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq358.png)
![$$\bar \varphi \colon X\to Y$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq359.png)
![$$\displaystyle \begin{aligned} \lim_{n\to+\infty}{\bar\varphi^{\mathcal{P}}_n(\bar x^{\mathcal{P}}_n)}\quad \text{and}\quad \lim_{n\to+\infty}{\bar\varphi^{\mathcal{P}}_n(\bar x^{\mathcal{P}})}, \end{aligned} $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_Equ10.png)
![$$\bar x^{\mathcal {P}}=\lim _{n\to +\infty }\bar x^{\mathcal {P}}_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq360.png)
![$$\widetilde \varphi ^{\mathcal {P}}(x)=\bar \varphi (x)$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq361.png)
![$$(\bar x^{\mathcal {P}},\bar \varphi )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq362.png)
![$$\widetilde \varphi ^{\mathcal {P}}(\bar x^{\mathcal {P}})\neq \bar \varphi (\bar x^{\mathcal {P}})$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq363.png)
![$$(\bar x^{\mathcal {P}},\bar \varphi )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq364.png)
![$$\widetilde \varphi ^{\mathcal {P}}$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq365.png)
![$$(\bar x^{\mathcal {P}},\bar \varphi )$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq366.png)
![$$(\bar \varphi ^{\mathcal {P}}_n)_n$$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq367.png)
![$$\bar \varphi $$](../images/480569_1_En_4_Chapter/480569_1_En_4_Chapter_TeX_IEq368.png)
As regards to the connections with other methods for selecting SPNEs, the following example (examples 3, 5 and 6 in [22]) shows that the selection method based on proximal regularization presented in this subsection, the selection method relying on Tikhonov regularization described in Sect. 4.5.1.3 and the way of selecting via weak and strong Stackelberg solutions illustrated in Remark 4.3.5 do not generate, in general, the same SPNE.
- the SPNE selected via proximal regularization is
, where
- the SPNE selected by using the Tikhonov regularization is
, where
there are no SPNEs induced by a weak Stackelberg solution, as problem (PB) has no solutions;
there exists one SPNE induced by the (unique) strong Stackelberg solution: the pair
where
for any x ∈ [1∕2, 2].
Finally, we mention that convergence results involving “costs of change” and proximal methods in Stackelberg games have been recently investigated in [37, Section 5].
4.6 Conclusion
In this chapter we considered two-stage Stackelberg games, the natural environment for different kinds of mathematical problems that can arise depending on the leader’s information about the optimal responses of the follower. We discussed crucial issues related to such problems and we provided two approaches for managing them. The first one consists in regularizing the follower’s optimal reaction set via the introduction of appropriate solution concepts which allowed to obviate both the lack of existence and stability of the weak Stackelberg (or pessimistic bilevel) problem and the lack of stability of the strong Stackelberg (or optimistic bilevel) problem. The second one consists in regularizing the follower’s payoff function by employing the Tikhonov and the proximal regularizations which enabled both to overcome the non-single-valuedness of the follower’s best reply correspondence and to select subgame perfect Nash equilibria.
We note that the issues and the approaches (for facing such issues) we focused in this chapter are not the unique ones. For instance, the question of sensitivity analysis for problems (PB) and (OB), has been recently investigated in [31, 32]. Moreover, beyond the two regularizing approaches examined in this chapter, one can construct classes of mixed regularization methods which exploit simultaneously both the idea of regularizing the follower’s optimal reaction set and of regularizing the follower’s payoff function; first approximation schemes of this type have been defined in [75, 78, 88].
Dynamic: players’ actions are functions depending on time. First results on dynamic Stackelberg games can be found in [10, 20, 24, 68, 105, 110], while applications to economic models are described in [11, 33].
Multiobjective: the follower has a vector-valued payoff function or solves vector (quasi-)variational inequalities. Methods for solving (optimistic) multiobjective bilevel optimization problems have been investigated in [35] (where scalarization techniques are used) and in [113] (where a model based on set-valued optimization is firstly proposed to manage strong Stackelberg problems and then extended to a multiobjective setting). Concerning results on approximate solutions which could be useful in the analysis of Stackelberg games with second stage described by vector problems, we remind [56, 65, 79, 92]. Furthermore, a penalty scheme has been introduced to approach (optimistic) semivectorial bilevel optimization problems in [18] and, in a dynamic framework, existence results have been first obtained for the (optimistic and pessimistic) semivectorial bilevel optimal control problems in [19].
Multileader: more than one leader acts in the first stage. For general multi-leader-follower games see, for example, [42, 98]. The situation where each follower can observe the action of one leader has been investigated in [97] for an economic model and in [23] for deriving a selection result. An increasing literature is also devoted to the class of multi-leader-common-follower games and to its applications to electricity markets, see for example [8, 9].