INDEX

References are to section numbers. References to essential definitions are printed in boldface numbers to permit the use of this index as a mathematical dictionary. Numbers preceded by letters (A-2) refer to the Appendixes.

A priori distribution, 19.9-2, 19.9-4

Abadie, 11.4-3

Abelian group, 12.2-1, 12.2-10

Abel's integral equation, 15.3-10

Abel's lemma, 4.8-5

Abel's test, 4.9-1

Abel's theorem, 4.10-3

Abscissa, 2.1-2

      of absolute convergence, 8.2-2

Absolute bound, 4.3-3

Absolute convergence, abscissa of, 8.2-2

      circle of, 8.7-3

      of expected values, 18.3-3, 18.4-4, 18.4-8

      of infinite products, 4.8-7

      of integrals, 4.6-2, 4.6-13, 4.9-3

      of Laplace transform, 8.2-2

      of series, 4.8-1, 4.8-3, 4.9-1

Absolute derivative, 16.10-8

Absolute differential, 5.5-3, 16.10-1

Absolute differential calculus(seeCovariant differentiation)

Absolute first curvature, 17.4-2

Absolute geodesic curvature, 17.4-2

Absolute moment, 18.3-7

Absolute scalar, 16.2-1

Absolute tensor, 16.2-1

Absolute term, 1.6-3

Absolute value, of complex number, 1.3-2

      of real number, 1.1-6

      of vector, 5.2-5, 16.8-1 (See alsoNorm)

Absorption laws, 12.8-1

Acceleration, 17.2-3

      of convergence, 20.2-2d

Accessory conditions(seeConstraint)

Adams-Bashforth predictor, 20.8-3, 20.8-4t

Adams-Moulton corrector, 20.8-4t

Addition formulas, elliptic functions, 21.6-7

hyperbolic functions, 21.2-7

trigonometric functions, 21.2-3

Addition theorem, for binomial coefficients, 21.5-1

      for chi-square distribution, 19.5-3

      for cylinder functions, 21.8-13

      for Legendre polynomials, 21.8-13

      for probability distributions, 18.8-9, 19.5-3

      for spherical Bessel functions, 21.8-13

Additive group, 12.2-10

Adjoint boundary-value problem, 15.4-3, 15.4-4

Adjoint equations, 11.8-2

Adjoint integral equation, 15.3-7

Adjoint kernel, 15.3-1

Adjoint linear differential equations, 13.6-3

Adjoint matrix, 13.3-1

Adjoint operator, 10.3-6, 10.5-1, 14.4-3, 15.4-3

Adjoint variable, 11.6-8, 11.8-2

Adjoint vector spaces (see Conjugate vector spaces)

Adjugate matrix, 13.3-1

Admissible controls, 11.8-1

Admissible statistical hypothesis, 19.6-1

Admissible transformation, 6.2-1, 16.1-2

Advanced potential, 15.6-10

Affine transformation, 14.10-7

Agnesi, 2.6-1

Aircraft attitude, 14.10-6b

      (See alsoRotation)

Aitken-Steffens algorithm, 20.2-2d

Aitken's interpolation, 20.5-2c

Algebra, 12.1-2

      of classes or sets, 4.3-2, 12.8-4, 12.8-5

Algebraic complement, 1.5-4

Algebraic equation, 1.6-3

Algebraic equations, numerical solution, 20.2-1 to 20.2-8

Algebraic function, 4.2-2

Algebraic multiplicity, 13.4-3, 13.4-5, 13.4-6, 14.8-3, 14.8-4

Algebraic numbers, 1.1-2

Alias-type transformation, 14.1-3, 15.2-7, 16.6-1, 16.1-2

Alibi-type transformation, 14.1-3, 14.5-3, 15.2-7 “Almost everywhere,” 4.6-14

Alternating group, 12.2-8

Alternating matrix (see Skew-hermitian matrix) Alternating product, 16.5-4, 16.10-7

Altitude, of spherical triangle, B-6

      of trapezoid, A-l of triangle, B-3, B-4

Amplitude, 4.11-4

      of a complex number, 1.3-2

      of an elliptic function, 21.6-7

Amplitude-modulated sinusoid, Fourier transform of, 4.11-4

Laplace transform of, 8.3-2

Analysis of variance, 19.6-6

Analytic continuation, 7.8-1, 7.8-2

Analytic function, 4.10-4, 4.10-5, 7.3-1

Anchor ring, A-5

Anger, 21.8-4

Angle, between line elements, 17.3-3, 17.4-2

      between line segments, 2.1-4, 3.1-7

      of rotation, 14.10-2, 14.10-4, 14.10-7

      between straight lines, 2.3-2, 3.4-1

      in a unitary vector space, 14.2-7

      between vectors, 5.2-6, 14.2-7, 16.8-1

Angular bisector, B-3, B-4, B-6

Angular velocity, 5.3-2, 14.10-5

Anharmonic ratio, 7.9-2

Annular Hankel transform, finite, 8.7-K Antecedents, 16.9-1

Antiperiodic function, 4.2-2, 4.11-3

Laplace transform of, 8.3-2

Antisymmetric matrix (see Skew-symmetric matrix) Antisymmetry, 12.6-1

Aperiodic component, 18.10-9

Approximate spectrum, 14.8-3, 15.4-5

Approximation of functions, 20.5-1 to 20.6-7

Approximation functions, 20.9-9, 20.9-10

Arc length, 4.6-9, 6.2-3, 6.4-3, 17.2-1, 17.4-2

Arc length, in vector notation, 5.4-4

Archimedes’ spiral, 2.6-2

Area, 4.6-11, 5.4-6, 6.2-3, 17.3-3

      element of, 6.4-3, 17.3-3

      of plane figures, A-l to A-3, B-4

      of spherical triangle, B-6

      of triangle, 2.1-4, 2.1-8, B-4

      vector representation of, 3.1-10, 5.4-6

Argand plane, 1.3-2

Argument, of a complex number, 1.3-2

      of a function, 4.2-1

      principle of the, 7.6-9

Aristotelian logic, 12.8-6

Arithmetic, 1.1-2

Arithmetic mean, 4.6-3

Arithmetic progression, 1.2-6

Arithmetic series, E-4

Artificial variables, in linear programming, HA-2d Associate matrix, 13.3-1

Associate operator, 14.4-3

Associated elliptic integrals, 21.6-6

Associated Laguerre functions, 21.7-5

Associated Laguerre polynomials, 21.7-5, 21.7-7

Associated Legendre functions, 21.8-10

Associated Legendre polynomials, 21.8-10, 21.8-12

Associated metric tensor, 16.7-1

Associated tensors, 16.7-2

      differentiation of, 16.10-5

Associative law, 1.1-2, 12.2-1, 12.4-1

Astroid, 2.6-1

Asymmetrical impulse (see Impulse functions) Asymmetrical step function (see Step function) Asymptote, 2.5-2, 17.1-6

Asymptotic cone, 3.5-7

Asymptotic direction, 17.3-6

Asymptotic distribution of eigenvalues, 15.4-8

Asymptotic line, 17.3-6

Asymptotic relations, 4.4-3

Asymptotic series, 4.8-6

      for associated Legendre polynomials, 21.8-10

      for cylinder functions, 21.8-9

      for inverse Laplace transform, 8.4-9

Asymptotic stability, 9.5-4, 13.6-5, 13.6-6

      in the large, 1.5-4, 13.6-5

Asymptotically efficient estimate, 19.4-1, 19.4-2, 19.4-4

Asymptotically normal random variables. 18.6-4, 18.6-5

Attitude, aircraft, 14.10-66 (See also Rotation) Augmented matrix, 1.9-4

Autocorrelation function, effect of operations, 18.12-1 to 18.12-5

      ensemble, 18.9-3, 18.10-2

      examples, 18.11-1 to 18.11-3, 18.11-5, 18.11-6

      normalized 18.10-26 t average, 18.10-8 to 18.10-10

Autocovariance function, 19.8-1

Automorphism, 12.1-6, 12.2-9

Autonomous system, 13.6-1

      stability, 13.6-6

Auxiliary kernels, 15.3-4, 15.3-9

Average, 4.6-3

      of periodic waveforms, D-1t (See also Ensemble average; Sample average; t average) Averaging time, 19.8-2

Axial symmetry, 10.4-3

Axial vector, 16.8-4

Axis, of curvature, 17.2-5

      of revolution, 3.1-15

Backward difference, 20.4-1

Backward-difference operator, 20.4-1

Bairstow’s method, 20.2-4

Ball, 12.5-3, 12.5-4

Banach space, 14.2-7, 14.8-3

Banachiewicz, 20.3-lc Banach’s contraction-mapping theorem, 12.5-6, 20.2-1, 20.2-6, 20.3-5

Band-limited functions, 18.11-2a Band-limited random process, 18.11-26

Bang-bang control, 11.8-36

Base, of a logarithm, 1.2-3

      powers of, 1.2-1

      of a topology, 12.5-1

Base vectors, abstract, 14.5-1, 14.6-1

      cartesian, 5.2-1

      in curvilinear coordinates, 6.3-3, 16.8-2

      differentiation of, 16.10-1, 16.10-3

      in n-dimensional space, 14.2-4

      in orthogonal coordinates, 6.4-1, 16.8-2

Bashforth-Adams formula, 20.8-3, 20.8-4t

Basic variables in linear programming, 11.4-2

Basis (see Base vectors) orthonormal (see Complete ortho-normal set) Bayes estimation, 19.9-2, 19.9-4

Bayes test, 19.9-2, 19.9-3

Bayes theorem, 18.2-6, 18.4-5, 19.9-2, 19.9-4

Bellman, 11.8-6, 11.9-1

Beltrami parameters, 17.3-7

Bending invariant, 17.3-8

Bendixson’s theorems, 9.5-3

Bernoulli, 2.6-1

Bernoulli numbers, 19.2-5, 21.5-2, 21.5-3

Bernoulli polynomials, 21.2-12, 21.5-2, 21.5-3

Bernoulli trials, 18.7-3, 18.8-1, 19.2-1

Bernoulli’s differential equation, 9.2-4

Bernoulli’s theorem, 18.1-1, 18.6-5

Bessel functions, approximations, 20.6-32

      modified, 21.8-6

      spherical, 10.4-4, 21.8-8, 21.8-13 (See also Cylinder functions) Bessel’s differential equation, 9.3-3, 21.8-1

Green’s function for, 9.3-3

      modified, 21.8-6

Bessel’s inequality, 14.7-3, 15.2-3

Bessel’s integral formula, 21.8-2

Bessel’s interpolation formula, 20.5-3, 20.7-1

      for two-way interpolation, 20.5-6

Beta distribution, 18.8-5, 19.5-3

Beta function, 19.8-5, 21.4-3

Beta-function ratio, 18.8-5

Bias, 19.4-1

Bilateral Laplace transformation, 8.6-2

Bilinear form, 13.5-1

Bilinear transformation, 7.9-2, 21.6-5

Bimodal distribution, 18.3-3

Binomial coefficient, 1.4-1, 21.5-1, 21.5-3, 21.5-4

      tables, C-l to C-3

Binomial distribution, 18.7-3, 18.8-1, 18.8-9, 19.4-2

      generalized, 18.7-3

      negative, 18.8-1

Binomial series, 21.2-12

Binomial theorem, 1.4-1

Vandermonde’s, 21.5-1

Binormal, 17.2-2 to 17.2-4

Bipolar coordinates, 6.5-1

Bisector, angular, B-3, B-4, B-6

Biunique transformation, 12.1-4

Bivector (see Alternating product) Block relaxation, 20.3-2

Body axes, 14.10-4

Bogolyubov, 9.5-5

Bolza, problem of, 11.6-6

Bolzano-Weierstrass theorem, 12.5-4

Bonnet, 17.3-14

Boolean algebra, 12.6-1, 12.8-1 to 12.8-8

Boolean function, 12.8-2, 12.8-7

Borel set, 4.6-14

Borel’s convolution theorem (see Convolution theorems) Bound, 4.3-3

      for eigenvalues, 14.8-9

      of a linear operator, 14.4-1

      of a matrix, 13.2-1

Boundary, 4.3-6

      in ordered sets, 12.6-1

      of a set, 12.5-1

Boundary collocation, 20.9-9

Boundary conditions, numerical representation, 20.9-6

Boundary maxima and minima, 11.2-1, 11.6-7, 11.8-3 (See also Linear programming problems; Nonlinear programming) Boundary point, 4.3-6

Boundary-value problem, classification, 10.3-4, 10.4-1

      of optimal-control theory, 11.8-2

      reduction to initial-value problem, 9.3-4

Bounded operator, 15.3-1

Bounded region, 4.3-6, 7.2-4

Bounded representation, 14.9-1

Bounded set, 4.3-3

Bounded variation, 4.4-8

Boundedly compact space, 12.5-3

Box product (see Scalar triple product) Brachistochrone, 11.6-1

Branch, 7.4-1 to 7.4-3, 7.6-2, 7.8-1

Branch cut, 7.4-2, 7.7-2

Branch point, 7.4-2, 7.6-2

Brianchon’s theorem, 2.4-11

Budan’s theorem, 1.6-6

Burnside’s theorem, 14.9-3

Campbell’s theorem, 18.11-5

Cancellation laws, 1.1-2, 12.2-1, 12.3-1

Canonical equations, 10.2-6, 11.8-2

      solution of, 10.2-7

Canonical form, of Boolean function, 12.8-2

      of partial differential equation, 10.3-3

      of quadratic and hermitian forms, 13.5-4

Canonical maxterm, 12.8-7

Canonical minterm, 12.8-7

Canonical transformation, 10.2-6

Canonically conjugate variables, 10.2-6

Cantor, 4.3-1

Cap, 12.8-1

Capacity, 16.2-1, 16.10-10

Cardinal number, 4.3-2

Cardioid, 2.6-1

Cartesian coordinates, local, 17.4-7

      n-dimensional, 17.4-6, 17.4-7

      plane, 2.1-2

      right-handed rectangular, 2.1-3, 3.1-4

      in space, 3.1-2

Cartesian decomposition, of complex number, 1.3-1

      of linear operators, 14.4-8

      of matrices, 13.3-4

Cartesian product, 12.7-1

Casoratian determinant, 20.4-4a Catenary, 2.6-2

Cauchy boundary-value problem, 10.2-2, 10.2-4, 10.3-1, 10.3-5

Cauchy-Goursat integral theorem, 7.5-1

Cauchy principal value, 4.6-2, 7.7-3

Cauchy-Riemann equations, 7.3-2, 15.6-8

Cauchy-Schwarz inequality, 1.3-2

      for functions, 4.6-19, 15.2-1

      for vectors, 14.2-6

Cauchy sequence, 12.5-4, 15.2-2

Cauchy’s distribution, 18.8-5, 18.8-9

Cauchy’s inequality, 7.5-2

Cauchy’s integral formula, 7.5-1

Cauchy’s integral test, 4.9-1

Cauchy’s mean-value theorem, 4.7-1

Cauchy’s ratio and root tests, 4.9-1

Cauchy’s rule for series, 4.8-3

Cauchy’s test for convergence, 4.9-1 to 4.9-4

Causal distribution, 18.8-1, 18.8-5

Cayley-Hamilton theorem, 13.4-7

Cayley-Klein parameters, 14.10-4

Cayley’s theorem, 12.2-9, 14.9-1

Center, of curvature, 17.1-4, 17.2-2, 17.2-5

      of gravity, 18.4-4, 18.8-8, 19.7-2

      of a triangle, B-3

      of a group, 12.2-7

Central of a group, 12.2-7

Central conic, 2.4-6

Central difference, 20.4-1

Central-difference operator, 20.4-2

Central factorial moment, 18.3-7

Central limit theorem, 18.6-5, 19.3-1

Central mean, 20.4-1

Central-mean operator, 20.4-2

Central moment, 18.3-7, 18.3-10, 18.4-3, 18.4-8

Central quadric, 3.5-3, 3.5-5

CEP (circular probable error), 18.8-7

Certain event, 18.2-1

Césaro’s means, 4.8-5, 4.11-7

Cetaev’s theorem, 13.6-6

Chain, 12.6-1

Chapman, 18.11-4

Character, of representation, 14.9-4, 14.9-5, 14.9-6

      of rotation group, 14.10-8

Characteristic, of integral domain, 12.3-1

      of partial differential equation, 10.2-1, 10.3-1, 10.3-2, 10.3-5 to 10.3-7

      of a surface, 17.3-11

Characteristic directions, 10.2-1

Characteristic equation, of a conic, 2.4-5

      of an eigenvalue problem, 14.8-5, 14.8-7

      of linear differential equation, 9.4-1

      of a matrix, 13.4-5, 13.4-7

      in perturbation theory, 15.4-11

      of quadric, 3.5-4

Characteristic equations, partial differential equations, 10.2-1, 10.2-4

      solution of, 10.2-3, 10.2-4

Characteristic function, 18.3-8

      addition theorem, 18.5-7

      continuity theorem, 18.6-2

      multidimensional, 18.4-10

      of probability distribution, 18.3-10

      of a random process, 18.9-3c of special distributions, 18.8-1, 18.8-2, 18.8-8 (See also Eigenfunction) Characteristic oscillations, 10.4-9 [See also Normal modes) Characteristic quadratic form, 3.5-4

Characteristic strip, 10.2-1

Characteristic value (see Eigenvalue) Characteristic vector (see Eigenvector) Charlier, 19.3-3

Chebyshev polynomials, 21.7-4, 27.1-17, F-22t

shifted, 20.6-4

      use for approximation, 20.6-3 to 20.6-5

Chebyshev quadrature formula, 20.7-3

Chebyshev’s inequality, 18.3-5

Chebyshev’s theorem, 18.6-5

Checking computations, 20.1-2

Chipart, 1.6-6

Chi-square distribution, 19.5-3, 19.7-5

Chi-square test, 19.6-7

Cholesky, 20.3-1

Chord of a circle, A-3

Christoffel, 7.9-4

Christoffel three-index symbols, 16.10-1, 16.10-3, 17.4-5

      in cylindrical coordinates, 6.5-1

      in spherical coordinates, 6.5-1

      on surface, 17.3-7

Circle, of curvature, 17.1-4, 17.2-2

      formulas for, A-3

      of absolute convergence, 8.7-3

      properties of, 2.5-1

Circle theorem, 14.8-9

Cicular frequency, 4.11-4, 10.4-8

Circular probability paper, 18.8-7

Circular probable error, 18.8-7

Circumscribed circle, of regular polygons, A-2

      of triangle, B-4

Circumscribed cone, B-6

Cissoid, 2.6-1

Clairaut’s differential equation, 9.2-4, 10.2-3

Class frequency, 19.2-2

Class interval, 19.2-2

Clebsch-Gordan equation, 14.10-7

Clipped sinusoid, D-1Z Clippinger, 20.8-4c Closed integration formula, 20.8-3c Closed interval, 4.3-4

Closed set, 4.3-6, 12.5-1

Closure of a set, 12.5-1

Closure property, 1.1-2, 12.2-1

Codazzi, 17.3-8

Coded data, 19.2-5

Cof actor, 1.5-2

Coherence, 18.10-9

Collatz, 20.2-2

Collinear points, 2.3-1, 3.4-3

Collocation, 20.9-9, 20.9-10

Column matrix, 13.2-1

Combinations, tables, C-l to C-3

Combinatorial analysis, 18.7-2

      tables, C-l to C-3

Common divisors, 1.7-3

Commutative group (see Abelian group) Commutative law, 1.1-2

Commutator, 14.4-2

Commuting operators, 14.4-9, 14.8-6, 14.9-3

Compact set, 12.5-16

Compact space, 12.5-16

Companion matrix, 20.2-5

Comparison of populations, 19.6-6, 19.6-8

Comparison tests for convergence, 4.9-1 to 4.9-4

Comparison theorems, 14.8-9

      for eigenvalue problems, 15.4-10

Compatibility conditions, 10.1-2, 17.3-8

Complement, in Boolean algebra, 12.8-1

      of an event, 18.2-1

      of a set, 4.3-2

Complementary-argument theorem, 21.5-2

Complementary equation, 9.3-1, 15.4-2, 20.4-4« Complementary error function, 21.3-2

Complementary function, 9.3-1

Complementary modular angle, 21.6-6« Complementary modulus, 21.6-6

Complete additivity, 12.8-8, 18.2-1

Complete beta function, 21.4-4

Complete elliptic integrals, 21.6-6

Complete hermitian kernel, 15.3-4

Complete integral, of ordinary differential equation, 9.1-2

      of partial differential equation, 10.2-3, 10.2-4

Complete orthonormal set, of functions, 10.4-2, 10.4-9, 15.2-4, 15.4-6, 15.4-12, 21.8-12 (See also Eigenfunction) of vectors, 14.7-4

Complete primitive (see Complete integral) Complete set of invariants, 12.2-8, 14.1-4

Complete solution of algebraic equation, 1.6-3

Complete space, 12.5-4, 14.2-7, 14.8-4, 15.2-2

Complete stability, of linear system, 9.4-4, 13.6-7

      of a solution (see Asymptotic stability) Completely reducible operator, 14.8-2

Completely reducible representation, 14.9-2, 14.9-4 to 14.9-6

Completely skew-symmetric tensor, 16.5-1 to 16.5-3

Completely stable system, 20.4-8

Completely symmetric tensor, 16.5-1

Complex, 12.2-4

Complex conjugate, 1.3-1

Complex-conjugate matrix, 13.3-1

Complex number, 1.3-1

Complex potential, 15.6-8

Complex vector space, 14o2-l Components, representation in terms of, 14.1-2, 14.2-4, 16.1-3

Composite character, 14.9-4

Composite statistical hypothesis, 19.6-1, 19.6-3, 19.6-4

Composition factor, 12.2-6

Composition series, 12.2-6

Compound distribution, 18.5-8

Compound experiments, 18.2-4

Compound probabilities, 18.2-2

Concave curve, 17.1-4

Conchoid, 2.6-1

Conditional entropy, 18.4-12

Conditional expected value, 18.4-5, 18.4-9, 19.9-4

Conditional frequency function, 18.4-5

Conditional mean (see Conditional expected value) Conditional probability, 18.2-2, 18.4-5

Conditional probability density (see Conditional frequency function) Conditional probability distributions, of random process, 18.9-2

Conditional risk, 19.9-2

Conditional variance, 18.4-5

Conditionally compact space, 12.5-3

Cone, 3.1-5

Confidence coefficient, 19.6-5

Confidence level, 19.6-5

Confidence limits, 19.6-5

Confidence region, 19.6-5, 19.7-7

Configuration, C-2

Configuration-counting series, C-2

Configuration inventory, C-2

Confluent hypergeometric function, 9.3-10, 21.7-1

Conformable matrices, 13.2-2

Conformai mapping, 7.9-1 to 7.10-1, 15.6-8

      of surfaces, 17.3-10

Congruent matrices, 13.4-1

Congruent modulo r, 12.2-10

Conic (see Conic section) Conic section, 2.4-1 to 2.4-9

      central, 2.4-3

      classification, 2.4-3

      degenerate, 2.4-3

      improper, 2.4-3

      proper, 2.4-3

Conjugate axis, 2.5-2

Conjugate chords, 2.4-6, 3.5-5

Conjugate diameters, 2.5-2, 3.5-9

Conjugate diametral plane, 3.5-5

Conjugate directions, surface, 17.3-6

Conjugate-gradient method, 20.3-2/ Conjugate group elements, 12.2-5, 14.9-3, 14.9-4

Conjugate harmonic functions, 15.6-8

Conjugate matrix, 13.3-1

Conjugate operator, 14.4-3, 14.4-9

Conjugate subgroups, 12.2-5, 12.2-9

Conjugate vector spaces, 14, 4-9, 15.4-3

Conjunct, 15.4-3

Conjunctive matrices, 13.4-1

Connected sets, 12.5-1

Consequents, 16.9-1

Conservation of functional equations, 7.8-1

Consistency property, 12.8-1

Constant of integration, 4.6-4, 9.1-2

Constraint, 110.3-4, 11.6-2, 11.6-3, 11.6-7, 11.7-1, 11.8-le, 14.8-9, 15.4-7, 15.4-10. 20.2-6d (See also Inequality constraints) Construction, of ellipses and hyperbolas, 2.5-3

      of parabolas, 2.5-4

Constructive definition, 12.1-1

Contact (see Osculation) Contact transformation, 9.2-3, 10.2-5 to 10.2-7, 11.5-6

Contagion, 18.8-1

Content, of a configuration, C-2

      of a figure, C-2

Contingency table, 19.7-5

Continued-fraction expansion, 4.8-8, 20.5-7, E-9

Continuity, 4.4-6, 12.5-1

Continuity axiom (see Coordinate axiom) Continuity in the mean, 18.9-3d Continuity theorem, of characteristic function, 18.6-2

      for distribution functions, 18.6-2

      for Fourier transforms, 4.11-5

      for integrals, 4.6-16

      for Laplace transforms, 8.3-12

      for series, 4.8-4

      for z transform, 8.7-32

Continuous function, 4.4-6

Continuous group, 12.2-11, 12.2-12

Continuous in mean, 15.3-1, 18.9-3

Continuous random process, 18.9-1

Continuous random variable, 18.3-2, 18.4-3, 18.4-7

Continuous spectrum, 14.8-3, 15.4-5

Continuous vector function, 5.3-1

Continuously differentiate function, 4.5-1, 4.5-2

Contour, 7.2-3

Contour ellipse, of normal distribution, 18.8-6

Contour integrals, 7.2-5, 7.7-3

      in Laplace transforms, 8.4-3

Contraction of tensors, 16.3-5, 16.7-4

Contraction mapping, 12.5-6, 20.2-1, 20.2-2, 20.2-6«, 20.3-5

Contraction rule, 16.10-5

Contragredient transformations, 14.7-6, 16.6-1

Contravariant base vectors, 16.6-1

Contravariant components, 6.3-3, 16.2-1

Contravariant vector, 16.2-1, 16.6-1, 16.7-3

Control, optimal, 11.8-1 to 11.9-2

Control variable, 11.8-1

Convergence, of matrices, 13.2-11

      in mean, 12.5-12, 15.2-2

      for random variables, 18.6-3

      in metric space, 12.5-3

      in probability, 18.6-1 (See also Improper integrals; Infinite series; Power series) Convergence acceleration, 4.8-5, 20.2-2d Convergence criteria, 4.9-1 to 4.9-4

Convex curve, 17.1-4

Convex set, 11.4-16

Convolution, 4.6-18

Convolution integral, 9t4-3, 10.5-4

Convolution theorems, 4.11-52, 8.3-12, 8.3-3, 8.6-2, 8.7-32, 18.10-8

Coordinate axes, 2.1-1, 3.1-2, 3.1-3

Coordinate axiom, 2.1-2, 4.3-1

Coordinate line, 6.2-2

      in curved space, 17.4-2

Coordinate surface, 6.2-2

Coordinate system, 2.1-1, 14.1-2, 14.2-4

      cartesian, 2.1-2, 3.1-2

      n-dimensional, 17.4-6, 17.4-7

      rectangular, 2.1-3, 3.1-4

      right-handed, 2.1-2, 3.1-3

      choice of, 10.4-1

      curvilinear, 6.2-1

      cylindrical, 3.1-6, 6.5-1

      orthogonal, 6.4-1 to 6.5-1, 16.8-2, 16.9-1, 16.9-3, 16.10-3, 17.4-7

      polar, 2.1-8

      special, formulas for, 6.5-1

      spherical, 3.1-6, 6.5-1 (See also Base vectors) Coordinate transformation (see Transformation) Corner conditions, for extremals, 11.6-7, 11.8-5

Corrections for grouping, 19.2-5

Corrector, 20.8-3 to 20.8-7

Correlation, test for, 19.7-4, 19.7-6

Correlation coefficient, 18.4-4, 18.4-6, 18.4-8

      multiple, 18.4-9

      partial, 18.4-9

      sample, 19.7-2, 19.7-4

Correlation functions, measurement, 19.8-3c (See also Autocorrelation function; Crosscorrelation function) Correlation matrix, 18.4-8

Coset, 12.2-4, 12.2-11

Cosine integral, 21.3-1

Cosine law, B-4, B-8, B-9

Cosine series, 4.11-2, 8.7-1

Cosine transform, 4.11-3, 4.11-5, D-3

      finite, 8.7-1

Cosinus amplitudinis, 21.6-7

Cost, of error, 19.9-1

Cotes, 20.7-2

Count rate, 18.11-4d, 18.11-5

Countable set, 4.3-2

Courant’s minimax principle, 14.8-8, 15.4-7

Covariance, 18.4-4, 18.4-8, 19.7-2 (See also Sample covariance) Covariant base vectors, 16.6-1

Covariant components, 6.3-3, 16.2-1

Covariant derivative, 16.10-4

Covariant differentiation, 6.3-4, 16.10-1 to 16.10-11

      on surface, 17.3-7

Covariant vector, 16.2-1, 16.6-1, 16.7-3

Covering theorem, 12.5-4

CPE (circular probable error), 18.8-7

Cramer’s rule, 1.9-2, 14.5-3

Criterion functional, 11.8-1

Critical point, 7.9-1

      in phase plane, 9.5-3

Critical region, 19.6-2

Cross-power spectral density, 18.10-5

Cross product (see Vector product) Cross-quadrature spectral density, 18.10-5

Cross ratio, 7.9-2

Cross-spectral density, 18.10-3

      in linear systems, 18.12-2 to 18.12-4

      non-ensemble, 18.10-8

Crosscorrelation function, 18.9-3, 18.10-2, 18.10-4, 18.12-1 to 18.12-4

Crout, 20.3-1

Cruciform, 2.6-1

Cube, A-6

Cubic equation, 1.6-3, 1.8-3, 1.8-4

Cumulants (see Semi-invariants) Cumulative distribution function (see Distribution function) Cumulative frequency, 19.2-2

Cumulative relative frequency, 19.2-2

Cup, 12.8-1

Curl, 5.5-1, 5.5-2, 6.4-2, 16.10-7

Curtosis (see Excess) Curvature, of plane curve, 17.1-4

      of space curve, 17.2-2, 17.2-3

Curvature invariant, 17.4-6

Curvature tensor, 16.10-6, 17.4-5

Curvature vector, 17.2-2, 17.4-3

Curve, in complex plane, 7.2-3

      in curved space, 17.4-2

      in plane, 2.1-9, 17.1-1

      in space, 3.1-13, 17.2-1

      vector representation, 3.1-13, 17.2-1

Curvilinear coordinates, 6.2-1

Cusp, 17.1-3

Cycle index, C-2

Cyclic group, 12.2-3

Cyclic permutation, 12.2-8

Cyclic variables, 10.2-7

Cycloid, 2.6-2

Cylinder functions, 10.4-3, 10.4-9, 15.6-10, 21.8-1 to 21.8-9, 21.8-13

      approximations, 20.6-3t

Cylindrical coordinates, 3.1-6

      vector relations in, 6.5-1

Cylindrical harmonics, 10.4-3, 21.8-1

Cylindrical waves, 10.4-8

      d’Alembert’s solution, 10.3-5

Damped wave, 10.4-8

Damping constant, 9.4-1

Damping ratio, 9o4-l Darboux vector, 17.2-3

D-c process, 18.11-1

Decagon, A-2

Deciles, 18.3-3, 19.2-2

Decision function, 19.9-1

Decomposable operator. 14.8-2, 14.9-2, 14.9-4

Decomposition, of matrices, 13.3-4

      of operators, 14.4-8

Dedekind, 4.3-1

Dedekind cut, 1.1-2

Defining postulates, 12.1-1

      examples, 12.2-1, 12.3-1, 12.4-1, 12.4-2, 12.5-1, 12.5-2

Definite integral, Lebesgue integral, 4.6-15

Riemann integral, 4.6-1

      of vector function, 5.3-3

Degenerate conic, 2.4-3

Degenerate eigenvalue, 14.8-3, 14.8-6, 15.3-3, 15.4-8, 15.4-11

Degenerate kernel (see Separable kernel) Degenerate quadric, 3.5-7

Degree, of degeneracy, 14.8-4, 15.3-3, 15.4-5

      of freedom, 19.5-3

      of a homogeneous function, 4.5-5

      of a polynomial, 1.4-3, 1.6-3

      of a representation, 14.9-1

      of truncation, 19.3-4

Del (see Gradient operator) Delambre’s analogies, B-8

Delayed sequence, z transform, 8.7-3

Delta function, multidimensional, 21.9-7 (See also Impulse functions) De Moivre—Laplace limit theorem. 18.8-1

De Moivre’s theorem, 1.3-3

      de Morgan’s laws, 12.8-1

Dense set, 12.5-1

Density, 16.2-1

Denumerable set (see Countable set) Dependent variable, 4.2-1

Derivative, 4.5-1

      of complex variables, 7.3-1

Derived set, 12.5-1

Descartes’s rule, 1.6-6

Descriptive definition (see Defining postulates) Detection, 19.9-1 to 19.9-3

Determinant, 1.5-1, 16.5-3

      of a linear operator, 14.6-2

      of a matrix, 13.2-7, 13.3-2, 13.4-1, 13.4-3, 13.4-5

      numerical evaluation, 20.3-1

      d’Huilier’s equation, B-8

Diagonal matrix, 13.2-1

Diagonalization, 13.4-4, 13.5-4, 13.5-5, 14.8-6, 14.8-7

Diameter, of a conic, 2.4-6, 2.4-10

      conjugate (see Conjugate diameters) of a quadric surface, 3.5-5

Diametral plane, 3.5-5

      conjugate, 3.5-5

Difference coefficient, 20.4-3

Difference-differential equation, 10.4-1

Difference equations, 11.7-3, 18.11-4, 20.4-3 to 20.4-8, 20.8-5, 20.9-4, 20.9-8

Difference operators, 20.4-2, 20.9-3

Differentiable function, 4.5-1, 4.5-2. 7.3-1

Differential, 4.5-3

Differential distribution function (see Probability density) Differential invariant, 5.5-1 to 5.5-8, 16.10-7, 16.10-11, 17.3-7

Differential operator, 5.5-1 to 5.5-8, 15.4-1, 16.10-7 (See also Differential invariant) Differentiation, 4.5-1, 4.5-4

      absolute (see Covariant differentiation) of complex functions, 7.3-1

      of elliptic functions, 21.6-7

      of integrals, 4.6-1

      of matrices, 13.2-11

      numerical, 20.6-1

      of series, 4.8-4

      of vectors, 5.3-2

Diffusion equation, 10.4-7, 10.5-3, 10.5-4, 15.5-3, 20.9-4, 20.9-8, 21.6-8

Dimension, 14.1-2, 14.2-4, 14.7-3

      of a representation, 14.9-1

Dimsdale, 20.8-4c Diodes, 2.6-1

Dipole, 15.6-5

Dipole radiation, 10.4-8

Dirac (see Impulse functions) Direct methods, calculus of variations, 11.7-1, 11.7-2

      of solving linear equations, 20.3-1

Direct product, of groups, 12.7-2

      of matrices, 13.2-10

      of representations, 14.9-6, 14.10-7

      of vector spaces, 12.7-3

Direct sum, of linear algebras, 12.7-5

      of matrices, 13.2-10(See also Step matrix) of operators, 14.8-2

      of representations, 14.9-2

      of rings, 12.7-5

      of vector spaces, 12.7-5

Direction cosines, of coordinate lines, 6.3-2

      of intersection, 3.4-5

      in plane, 2.1-4

      in space, 3.1-8

Direction numbers, 3.1-8

Directional derivative, 5.5-3

      in Riemann space, 16.10-8

Directrix, of a conic, 2.4-9

      of a surface, 3.1-15

Dirichlet integral in potential theory, 15.6-2

Dirichlet problem, 7.10-1, 10.4-9, 15.4-10, 15.5-4, 15.6-2, 15.6-6, 15.6-8, 15.6-9

Dirichlet region, 15.6-2

Dirichlet series, 8.7-3

Dirichlet’s conditions, 4.4-8, 4.11-4

Dirichlet’s integral, 4.11-6, 21.9-4

Dirichlet’s test for convergence, 4.9-1, 4.9-2

Discontinuity of the first kind, 4.4-7

Discrete random process, 18.9-1

Discrete random variable, 18.3-1, 18.4-3, 18.4-7, 18.7-2, 18.7-3

Discrete set, 4.3-6, 4.4-7

Discrete spectrum, 13.4-2, 14.8-3, 15.4-5

Discrete topology, 12.5-1

Discriminant, of an algebraic equation, 1.6-5

      of a conic, 2.4-2

      of a quadric, 3.5-2

Disjoint elements, 12.8-1

Disjoint events, 18.2-1

Dispersion; 18.3-3, 18.8-7

Displacement operator (see Shift operator) Distance, in abstract space, 12.5-2

      in L2, 15.2-2

      between lines, 2.3-2

      in normed vector space, 12.5-2, 14.2-7

      in a plane, 2.1-4, 2.1-8

Distance, between point and line, 2.3-1, 3.4-2

      between point and plane, 3.4-2

      in space, 3.1-7 (See also Arc length) Distance element, 4.6-9, 6.2-3

      in Riemann space, 17.4-2

      on surface, 17.3-3 (See also Arc length) Distance function, 12.5-2

Distribution function, 18.2-9, 18.3-1, 18.3-2, 18.4-3, 18.4-7, 18.5-2, 18.6-2

      empirical, 19.2-2

Distributions, theory of, 21.9-2

Distributive law, 1.1-2, 12.4-1, 14.2-6

Divergence, 5.5-1, 5.5-2, 6.4-2, 16.10-7

Divergence theorem, 5.6-1, 16.10-11

Divergent series, 4.8-1, 4.8-6

Divided differences, 20.5-2, 20.7-1

Division algebra, 12.4-2, 13.2-5, 14.4-2

Division algorithm, 1.7-2

Divisor, 1.7-1

      common, 1.7-3

      greatest, 1.7-3

      of zero, 12.3-1

Dodecahedron, A-6

Domain of definition, 4.2-1, 12.1-4

Dominant eigenvalue, 20.3-5

Doolittle, 20.3-1

Dot product (see Inner product; Scalar product) Double-dot product, 16.9-2

Double point, 17.1-3

Double-precision arithmetic, 20.8-5

Double series, 4.8-3

Doubly periodic function, 21.6-1

Dual vector spaces (see Conjugate vector spaces) Duality, in Boolean algebra, 12.8-1

      in geometry, 3.4-4

      in linear programming, 11.4-lc, 11.4-4

Dualization, 12.8-1

Du Bois-Reymond, lemma, 11.6-ld theorem, 11.6-16

Duffing’s equation, 13.6-7

Duhamel, 9.4-3

Duhamel’s formulas, 10.5-3, 10.5-4

Dummy-index notation, 14.7-7, 16.1-3, 16.6-1, 16.10-1

Dyad, 16.9-1

Dyadic, 14.5-4, 16.9-1 to 16.9-3, 16.10-11

Dynamic programming, 11.8-6, 11.9-1, 11.9-2

Eccentricity, 2.4-9

Edge, 17.3-1

Edge, of regression, 17.3-11

Edgeworth, 19.3-2, 19.3-3

Edgeworth series, 19.3-3

Efficiency, of an estimate, 19.4-1

Efficient estimate, 19.4-1, 19.4-2, 19.4-4

Eigenfunction, differential equation, 15.4-5

      improper, 15.4-5

      integral equation, 15.3-3 (See also Eigenvalue problems) Eigenfunction expansion, 10.4-1, 10.4-2

      differential equation, 15.4-6, 15.4-12

      of Green’s function, 15.5-2

      integral equations, 15.3-4, 15.3-9

      of kernel, 15.3-4, 15.3-5

Eigenvalue, 13.4-2, 13.6-2, 13.6-7, 14.8-3, 15.3-3, 15.4-5 (See also Eigenvalue problems; Hermitian form; Quadratic form) Eigenvalue problems, differential equations, 15.4-5 to 15.4-11

      dyadics, 16.9-3

      estimation of solutions, 14.8-9, 15.4-10

      generalized, 14.8-7, 15.4-5 to 15.4-11

      and group representations, 14.9-3

      hermitian, 14.8-4, 15.3-3, 15.4-6

      intergral equations, 15.3-3 to 15.3-6

      linear operators, 14.8-3 to 14.8-9

      matrices, 13.4-2 to 13.4-6

      numerical solution, 20.3-5, 20.9-4, 20.9-10

      as stationary-value problems, 14.8-8, 15.3-6, 15.4-7

Sturm-Liouville, 15.4-8 to 15.4-10 (See also Characteristic equation; Diagonalization; Hermitian form; Principal-axes transformation; Quadratic form; Spectrum) Eigenvector, 14.8-3 to 14.8-9 (See also Eigenvalue problems; Principal-axes transformation) Einstein tensor, 17.4-5

Elementary event (see Simple event) Elimination of unknowns, 1.9-1, 20.3-1

Ellipse, 2.4-3

      construction of, 2.5-3

      properties of, 2.5-2

Ellipsoid, 3.5-7

      of concentration, 18.4-8

Ellipsoidal coordinates, 6.5-1

Elliptic cone, 3.5-7

Elliptic cylinder, 3.5-7

Elliptic differential equation, 10.3-1, 10.3-3, 10.3-4, 10.3-7

Elliptic functions, 21.6-1 to 21.6-9

Elliptic geometry, 17.3-13

Elliptic integrals, 4.6-7, 21.6-4 to 21.6-6

      reduction of, 21.6-5

Elliptic paraboloid, 3.5-7

Elliptic point, 17.3-5

Empirical distribution, 19.2-2

Empty set, 4.3-2

Endomorphism, 12.1-6

Energy-integral solution, 9.5-6

Ensemble, 18.9-1, 19.1-2

Ensemble average, 18.9-3 (See also Expected value) Ensemble correlation functions, 18.9-3, 18.10-2 to 18.10-5

      effect of linear operations, 18.12-2

      effect of nonlinear operations, 18.12-5, 18.12-6

Ensemble spectral density (see Spectral density) Entire function (see Integral function) Entrainment, 9.5-5

Entropy, 9.6-2, 18.4-12

Enumerable set (see Countable set) Enumerating generating function, C-l, C-2

Enumerator, C-l, C-2

Envelope, 10.2-3, 17.1-7, 17.3-11

Epicycloid, 2.6-2

Equality, 1.1-3, 12.1-3

Equiareal mapping, 17.3-10

Equilibrium solution, 13.6-6

      stability of, 13.6-6

Equipotential lines, 15.6-8

Equipotential surface (see Level surface) Equivalence relation, 12.1-3, 13.4-1

Equivalent bandwidth, of averaging filter, 19.8-2, 19.8-3

Equivalent configurations, C-2

Equivalent linearization, 9.5-5

Equivalent matrices, 13.4-1 (See also Similarity transformation) Equivalent representations, 14.9-1

Erdmann-Weierstrass conditions, 11.6-7, 11.8-5

Ergodic property, 18.10-76

Ergodic random process, 18.10-76

Ergodic theorem, 18.10-76

Error, 20.1-2

      of the first kind, 19.6-2

      of the second kind, 19.6-2 (See also Residual) Error estimate, 20.2-2 (See also Remainder) Error function, 18.8-3, 21.3-2

      table, F-13

Essential singularity, 7.6-2, 7.6-4

      of differential equation, 9.3-6

Estimate, 19.7-7

Estimate variance (see Variance, of estimate) Estimation, 19.1-3, 19.4-1 to 19.4-5, 19.7-3

      of random-process parameters, 19.8-1 to 19.9-2, 19.9-4

Euclidean geometry, 2.1-7, 17.3-13

Euclidean norm of a matrix, 13.2-1Ê Euclidean space, 17.4-6

Euclidean vector space, 14.2-7

Euclidean vectors, 5.1-1

Euler angles, 14.10-4 to 14.10-6

Euler diagram, 12.8-5

Euler-Fourier formulas, 4.11-2

Euler-Lagrange equation, 11.6-1, 11.6-2

Euler-MacLaurin summation formula, 4.8-5

Euler-Mascheroni constant, 21.3-1, 21.4-5, 21.8-1

Euler symmetrical parameters, 14.10-3

      relation to angular velocity, 14.10-7

Euler’s definition, gamma function, 21.4-1

Euler’s differential equation, 11.6-1, 11.6-2

Euler’s integral, 21.4-4

Euler’s theorem, on Fourier series, 4.11-2

      for surfaces, 17.3-5

Euler’s transformation, 4.8-5

Even function, 4.2-2, 4.11-4

      table, D-2

Even permutation, 12.2-8, 16.5-3

Event algebra, 12.8-5, 18.2-1, 18.2-2, 18.2-7

Everett’s interpolation formula, 20.6-3

Evolute, 17.2-5

Excess, 18.3-3, 19.2-4, 19.5-3

Excluded middle, 12.8-6

Existence theorems, 4.2-1, 9.1-4, 9.2-1, 9.3-5

Expansion theorem, for integral equations, 15.3-4, 15.3-5, 15.3-9

Expected risk, 19.9-1

Expected value, 18.3-3, 18.3-6, 18.4-4, 18.4-8, 18.5-6, 18.5-7

      of derivative, 18.9-3d of integral, 18.9-3d (See also Ensemble average) Explicit method, 20.9-4, 20.9-8

Exponent, 1.2-1

Exponential function, 21.2-9, F-4£ continued-fraction expansion, E-9

      power series, E-7

Exponential generating function, 8.7-2

Exponential integral, 21.3-1

Exponential order, 4.4-3, 8.2-4

Extension, 12.3-3

Exterior measure, 4.6-15

Extremals, 11.6-1

Extreme value (see Maxima and minima) F distribution (see v2 distribution) Factor, 1.2-5

Factor group, 12.2-5, 12.2-10

Factor theorem, lo7-l Factorial, 1.2-4

Factorial moment, 18.3-7, 18.3-10

Factorial polynomial, 21.5-1, 21.5-3

Factoring, 1.7-1

Faithful representation, 14.9-1

False alarm, 19.9 3

Feasible solution, of linear programming problem, 11.4-16

Féjer’s integral, 4.11-6

Féjer’s theorem, 4.11-6

Feuerbach circle, B-3

Fibonacci numbers, 8.7-2

Fiducial limits, 19.6-5

Field, 12.3-1

      of matrices, 13.2-5

      of real numbers, 1.1-2 (See also Potential; Scalar field; Vector field) Field line, 5.4-3

Figure, C-2

Figure-counting series, C-2

Figure inventory, C-2

Figure store, C-2

Filter, averaging, 19.8-2 (See also Linear system) Final-value theorem, z transform, 8.7-3

Finite-difference methods for differential equations, 20.9-2, 20.9-4 to 20.9-8

Finite induction, 1.1-2

Finite integral transform, 10.5-1

Finite interval, 4.3-4

Finite matrix, 13.2-1

Finite population, 19.5-5

Finite region (see Bounded region) Finite set, 4.3-2

Finite-time average, 19.8-1

      sampled-data, 19.8-1

First curvature vector, 17.4-3

First fundamental form, surface, 17.3-3, 17.3-8, 17.3-9

First probability distribution, 18.9-2

Fischer (see Riesz-Fischer theorem) Fisher’s z distribution (see z distribution) Fisher’s z test, 19.6-6

Fit, 20.5-1, 20.6-1

Fixed point, of a mapping, 12.5-6

Flat space, 16.10-6, 17.4-6

Focal point, in phase plane, 9.5-3, 9.5-4

      on a surface, 17.3-11

Focus of a conic, 2.4-9

Forcing function, 9.3-1

      periodic, 9.4-6

Forward difference, 20.4-1

Forward-difference operator, 20.4-1, 20.4-2

Fourier analysis, 4.11-4

Fourier-Bessel transform, 8.6-4 (See also Hankel transform) Fourier coefficients, formulas, 4.11-2, 4.11-5

      table, D-l Fourier cosine series, 4.11-3, 4.11-5

Fourier cosine transform, 4.11-3, 10.5-3, D-3

      finite, 8.7-1

      table, D-3

Fourier integral, 4.11-3

      multiple, 4.11-8

Fourier-integral representation, of impulse functions, 21.9-5

      of step function, 21.9-1

Fourier series, 4.11-2, 10.4-9

      multiple, 4.11-8

      operations with, 4.11-5 (See also Orthogonal-function expansion) Fourier sine series, 4.11-3, 4.11-5

Fourier sine transform, 4.11-3, 10.5-3, D-4

      finite 8.7-1

      table, D-4

Fourier transform, 4.11-3, 4.11-5, 8.6-1

      finite, 8.7-1

      generalized, 18.10-10

      integrated, 18.10-10

      properties of, 4.11-5

      table, D-2

Fourier-transform pairs, D-2 to D-4

Fractiles, 18.3-3, 19.2-2 (See also Sample fractiles) Fractional error, 21.4-2

Fraser diagram, 20.5-3

Fredholm alternative, 14.8-10, 15.3-7, 15.4-4

Fredholm-type integral equation, 15.3-2, 15.3-3, 15.3-7 to 15.3-9

      numerical solution of, 20.8-5

Fredholm’s formulas, 15.3-8

Free index, 16.1-3

Frequency, 4.11-4, 10.4-8

Frequency distribution, 19.2-2

Frequency function (see Probability density) Frequency-response function, 9.4-7, 20.8-8

Fresnel integrals, 21.3-2

Fritz John theorem, 11.4-3

Frobenius, 9.3-6

Frobenius norm, of a matrix, 13.2-1

Fubini’s theorem, 4.6-8

Fuchs’s theorem, 9.3-6

Full linear group, 14.10-7

Full-wave rectified waveform, Fourier series, table, D-2

Laplace transform, 8.3-2

Function, 4.2-1, 12.1-4

Boolean, 12.8-7

      of a linear operator, 14.4-2, 14.8-3

      of a matrix, 13.2-12, 13.4-5

Function spaces, 12.5-5, 15.2-1 (See also Banach space; Hubert space) Functional, 12.1-4

Functional analysis, 15.1-1

Functional dependence, 4.5-6

Functional determinant (see Jacobian) Functional equation, 9.1-2

Functional transformation, 8.1-1, 8.6-1, 15.2-7(See also Integral transformation) Fundamental, 4.11-4

Fundamental form, of surface, 17.3-3, 17.3-5, 17.3-8, 17.3-9

      for unitary vector space, 14.7-1

Fundamental probability set (see Sample space) Fundamental region, 7.9-1

Fundamental-solution matrix, 13.6-3

Fundamental system of solutions, 9.3-2, 20.4-4, 21.8-1

Fundamental tensors, 16.7-1 (See also Metric tensor) Fundamental theorem, of algebra, 1.6-2, 7.6-1

      of integral calculus, 4.6-5

      of surface theory, 17.3-9

Galerkin, 20.9-9, 20.9-10

Galois field, 12.3-1

Galois theory, 12.3-3

Game theory, 11.4-4

Gamma distribution, 18.8-5

Gamma function 21.4-1 to 21.4-4

      incomplete, 18.8-5, 21.4-5

Gauss-Bonnet theorem, 17.3-14

Gauss-Hermite quadrature, 20.7-3

Gauss-Laguerre quadrature, 20.7-3

Gauss plane (see Argand plane) Gauss quadrature formula, 20.7-3, 20.7-4

Gauss-Seidel method, 20.3-26

Gaussian curvature, 17.3-5, 17.3-8, 17.3-13, 17.3-14

Gaussian distribution (see Normal distribution) Gaussian quadrature, 20.7-3, 20.7-4

      multiple, 20.7-5

Gaussian random process, 18.11-3, 18.11-5c effect of linear operations, 18.12-2

      effect of nonlinear operations, 18.12-6

      measurements on, 19.8-3

      series expansion, 18.12-56

Gauss’s analogies, B-8

Gauss’s elimination scheme, 20.3-1

Gauss’s equations, surface, 17.3-8

Gauss’s hypergeometric differential equation, 9.3-9

Gauss’s integral formula, 4.6-12

Gauss’s integral theorem (see Divergence theorem) Gauss’s multiplication theorem, 21.4-1

Gauss’s recursion formulas, 9.3-9

Gauss’s theorem, 5.6-1, 15.6-5

Gauss’s theorema egregium, 17.3-8

Gegenbauer polynomials, 21.7-8

General integral, 10.1-2, 10.2-3, 10.2-4

General solution of partial differential equation (see General integral) Generalized binomial distribution, 18.7-3

Generalized eigenvalue problem, 14.8-7, 15.4-5 to 15.4-11

Generalized Fourier analysis (see Integrated power spectrum; Spectral density) Generalized Fourier transform, 4.11-4, 18.10-10

Generalized Laguerre functions, 21.7-5

Generalized Laguerre polynomials, 21.7-5, 21.7-7

Generalized variance, 18.4-8, 19.7-2

Generating function, 8.7-2

      of canonical transformation, 10.2-6, 10.2-7

      in combinatorial analysis, C-l, C-2

      exponential, 8.7-2

      as a functional transform, 8.7-2

      of orthogonal polynomials, 21.7-1, 21.7-5

      of probability distribution, 18.3-8, 18.5-7, 18.8-1

Generator, of quaternions, 12.4-2, 14.10-6

      of ruled surface, 3.1-15

Generatrix, 3.1-15

Geodesic, 17.4-3

      on a surface, 17.3-12

Geodesic circle, 17.3-13

Geodesie curvature, 17.3-4

Geodesie deviation, 17.4-6

Geodesie normal coordinates, 17o3-13

Geodesic null line, 17.4-4

Geodesic parallels, 17t3-13, 17.4-6

Geodesic polar coordinates, 17.3-13

Geodesic triangle, 17.3-13

Geometric distribution, 18.8-1

Geometric progression, 1.2-7

Geometric series, 1.2-7, 21.2-12, E-4, E-5

Geometric multiplicity (see Degree, of degeneracy) Geometrical object, 16.1-3

Geometry, 2.1-1

      on a surface, 17.3-13, 17.3-14

Gerschgorin’s circle theorem, 14.8-9

Gibbs phenomenon, 4.11-7

Gibbs vector, 14.10-3

Gill, 20.8-2t

Givens, 20.3-1

Global asymptotic stability, 9.5-4, 13.6-5

Goldstine, 20.3-5

Gradient, 5.5-1, 5.5-2, 6.4-2, 16.2-2, 16.10-7

      theorem of the, 3.6-1

Gradient lines, 15.6-8

Gradient method, 20.2-7, 20.3-2

Gradient operator, 5.5-2, 16.10-4, 16.10-7

Graeffe, 20.2-5

Gram polynomials, 20.6-3

Gram-Charlier series, 19.3-3

Gram-Schmidt orthogonalization, 14.7-4, 15.2-5, 20.3-1, 20.6-3, 21.7-1

Gram-Schmidt orthogonalization process, for polynomials, 21.7-1

Gram’s determinant, 5.2-8, 14.2-6, 15.2-1

Graph, 4.2-1

Greatest common divisor, 1.7-3

Greatest lower bound (g.l.b.), 4.3-3

Green’s formula (Green’s theorem), 4.6-12, 5.6-1

      generalized, 15.4-3, 15.4-8, 15.4-9, 15.6-5

Green’s function, 9.3-3, 10.3-6, 15.5-1 to 15.5-4, 18.12-2

      examples, 9.3-3, 15.6-6, 15.6-9, 15.6-10

      modified, 9.3-3, 15.5-1

      of the second kind, 15.5-4

Green’s matrix, 9.4-3

Green’s resolvent, 15.5-2

Gregory’s quadrature formula, 20.7-2

Group, 12.2-1

      of transformations, 12.2-8, 14.9-1

Group relaxation, 20.3-2

Group representation, 12.2-9, 14.9-1

Grouped data, 19.2-2 to 19.2-5, 19.7-3

Guldin’s formulas, 4.6-11

Hadamard’s inequality, 1.5-1

Half-angle formulas, B-4, B-8

Half-wave rectified waveform, 8.3-2

      table, D-2

Half width, 18.3-3

Hamilton-Jacobi equation, 10.2-7, 11.6-8, 11.8-6

Hamilton-Jacobi equation, 11.6-8, 11.8-6

Hamiltonian function, 11.8-2

Hamilton’s principle, 11.6-1, 11.6-9

Hamming’s method, 20.8-4

Hankel functions, modified, 21.8-6 (See also Cylinder functions) Hankel transform, 8.6-4

      finite, 8.7-1t finite annular, 8.7-1t table, D-5

Hankel’s integral representation, 21.4-1

Hansen’s integral formula, 21.8-2

Harmonic, 4.11-4

Harmonic analysis, 4.11-4

      numerical, 20.5-8

Harmonic division, 2.4-10

Harmonic function, 15.6-4, 15.6-8

Harnack’s convergence theorems, 15.6-4

Hastings, 20.6-4

Haversine, B-9

Heat conduction (see Diffusion equation) Heaviside expansion, 8.4-4

      asymptotic series, 8.4-9

Heine-Borel theorem, 12.5-4

Heine’s integral formula, 21.8-11

Helmholtz’s decomposition theorem, 5.7-3

Helmholtz’s equation (see Space form of the wave equation) Helmholtz’s theorem, 15.6-10

Hermite function, 21.7-6

Hermite polynomial, 18.8-3, 19.3-3, 20.7-3, 21.7-1, 21.7-6, 21.7-7

Hermitian conjugate, of a differential operator, 15.4-3, 15.4-4

      kernel, 15.3-1

      of a linear operator, 14.4-3, 14.7-5

      of a matrix, 13.3-1

Hermitian-conjugate boundary-value problems, 15.4-3

Hermitian-conjugate integral transformations, 15.3-1

Hermitian form, 13.5-3 to 13.5-6, 14.7-1

Hermitian inner product (see Inner product) Hermitian integral form, 15.3-6

Hermitian integral transformation, 15.3-1

Hermitian kernel, 15.3-1, 15.3-3 to 15.3-8

Hermitian matrix, 13.3-2 to 13.3-4, 13.4-2, 13.4-4, 13.5-3, 13.5-6, 14.8-9

Hermitian operator, 14.4-4, 14.7-5, 14.8-9, 15.4-3

Hermitian part, of linear operator, 14.4-8

      of matrix, 13.3-4

Heron’s algorithm, 20.2-26

Heun, 20.8-2t

Hexagon, A-2

Hilbert space, 14.2-7, 15.2-2

Hill climbing, 20.2-6, 20.2-7

Hölder’s inequality, 4.6-19

Holomorphic function, 7.3-3

Homeomorphism, 12.5-1

Homogeneous boundary conditions, 15.4-7, 15.5-1

Homogeneous differential equation, 9.1-2, 9.1-5, 9.2-4, 9.3-1, 9.3-6, 9.4-1, 13.6-2, 15.4-2

      partial, 10.1-2, 15.4.2

Homogeneous function, 4.5-5, 9.1-5

Homogeneous integral equation, 15.3-2

Homogeneous linear equations, 1.9-5

Homogeneous polynomial, 1.4-3

Homomorphism, 12.1-6

      of groups, 12.2-9

Horner’s method, 20.2-3, 20.2-5

Householder, 20.3-1

Hydrogenlike wave functions, 10.4-6

Hyperbola, 2.4-3

      construction of, 2.5-3

      properties of, 2.5-2

      rectangular, 2.5-2

Hyperbolic cylinder, 3.5-7

Hyperbolic differential equation, 10.3-1 to 10.3-3, 10.3-6, 10.3-7

Hyperbolic functions, 21.2-5 to 21.2-9, F-4t infinite products, E-8

      power series, E-7

Hyperbolic geometry, 17=3-13

Hyperbolic paraboloid, 3.5-7

Hyperbolic point, 17.3-5

Hyperboloid, 3.5-7

Hypercomplex numbers, 12.4-2

Hypergeometric differential equation, 9.3-9

Hypergeometric distribution, 18, 8-1

Hypergeometric function, 9.3-9, 21.6-6, 21.7-1

Hypergeometric polynomials, 9.3-9, 21.7-8

Hypergeometric series, 9.3-9, 21.7-1

Hypocycloid, 2.6-2

Hypothesis (see Statistical hypothesis) Icosahedron, A-6

Ideal, 12.3-2

Idempotent element, 12.4-2

Idempotent property, 12.8-1

Identity, additive, 1.1-2

      of a group, 12.2-1

      of a ring, 12.3-1

Identity matrix 13.2-3

Identity relation, 1.1-4

Identity transformation, 14.3-4

Image charge, 15.6-6

Imaginary axis, 1.3-2

Imaginary number, 1.3-1

Imaginary part, 1.3-1

Imbedding, 11.9-2

Implicit functions, 4.5-7

Implicit method, 20.9-4, 20.9-8

Impossible event, 18.2-1

Improper conic, 2, 4-3

Improper eigenfunction, 15.4-5

Improper integrals, 4.6-2

      convergence criteria for, 4.9-3, 4.9-4

Improper quadric, 3.5-7

Improper rotation, 14.10-1

Improvement of convergence, 4.8-5

Impulse functions, 21.9-2 to 21.9-7

      approximations to, 21.9-4, 21.9-6

      asymmetrical, 21.9-6

Laplace transform of, 8.5-1

Impulse noise, 18.1

      l-5c Impulse response, 9.4-3, 18.12-2

Impulse train, 20.4-6, D-2t Inclusion relation, 4.3-2, 12.8-3, 18.2-1

Incomplete beta function, 18.8-5, 21.4-5

Incomplete beta-function ratio, 18.8-5, 21.4-5

Incomplete gamma function, 18.8-5, 21.4-5

Indefinite form, 13.5-2 to 13.5-6

Indefinite integral, 4.6-4

Indefinite matrix, 13.5-2 to 13.5-6

Indefinite metric, 14.2-6, 17.4-4

Indefinite operator, 14.4-5

Independent experiments, 18.2-4

Independent trials, 18.2-4

Independent variable, 4.2-1

Indeterminate forms, 4.7-2

Index, in phase plane, 9.5-3

      of a subgroup, 12.2-2, 12.2-5, 12.2-7

Indicial equation, 9.3-6

Indiscrete topology, 12.5-1

Induced transformation, 16.1-4, 16.2-1

Induction, finite, 1.1-2 INDEX 1112

Inequalities, 1.1-5

      examples, 21.2-13

      for transcendental functions, 21.2-13

Inequality constraints, on control variables, 11.8-1, 11.8-3

      on state variables, 11.8-5 (See also Linear programming problems; Nonlinear programming) Infinite determinant, 13.2-7

Infinite integral (see Improper integrals) Infinite product, 4.8-7, 7.6-6

      examples of, 21.4-5, E-8

Infinite series, convergence of, 4.8-1 to 4.8-6, 4.9-1, 4.9-2

      examples, E-5 to E-8

Infinite set, 4.3-2

Infinitesimal displacement, 16.2-2

Infinitesimal dyadic, 14.4-10

Infinitesimal rotation, 14.10-5

Infinitesimal transformation, 14.4-10, 14.10-5

Infinitesimals, 4.5-3

Infinity, 4.3-5, 4.4-1

      in complex-number plane, 7.2-2

Inflection, 17.1-5

Initial-state manifold, 11.8-1c Initial-value theorem, Laplace transform, 8.3-1t z transform, 8.7-3

Inner automorphism, 12.2-9

Inner product, of dyadics, 16.9-2

      of functions, 15.2-1

      of tensors, 16.3-7, 16.7-4

      of vectors, 14.2-6, 14.2-7, 14.7-1

      of vectors defined on Riemann space, 16.8-1, 16.8-2 (See also Scalar product) Inscribed circle, of regular polygons, A-2

      of a triangle, B-4

Inscribed cone, B-6

Instantaneous axis of rotation, 14.10-5

Integers, 1.1-2

Integrability conditions, 10.1-2, 17.3-8

Integral curvature, 17.3-14

Integral domain, 12.3-1

Integral equation, for Karhunen-Loéve expansion, 18.9-5

Integral equations, numerical solution, 20.9-10

      types, 15.3-2

Integral function, 4.2-2, 7.6-5

Integral transform, finite, 8.7-1

Integral-transform methods, 9.3-7, 10.5-1

Integral transformation, 15.3-1, 15.5-1 to 15.5-4 (See also Kernel) Integrated Fourier transform, 18.10-10

Integrated power spectrum 18.10-10

Integrating factor, 9.2-4

      for Pfaffian differential equation, 9.6-2

Integration, numerical, 20.7-2 to 20.7-5

      by parts, 4.6-1

      of vectors, 5.3-3

Integration methods, 4.6-6

Interior measure, 4.6-15

Interpolating function (see Sampling function) Interpolation 18.11-2, 20.5-1 to 20.5-7

Interpolation coefficients, tables, 20.5-3

Interquartile range, 18.3-3

      distribution of, 19.5-2

Intersection, in Boolean algebra, 12.8-1

      of cone by plane, 2.4-9

      of curves, 2.1-9

      of events, 18.2-1

      of lines, 2.3-2

      of planes, 3.3-1, 3.4-3

      of sets, 4.3-2

      of surfaces, 3.1-16

Interval halving, 20.2-2f

Intrinsic derivative, 5.5-3, 16.10-8

Intrinsic differential geometry, 16.7-1, 17.3-9

Intrinsic equation of a curve, 17.2-3

Intrinsic geometry of a surface, 17.3-9

Invariance, 2.1-7, 12.1-5, 14.1-4

      of tensor equations, 16.4-1

Invariant manifold, 14.8-2, 14.8-4

Invariant points, 7.9-2

Invariants, 12.2-8, 16.1-3

      of a conic, 2.4-2

      of elliptic functions, 21.6-2

      of a quadric, 3.5-2

Inverse, additive, 11-2

      in a group, 12.2-1

      multiplicative, 1.1-2

Inverse Fourier transform, 4.11-4

Inverse function, 4.2-2

Inverse hyperbolic functions, 21.2-8, 21.2-10 to 21.2-12

Inverse interpolation, 20.5-4

Inverse Laplace transform, 8.2-5

Inverse operator, 14.3-5

Inverse probability, 19.7-7

Inverse transformation, 12.1-4, 14.3-5

Inverse trigonometric functions, 21.2-4, 21.2-10 to 21.2-12

Inversion, 7.9-2

Inversion theorem, 15.6-3

      for Hankel transforms 8.6-4

Kelvin’s, 15.6-3, 15.6-7

      for Laplace transforms, 8.2-6

      for other integral transforms, 8.6-1, 8.6-2, 8.6-4

Inversion theorem, for z transforms, 8.7-3

Involute, 17.2-5

Irrational numbers, 1.1-2

Irreducible representation, 14.9-2 14.9-3, 14.9-5, 14.9-6

Irrotational vector field, 5.7-1, 5.7-3, 15.6-1

Isoclines, 9.2-2, 9.5-2

Isogonal mapping, 7.9-1

Isogonal trajectories, 17.1-8

Isolated point, of a curve, 17.1-3

      of a set, 4.3-6

Isolated set, 4.3-6

Isolated singularity, of differential equation, 9.3-6

      of a function, 7.6-2

Isometric mapping, 17.3-10

Isometric spaces, 12.5-2

Isometric surface coordinates, 17.3-10

Isomorphism, 12.1-6, 16.1-4

      of Boolean algebras, 12.8-5

      of fields, 12.6-3

      of groups, 12.2-9

      of linear algebras, 14.9-7

      of vector spaces, 14.2-4

Isoperimetric problem, 11.6-3, 11.7-1, 11.8-le Isothermic surface coordinates, 17.3-10

Isotropic surface, 17.3-10

Iterated-interpolation method, 12.5-2

Iterated kernels, 15.3-5

Iteration methods, 9.2-5, 15.3-8, 20.2-2, 20.2-4, 20.2-6, 20.2-7, 20.3-2, 20.3-5, 20.8-3, 20.8-7, 20.9-2 to 20.9-4

Jacobi-Anger formula, 21.8-4

Jacobi polynomial, 9.3-9, 21.7-8

Jacobi-Sylvester law of inertia, 13.5-4

Jacobian, 4.5-6, 4.6-13, 6.2-1, 6.2-3, 7.9-1, 16.1-2

Jacobi’s condition, 11.6-10

Jacobi’s elliptic functions, 21.6-1, 21.6-7, 21.6-9

Jacobi’s method, 20.3-5c£ Jacobi’s theta functions, 21.6-8, 21.6-9

Join (see Union) Joint distribution, 18.4-1, 18.4-7

Joint entropy, 18.4-12

Joint estimates, 19.4-1 to 19.4-3, 19.4-4

Jointly ergodic random processes, 18.10-7

Jointly stationary random processes, 18.10-1

Jordan curve, 7.2-3

Jordan separation theorem, 7.2-4

Jordan’s lemma, 7.7-3

Jordan’s test, 4.11-4

Jump function, 20.4-6

Jump relations for potentials, 15.6-5

Jury, 20.4-8

Kalman-Bertram theorem, 13.6-6

Kantor, 4.3-1

Kantorovich theorem (see Newton- Raphson method; Quasilineariza- tion) Kapteyn, 19.3-1

Karhunen-Loéve theorem, 18.9-4, 18.11-1

Karnaugh map, 12.8-7

Kelvin’s inversion theorem, 15.6-3, 15.6-7

Kernel, of homomorphism, 12.2-9

      of integral transform tion, 15.3-1

Khintchine’s theorem, 18.6-5

Klein-Gordon equation, 10.4-4, 15.6-10

Kolmogorov, 18.11-4

Kotelnikov sampling theorem, 18.11-2a Kronecker delta, 16.5-2

Kronecker product, 14.9-6

Krylov, 9.5-5

Kuhn-Tucker theorem, 11 «4-3

Kummer function, 9.3-10

Kummer’s transformation, 4.8-5

Kutta (see Runge-Kutta methods) Lagrange multiplier, 11.3-4, 11.4-3, 11.6-2, 11.6-3, 11.7-1, 11.8-1, 11.8-2, 11.8-5

Lagrange’s differential equation, 9.2-4

Lagrange’s equations, 11.6-1

Lagrange’s interpolation formula, 20.5-2

Lagrange’s remainder formula, 4.10-4

Laguerre functions, 10.4-6, 21.7-5

Laguerre polynomials, 8.4-8, 10.4-6, 20.7-3, 21.7-1

      associated, 21.7-5, 21.7-7

Lamellar vector field, 5.7-1, 5.7-3

Laplace development, 1.5-4

Laplace transform, bilateral, 8.6-2, 18.12-5

      of matrix, 13.6-2c of periodic function, 8.3-2

      s-multiplied, 8.6-1

Stieltjes-integral form, 8.6-3

Laplace transform pairs, tables, D-6, D-7

Laplace-transform solution, of difference equations, 20.4-66

      of matrix differential equations, 13.6-2

      of ordinary differential equations, 9.3-7, 9.4-5, 13.6-2c Laplace-transform solution, of partial differential equations, 10.5-2, 10.5-3

Laplace transformation, 8.2-1 (See also Laplace transform) Laplace’s differential equation, 15.6-1 to 15.6-9

      numerical solution of, 20.9-4 to 20.9-7

      particular solutions, 10.4-3, 10.4-5, 10.4-9

      two-dimensional, 10.4-5, 15.6-7 (See also Potential) Laplace’s distribution, 18.8-5

Laplace’s integral, 21.7-7

Laplacian operator, 5.5-5, 6.4-2, 6.5-1, 16.10-7

La Salle’s theorem, 13.6-6

Latent root (see Eigenvalue) Lattice, 20.6-1

Latus rectum, 2.4-9

Laurent series, 7.5-3

Law of cosines, B-4, B-8

Law of large numbers, 18.1-1, 18.6-5

Law of sines, B-4, B-8

Law of small numbers, 18.8-1

Leaf of Descartes, 2.6-1

Least-squares approximations, 4.11-2, 12.5-4, 15.2-6, 20.6-1 to 20.6-3, 20.9-9, 20.9-10 (See also Estimation; Projection theorem; Regression) Least upper bound (l.u.b.), 4.3-3

Lebesgue convergence theorem, 4.6-16

Lebesgue integral, 4.6-15, 4.6-16, 15.2-2

Lebesgue measure, 4.6-14

Lebesgue-Stieltjes integral, 4.6-17, 18.3-6

Lebesgue-Stieltjes measure, 4.6-17

Left-continuous function, 4.4-7

Left-hand derivative, 4.5-1

Left-handed coordinate system, 6.2-3, 16.7-1

Legendre functions, 10.4-3, 21.7-2

      associated, 21.8-10

Legendre polynomials, 21.7-1, 21.7-2, 21.7-8, 21.8-12

      associated, 21.8-10, 21.8-12

Legendre transformation, 9.2-3, 10.2-5

Legendre’s condition, 11.6-16

Legendre’s differential equation, 21.7-1, 21.7-3

Green’s function for, 9.3-3

Legendre’s normal elliptic integrals, 21.6-1, 21.6-3, 21.6-5, 21.6-6

Legendre’s relation, 21.6-6

Legendre’s strong condition, 11.6-10

Leibnitz’s rule, 4.6-1

Lemniscate, 2.6-1

Lerch’s theorem, 8.2-8

Level of significance, 19.6-3, 19.6-4

Level surface, 5.4-2

PHôpital’s rule, 4.7-2

Liénard-Chipart test, 1.6-6

Likelihood function, 19.1-2

Likelihood ratio, 19.6-3, 19.9-3

Limaçon, 2.6-1

Limit cycle, 9.5-3

Limit-in-mean, 15.2-2

Limit point, 4.3-6, 12.5-1

Limit theorems, of probability theory, 18.6-5

Limits, 4.4-1

      frequently used, 4.7-2

      of matrices, 13.2-11

      multiple, 4.4-5

      operations with, 4.4-3

      of vector functions, 5.3-1

Lindeberg conditions, 18.6-5

Lindeberg-Lévy theorem, 18.6-5

Line of curvature, 17.3-6

Line coordinates, 2.3-3

Line-distribution potential, 15.6-7

Line element, 9.2-2

Line integral, 4.6-10, 5.4-5, 6.2-3, 6.4-3

Linear algebra, 12.4-2, 13.2-5, 14.4-2, 14.9-7

Linear dependence (see Linear independence) Linear difference equation, 20.4-4 to 20.4-8

Linear differential equation, ordinary, 9.3-1

      partial, 10.2-1

      of physics, 10.4-1 (See also Boundary-value problem) Linear dimension (see Dimension) Linear equations, 1.8-1

      homogeneous, 1.9-5

      in matrix form, 14.5-3

      numerical solutions of, 20.3-1 to 20.3-4

      systems of, 1.9-2 to 1.9-5, 14.5-3

Linear fractional transformation (see Bilinear transformation) Linear function, 4.2-2

Linear independence, of equations, 1.9-3, 2.3-2

      of functions, 1.9-3, 9.3-2, 15.2-1

      of sets of numbers, 1.9-3

      of solutions of differential equations, 9.3-2

      of solutions of equations, 1.9-3

      of vectors, 5.2-2, 14.2-3, 14.3-5

Linear integral transformation (see Integral transformation; Kernel) Linear manifold, 14.2-1, 14.2-2

Linear operation, on a random process, 18.12-1 to 18.12-4 (See also Linear operator) Linear operator, 14.3-1

      matrix representation, 14.5-1, 14.7-5

      notation, 14.7-7

Linear point set, 4.3-1

Linear-programming problems, 11.4-1 to 11.4-4

      canonical form, 11.4-2

      dual, 11.4-lc, 11.4-4c standard form, 11.4-16

Linear spiral, 2.6-2

Linear system, with random input, 18.12-2 to 18.12-4

Linear transformation, 14.3-1 (See also Linear operator) Linear vector function, 14.3-1

Linear vector space, 12.4-1, 14.2-1

Liouville’s theorem, 7t6-5

Liouville’s theorems, on elliptic functions, 21.6-1

Lipschitz condition, 9.2-1

Lituus, 2.6-1

Local base vectors, 16.6-1

      differentiation of, 16.10-1, 16.10-3

      inner products of, 16.8-2 to 16.8-4 (See also Base vectors) Local cartesian coordinates, 17.4-7

Local dyadic, 16.10-7

Loéve-Karhunen theorem, 18.9-4, 18.11-1

Logarithm, 1.2-3, 21.2-10 to 21.2-12

      continued-fraction expansion, E-9

      numerical approximation, 20.5-42

      power series, E-7

      tables, F-2 to F-5

Logarithmic decrement, 9.4-1

Logarithmic integral, 21.3-1

Logarithmic normal distribution, 19.3-2

Logarithmic potential, 15.6-7

Logarithmic property, 1.2-3

Logical addition, 12.8-1

Logical inclusion (see Inclusion relation) Logical multiplication, 12.8-1

Logical product (see Intersection) Logical sum (see Union) Lommel’s integrals, 21.8-2

Long division, 1.7-2

Lowering of indices, 16.7-2

Lozenge diagrams, 20.5-3

Lyapunov, direct method, 9.5-4, 13.6-5 to 13.6-7

      stability theory, for difference equations, 20.4-8

Lyapunov function, 13.6-2 to 13.6-7

MacLaurin, 4.8-5, 20.7-2

MacLaurin’s series, 4.10-4

Magnitude (see Absolute value) Mainardi-Codazzi equations, 17.3-8

Major axis, 2.5-2

Manifold (see Linear manifold) Mapping, isogonal, 7.9-1

      of surfaces, 17.3-10(See also Conformai mapping; Transformation) Marginal distribution, 18.4-2, 18.4-7

Markov chain, 18.11-4

Mascheroni (see Euler-Mascheroni constant) Matched filter, 19.9-3

Mathematical expectation (see Expected value) Mathematical model, 12.1-1

Matrix differential equation, 13.6-1 to 13.6-7

Matrix inversion, 13.2-3

      numerical, 20.3-1 to 20.3-4

Matrix norms, 13.2-1

Matrix notation, for difference equations, 20.4-7

Matrix operations, 13.2-2 to 13.2-12

Matrix representation, of groups (see Group representation) of integral transformation, 15.3-1

      of linear algebras, 14.9-7

      of vectors and linear operators, 14.5-2 to 14.6-2

Maxima and minima, functions of a real variable, 4.3-2, 11.2-1, 11.2-2

      functions of n real variables, 11.3-1 to 11.3-5

      of integrals, 11.5-2

      of multiple integrals, 11.6-9

      numerical methods, 20.2-6, 20.2-7, 20.3-2

Maximizing player, 11.4-4

Maximum-likelihood estimates, 19.4-4, 19.9-2

Maximum-modulus theorem, for analytic functions, 7.3-5

      for harmonic functions, 15.6-4

Maximum principle, 11.8-2 to 11.8-6

Mayer, 9.6-2

      problem of, 11.6-6

Mean, arithmetic, 4.6-3

Mean count rate, 18.11-4d, 18.11-5

Mean curvature, 17.3-5

Mean deviation, 18.3-3

      of normal distribution, 18.8-4

Mean radial deviation, 18.8-7

Mean radial error, 18.8-7

Mean square, measurement of, 19.8-36

Mean-square contingency, 19.7-5

Mean-square continuity, 18.9-3d Mean-square error, in Fourier expansion, 4.11-2

      in orthogonal-function expansion, 15.2-6

Mean-square regression, 18.4-6, 18.4-9, 19.7-2

Mean-square value of periodic waveforms, table D-l Mean value, over a group, 12.2-12, 14.9-5 (See also Expected value) Mean-value theorem, for derivative, 4.7-1

      for harmonic functions, 15.6-4

      for integrals, 4.7-1

Measureable function, 4.6-15

Measurable set, 4.6-15

Measure, 4.6-15, 12.8-8 (See also Lebesgue measure; Stieltjes measure) Measure of dispersion, 18.3-3, 19.2-4

Measure of effectiveness, 19.6-9

Measure of location, 18.3-3

Measure algebra, 12.8-8

Measurements (see Estimation) Median, 18.3-3, 19.2-2

      of a triangle, B-3, B-4, B-6 (See also Sample median) Meet (see Intersection) Mellin transform, 8.6-1

Membrane, vibrations of, 10.4-9, 15.4-10

Mercer’s theorem, 15.3-4, 15.5-2, 18.9-4

Meromorphic function, 7.6-7

Metric, 12.5-1

      in L2, 15.2-2

      in normed vector space, 14.2-7

Metric equality, 12.5-2

Metric invariant, 12.5-2

Metric space, 12.5-2

Metric tensor, 6.2-3, 16.7-1, 16.10-5

      on a surface, 17.3-7

Meusnier’s theorem, 17.3-4

Midpoint of line segment, 2.1-4, 3.1-7

Milne’s method, 20.8-4/ Minimal curve, 17.4-4

Minimal polynomial, 12.8-2, 12.8-7

Minimal surface, 17.3-6, 17.3-10

Minimax principle, Courant’s, 14.8-8, 15.4-7

Minimax test, 19.9-2

Minimax theorem, 11.4-46

Minimizing player, 11.4-4

Minimum (see Maxima and minima) Minimum feasible solution, 11.4-16

Minkowski’s inequality, 4.6-19, 14.2-4 (See also Triangle property) Minor, 1.5-2

      complementary, 1.5-4

      principal, 1.5-4

Minor axis, 2.5-2

Mittag-Leffler’s theorem, 7.6-8

Mixed-continuous group, 12.2-11

Mixed tensor, 16.2-1

Modal column, 14.8-5

Modal matrix, 14.8-6

Mode, 18.3-3

Model, 12.1-1

Modes of vibration, 10.4-9 (See also Normal modes) Modified Bessel functions, 21.8-6

Modified Green’s function, 9.3-3, 9.4-3, 15.5-1

Modified Hankel functions, 21.8-6

Modifier formulas, 20.8-3

Modular angle, 21.6-6a Modulation theorem, for Fourier transforms, 4.11-5

      for Laplace transforms, 8.3-2

Module, of elliptic integral, 21.6-6 (See also Additive group) “Modulo,” 12.2-10

Modulus, of complex number, 1.3-2

      of elliptic integral, 21.6-6

Moebius strip, 3.1-14

Moebius transformation (see Bilinear transformation) Moment, 18.3-7, 18.3-10, 18.4-4, 18.4-8, 18.4-10

Moment-generating function, 18.3-8, 18.3-10, 18.6-2, 18.12-6

Moment matrix, 18.4-8, 18.8-8, 19.7-2

Moment method of estimation, 19.4-3

Monge axis, 10.2-1

Monge cone, 10.2-1

Monogenic analytic function, 7.4-3, 7.8-1

Monomial matrix, 13.2-1

Monotonie function, 4.4-8

Most powerful test, 19.6-3, 19.6-4

Moulton’s corrector, 20.8-4/ Moving trihedron, 17.2-2 to 17.2-4

Muller’s method, 20.2-4

Multimodal distribution, 18.3-3

Multinomial coefficient, tables, C-l to C-3

Multinomial distribution, 18.8-2

Multiple correlation coefficient, 18.4-9, 19.7-2

Multiple integrals, 4.6-8

Multiple interpolation, 12.5-6

Multiple Poisson distribution, 18.8-2

Multiple roots, 1.6-7, 20.2-2

Multiple-valued complex functions, 7.4-1 to 7.4-3, 7.8-1

Multiplication of probabilities, 18.2-2

Multiplication theorem for Bernoulli polynomials, 21.5-2

Multipole expansion, 15.6-5, 21.8-12

Multistep method, 20.8-3

Multivariate sample, 19.7-2 to 19.7-7

Mutually exclusive (see under Disjoint) Nabla, 5.5-2

Napier’s analogies, B-8

Napier’s rules, B-7

Natural boundary, 7.8-1

Natural boundary conditions, 11.6-5, 11.8-26

Natural circular frequency, 9.4-1

      undamped, 9.4-1

Navel point (see Umbilic point) Negative binomial distribution, 18.8-1

Negative-definite form, 13.5-2, 13.5-3 to 13.5-6

      integral form, 15.3-6

      matrix, 13.5-2, 13.5-3

      operator, 14.4-5

Negative semidefinite form, 13.5-2, 13.5-3

Neighborhood, 4.3-5, 12.5-1

      in complex-number plane, 7.2-2

      of infinity, 4.3-5, 7.2-2

      in a metric space, 12.5-3

      in a normed vector space, 14.2-7

Neil’s parabola, 2.6-1

Neumann functions (see Cylinder functions) Neumann problem, 15.4-10, 15.5-4, 15.6-2, 15.6-8

Neumann series, 15.8-8

Newton-Cotes formulas, 20.7-2o, 20.8-5

Newton-Gregory interpolation formulas, 20.5-3

Newton-Raphson method, 20.2-2, 20.2-8

      generalized, 20.9-3

Newton’s formulas, for roots, 1.6-4

      for symmetric functions, 1.4-3

Newton’s interpolation formula, 20.5-3, 20.7-1

Neyman-Pearson criteria, 19.6-3

Nilpotent operator, 12.4-2

Nine-point circle, B-3

Nodal point, 9.5-3, 9.5-4

Noise, 18.11-3, 18.11-5

      effect on detection and measurements, 19.9-1 to 19.9-4

Nonautonomous system, 13.6-6

Nondecreasing function, 4.4-8

Non-Euclidean geometry, 17.3-13, B-6

Nonhomogeneous differential equation, 13.6-2

Nonincreasing function, 4.4-8

Nonlinear operation, on a random process, 18.12-5, 18.12-6

Nonlinear programming, 11.4-3

Nonnegative form. 13.5-2, 13.5-3 to 13.5-6

Nonnegative integral form, 15.3-6

Nonnegative matrix, 13.5-2, 13.5-3

Nonnegative operator, 14.4-5

Nonparametric statistics, 19.6-8, 19.7-5

Nonparametric test, 19.1-3

Nonpositive form, 13.5-2, 13.5-3 to 13.5-6

Nonpositive integral form, 15.3-6

Nonpositive matrix, 13.5-2, 13.5-3

Nonpositive operator, 14.4-5

Nonsingular matrix, 13c2-3, 13.4-2, 14.5-3

Nonsingular operator, 14.3-5, 14.4-5

Norm, of a complex number, 1.3-2

      of a function, 15.2-1

      of a matrix, 13.2-1

      of a vector, 14.2-5, 14.2-7, 14.2-8, 14.7-1 (See also Absolute value) Normal, of conic section, 2.4-10

      of plane, 3.2-1

      of plane curve, 17.1-2

      of quadric, 3.5-8

      of straight line, 2.2-1

      of surface, 17.3-2

Normal acceleration, 17.2-3

Normal coordinates, 9.4-8, 13.5-4, 13.6-2

Normal curvature, 17.3-4

Normal derivative, 4.6-12, 5.6-1, 10.3-1, 15.4-3, 15.5-4, 15.6-6

      of a potential, 15.6-5

Normal deviate (see Standardized normal distribution) Normal distribution, 18.8-3, 18.8-4 18.8-9

      circular, 18.8-7

      n-dimensional, 18.8-8

      two-dimensional, 18.8-6

Normal divisor (see Normal subgroup) Normal elliptic integral, 21.6-5

Normal error integral (see Error function) Normal form of quadratic or hermitian forms, 13.5-4

Normal matrix, 13.3-4, 13.4-2, 13.4-4

Normal-mode oscillations, 9.4-8

Normal modes, 8.4-4, 9.4-1, 13.6-2

Normal operator, 14.4-8, 14.8-3, 14.8-6

Normal plane, 17.2-2, 17.2-4

Normal population, 19.4-2g 19.6-4, 19.6-5

Normal random numbers, table, F-20

Normal random process (see Gaussian random process) Normal random variable, 18.8-3, 18.8-4

Normal response, 9-4-2

Laplace transform of, 9.4-5

Normal samples. 19.5-3, 19.7-3, 19.7-4

Normal section. 17.3-4, 17.3-5

Normal series, 12.2-6

Normal subgroup, 12.2-5, 12.2-6, 12.2-10, 12.2-11

Normal vector of a surface, 17.3-2

Normalizable function, 15.2-1

Normalizable kernel, 15.3-1, 15.3-3, 15.3-4, 15.3-8

Normalization, 15.2-1, 18.3-4

Normalization factor, 18.3-4

Normalizer, 12.2-7

Normed vector space, 14.2-5, 14.2-6

Null curve, 17.4-4

Null direction; 17.4-4

Null displacement, 17.4-4

Null geodesic, 17.4-4

Null hypothesis, 19.6-3, 19 9-3

Null matrix, 13-2-3

Null space, 14.3-2

Null tensor, 16.3-2

Null transformation, 14.3-3

Null vector, 12.4-1, 14.2-1

Nullity, 14.3-2

Numerical stability, 20.1-2, 20.3-ld, 20.8-5, 20.9-8

Numerov’s method, 20.8-7d Nyquist criterion, 7.6-9

Nyquist’s sampling theorem, 18.11-2a Object function, z transform, 8.7-3

Objective function (see Criterion functional) Oblate ellipsoid, 3.5-7

Oblate spheroid, 3.5-7, A-5

Oblate spheroidal coordinates, 6.5-1

Occupancy of cells, table, C-3

Occupation number, 19.2-2

Octagon, A-2

Octahedron, A-6

Octupole, 15.6-5

Odd function, 4.2-2, 4.11-4, D-2

One-sided limits, 4.4-7

One-step method, 20.8-2

One-tailed test, 19.6-4, 19.6-8

One-way classification, 19.6-6

Open ball, 12.5-3

Open integration formula, 20.8-36

Open interval, 4.3-4

Open set, 4.3-6, 12.5-1

Operand, 12.1-1, 12.1-4

Operating characteristic, 19.6-2

Operation, 12.1-1, 12.1-4

Operational calculus, 8.3-1

Operations, on random processes, 18.5-1 to 18.5-8, 18.12-1 to 18.12-6

Operator (see Linear operator) Optimal control, 11.8-1 to 11.9-2

Optimal policy, 11.9-1, 11.9-2

Optimal trajectory, 11.8-1

Optimality principle, 11.8-6, 11.9-2

Optimum-interval interpolation, 20.5-5, 20.6-3« Orbit-transfer problem, 11.8-3c Order, of Bernoulli number, 21.5-2

      of Bernoulli polynomial, 21.5-2

      of a branch point, 7.4-2

      of a curve, 2.1-9

      of a determinant, 1.5-1

      of difference, 20.4-1

      of difference equation, 20.4-3

      of a differential equation, 9.1-2

      of an elliptic function, 21.6-1

      of a function, 4.4-3

      of a group, 12.2-1

      of a group element, 12.2-3

      of an inequality constraint, 11.8-6

      of an integration formula, 20.8-2

      of linear algebra, 12.4-2

      of a matrix, 13.2-1

      of a moment, 18.3-7, 18.4-4, 18.4-8

      of a partial differential equation, 10.1-2

      of a pole, 7.6-2

      of polynomial interpolation, 20.5-2

      of a random process, 18.11-4

      of a system of differential equations, 9.1-3

      of a zero, 7.6-1

Order-complete set, 12.6-1, 12.6-3

Order statistics, 19.2-6

Ordered field, 12.6-3

Ordinary difference equation, 20.4-3

Ordinary differential equation, 9.1-2

      linear, 9.3-1

      first-order, 9.2-4

Ordinate, 2.1-2

Origin. 2.1-2. 3.1-2

Orthogonal coordinates, 6.4-1 to 6.5-1, 16.8-2, 16.9-1, 16.9-3, 17.4-7

Christoffel three-index symbols for.» 6.5-1, 16.10-3

Orthogonal dimension; 14.7-4

Orthogonal-function expansion, 10.4-2, 10.4-9, 15.2-6, 18.10-6 (See also Fourier series; Laguerre polynomials; Orthogonal polynomials; Spherical harmonics) Orthogonal functions, 15.2-3

Orthogonal matrix, 13.3-2 to 13.3-4, 13.4-4, 14.10-1

Orthogonal-polynomial expansion, 20.6-1 to 20.6-5

Orthogonal polynomials, 21.7-1 to 21.7-8

      zeros of, 20.7-3, 21.7-2

Orthogonal projection, of a vector space, 14.2-8

Orthogonal representation, 14.9-1

Orthogonal trajectories, 15.6-8, 17.1-8

Orthogonal transformation, 13.5-5, 14.4-6, 14.4-7, 14.10-1

Orthogonal vectors, 14.7-3

Orthogonality, of eigenfunctions, 15.4-6

      of eigenvectors, 14.8-4

      of group representations, 14.9-5

Orthogonalization, 14.7-4, 15.2-5, 20.3-1, 20.6-3, 21.7-1

Orthonormal basis (see Complete ortho-normal set) Orthonormal-function expansion, of a random process, 18.9-4, 18.11-1

Orthonormal functions, 10.4-2, 15.2-3, 21.8-12

Osculating circle, 17.2-2

Osculating plane, 17.2-2, 17.2-4

Osculating sphere, 17.2-5

Osculation; 17.1-5, 17, 2-6

Outer product, 12.7-2

      of matrices, 13.2-10

      of tensors, 16.3-6, 16.9-1

Ovals of Cassini, 2.6-1

Overrelaxation, 20.3-2

Padé table, 20.6-7

Paley-Wiener theorem, 4.11-4e Paperitz notation, 9.3-9

Parabola, 2.4-3

      construction of, 2.5-4

      properties of, 2.5-4

Parabolic cylinder, 3.5-7

Parabolic differential equation, 10.3-1, 10.3-3, 10.3-4, 10.3-7

Parabolic point, 17.3-5

Paraboloid, 3.5-7

Parallel displacement of a vector, 16.10-9, 17.4-6

Parallelism, 16.10-9

Parallelogram, A-l Parallelogram law, 5.2-1

Parameter of a population, 19.1-2, 19.1-3

Parameter-influence coefficient, 13.6-4

Parameter space, 19.6-1

Parametric line (see Coordinate line) Parametric representation, of quadrics, 3.5-10 (See also Curve; Plane; Straight line; Surface) Pareto’s distribution, 19.3-4

Parseval’s identity, 14.7-4

Parseval’s theorem, 4.11-4, 4.11-5

Partial correlation coefficient, 18.4-9, 19.7-2

Partial derivative, 4.5-2

Partial difference equation, 20.4-3, 20.9-4, 20.9-8

Partial-fraction expansion, 1.7-4, 7.6-8

      of Laplace transform, 8.4-5

Partially ordered set, 12.6-1

Particular integral, of ordinary differential equation, 9.1-2

      of partial differential equation, 10.1-2, 10.2-3

Partition, 12.1-3, 12.2-4

      of a group into classes, 12.2-5

      table, C-l Partition theorem, chi-square distribution, 19.5-3

Partitioning, of matrices, 13.2-8, 20.3-4 (See also Step matrix) Pascal’s distribution, 18.8-1

Pascal’s theorem, 2.4-11

Patching curve (see Characteristic) Pattern, C-2

Pattern enumerator, C-2

Pauli spin matrices, 14 10-4

Payoff matrix, 11.4-4a Peano’s axioms, 1.1-2

Pearson’s distributions, 19.3-5

Pearson’s measure of skewness, 18.3-3, 18.3-5

Penalty function, 20.2-6d Penny matching, 11.4-46

Pentagon, A-2

Percentiles, 18.3-3, 19.2-2

Period, 4.2-2

      of group element, 12.2-3

Period parallelogram, 21.6-1

Periodic components, effect on correlation functions and spectra, 18.10-9

      unknown, 20.6-6c Periodic forcing function, 9.4-6

Periodic function, 4.2-2, 4.11-4

Laplace transform of, 8.3-2

Periodic random process, 18.9-4, 18.11-1

Periodic sampling, 18.11-6

Periodicity conditions, 9.3-3, 15.4-8, 15.4-10

Permutation, 12.2-8

      table, C-l Permutation group, 12.2-8, 14.9-2

Permutation matrix, 13.2-6 (See also Regular representation) Permutation symbols, 16.5-3. 16.7-2, 16.8-4, 16.10-7

Perpendicular bisector, B-3, B-6

Perturbation methods, 10.2-7c, 13.6-4, 15.4-11

Perturbation theory, Hamilton-Jacobi equation, 10.2-7

Pfaffian differential equation 9.6-1, 9.6-2

Phase, 411-4 (See also Simple event) Phase plane, 9.5-2

Phase velocity 10.3-5, 10.4-8

Phasor, 9t4-6

      rotating. 9.4-6

Physical components 6.3-2, 16.8-3, 16.9-1

Physical readability, 9.4-3

Picard’s method, 9.2-5, 20.7-4

Picard’s theorem, 7.6-4

Piecewise continuous function, 4.4-7

Piecewise continuously differentiate function, 4.5-1, 4.5-2

Pivotal condensation, 20.3-1

Planar element, 10.2-1

Plane, equation of, 3.2-1, 3.2-2

Plane coordinates, 3.4-4

Plane wave, 10.4-8

Pochhammer’s notation, 9.3-11

Poincaré, 9.5-3, 9.5-4

Poincaré’s index, 9.5-3

Point charge, 15.6-5

Point-charge radiation, 10.4-8

Point spectrum. 14.8-3

Points of inflection. 17.1-5

      loci of, 9.2-2

Poisson brackets, 10.2-6

Poisson distribution, 18.8-1, 18.8-9, 18.11-4d multiple, 18.8-2 (See also Poisson process) Poisson integral, diffusion equation, 15.5-3

Poisson process, 18.11-4d, 18.11-5

Poisson’s differential equation, 15.6-1, 15.6-5, 15.6-7, 15.6-9

Poisson’s identity^ 10.2-6

Poisson’s integral formula, 15.6-6, 15.6-9

      for Bessel functions, 21.8-2

Poisson’s summation formula, 4.8-5

Polar of a conic, 2.4-10

Polar axis, 2, 1-8

Polar coordinates. 2.1-8

Polar curve, 17 2-5

Polar decomposition, of complex numbers, 1.3-2

      of linear operators, 14.4-8

      of matrices, 13.3-4

Polar developable. 17.2-5

Polar line of space curve, 17.2-5

Polar plane, 3.5-8

Polar surface. 17 2-5

Polar triangle, B-6

Polar vector, 16.8-4

Pole; of a complex function 7.6-2, 7.6-9

      of a conic, 2.4-10

      of a quadric, 3.5-8

Polya’s counting theorem, C-2

Polya’s distribution, 18.8-1

Polygonal function, 11.6-3

Polynomial approximations, 20.6-1 to 20.6-5

Polynomials, 1.4-3

      numerical evaluation, 20.2-3

Pontryagin’s maximum principle, 11.8-2 to 11.8-6

Pooled-sample statistics, 19.6-6

Pooled variance, 19.6-6

Population. 19.1-7

Population distribution, 19.1-2

Population moment, 19.2-4

Population parameter 19.1-2, 19.1-3

Position vector, 3t1-5

Positive definite form, 13.5-2 to 13.5-6

Positive definite inner product 14.2-5, 14.2-6

Positive definite integral form, 15.3-6

Positive definite matrix, 13 5-2^ 13.5-3, 20.3-2

Positive definite operator, 14.4-5

Positive direction, 3.3-1

Positive normal, 5.4-6, 15.6-6, 17.1-2. 17.3-2

Positive semidefinite form, 13.5-25 13.5-3

Positive semidefinite matrix, 13.5-2

Potential, 15.6-1, 15.6-5

Power, of a complex number, 1.3-3

      of a linear operator, 14.3-6

      of a matrix, 13.2-4

      measurement of, 19.8-36

      of a real number, 1.2-1

      spectral decomposition, 18.10-5

      of test, 19.6-2

Power function, 19.6-2

Power series, 4.10-2, 7.2-1

      economization of, 20.6-5

      tables, E-6, E-7

Power spectral density. 18.10-3 to 18.10-10

      effect of linear operations, 18.12-1 to 18.12-4

      examples, 18.11-1 to 18.11-6

      non-ensemble, 18.10-8

      of real process, 18.10-4

Precision measure, 18.8-4

Precompact set, 12.5-3

Predictor-corrector methods. 20.8-3 to 20.8-8

Pre-Hilbert space, 14.2-7

Price’s theorem, 18.12-6

Primitive character, 14.9-4

Primitive period, 21.6-1

Prncipal-axes transformation, 2.4-8, 3.5-7 13.5-4, 14.8-6

Principal axis, of a conic, 2.4-7

      of a quadric, 3.5-6

Principal curvatures, 17.3-5

Principal normal, 17.2-2 to 17.2-4

      in curved space, 17.4-3

Principal normal section, 17.3-5, 17.3-6

Principal part, of change. 11.3-2

      of function, 7.5-3, 7.6-8

Principal value, of integral (see Cauchy principal value) of inverse trigonometric functions, 21.2-4

Principle of optimality, 11.8-6, 11-9-2

Prism, A-4

Probability, 18.2-2, 18.3-1

Probability density, 18.3-2, 18.4-3, 18.5-2, 18.5-4

Probability differential (sec Probability element) Probability distribution, 18.2-7, 18.2-8, 18.9-2

Probability element, 18.3-2, 18.4-3, 18.4-7

Probability function, 18.2-7

Probability integral (see Error function) Probable deviation, 18.8-4

Product, infinite, 4.8-7, 7.6-6, E-8

Product expansion, 7.6-6

      of special functions, E-8

Product space, 12.7-3

Product topology, 12.7-3

Projection, 3.1-9

      of a curve, 3.1-16

      in a vector space, 14.2-8

Projection theorem, for triangles, B-4

      for vector spaces, 14.2-8

Prolate ellipsoid, 3.5-7

Prolate spheroid, 3.5-7, A-5

Prolate spheroidal coordinates, 6.5-1

Prony’s method, 20.6-6c Propagated error, 20.8-1 (See also Numerical stability) Propagation of disturbance, 10.4-1 (See also Wave equation) Proper conic, 2.4-3

Proper function (see Eigenluiietion) Proper quadric, 3.5-3

Proper rotation, 14.10-7

Proper subgroup, 12.2-2

Proper subset, 4.3-2

Proper subspace, 14.2-2

Proper value (see Eigenvalue) Proper vector (see Eigenvector) Proportions, 1.4-2

Pseudosphere, 17.3-13

Pseudotensor (see Relative tensor) Psi function. 21.4-3

Pure strategy, 11.4-4

Purely random process, 18.11-46

Pyramid, A-4

QD algorithm, 20.2-5a Quadrant, 2.1-2

Quadrantal triangle, B-7

Quadratic equation, 1.6-3, 1.8-2

Quadratic form, 13.5-2, 13.5-4 to 13.5-6

Quadratic-variation theorem, 18.10-10

Quadratically integrable function, 15.2-1

Quadrature formulas (see Integration, numerical) Quadric surfaces, 3.5-1 to 3.5-10, 16.9-3

Quadrupole, 15.6-5

Quartic equation, 1.6-3, 18-5, 1.8-6

Quartiles, 18.3-3, 19.2-2, 19.5-2

      of normal distribution, 18.8-4 (See also Fractiles) Quasilinear differential equation, 10.3-1

Quasilinearization, 20.9-3

Quaternions, 12.4-2, 14.10-4

Quotient-difference algorithm, 20»2-5a Quotient group (see Factor group) r distribution, 19.5-3, 19.7-4 R test, 19.6-6

Raabe’s test, 4.9-1

Radial deviation, 18.8-7

Radial error, 18.8-7

Radiation, 10.4-8

Radical axis, 2.5-1

Radical center, 2.5-1

Radicand, 1.2-1

Radius, of convergence, 4.10-2, 7.2-1, 7.5-2

      of curvature, 17.1-4, 17.2-3

      of torsion, 17.2-3

Radius vector, 2.1-8

Raising of indices, 16.7-2

Random numbers, generation of, 20.10-4

      normal, F-20

      tables, F-19, F-20

Random-perturbation optimization, 20.2-6c Random phase, 18.11-1

Random process, 18.9-1 to 18.12-6

Random processes, examples, 18.11-1 to 18.11-6

Random sample, 19.1-2

      multivariate, 19.7-2

Random series, 18.9-1

Random sine wave, 18.11-2

Random telegraph wave, 18.11-3

Random variables, 18.2-8

      transformation of, 18.5-1 to 18.5-8

Randomized blocks, 19.6-6

Range, of a distribution, 18.3-3

      distribution of, 19.2-6, 19.5-4

      of function or transformation, 4.2-1, 12.1-4

      of a linear operator, 14.3-2

      of a sample, 19.2-6

Rank, of distribution, 18.4-8

      of a hermitian form, 13.5-4

      of a linear operator, 14.3-2

      of a matrix, 1.9-3, 1.9-4, 13.2-7, 13.4-1

      of a quadratic form, 13.5-4

      of a representation, 14.9-1

      of a tensor, 16.2-1

Rank correlation, 19.7-6

Rank statistics, 19.2-6

Raphson (see Newton-Raphson method) Rational algebraic function, inverse Laplace transforms of, 8.4-4

      table, D-6

Rational-fraction interpolation, 20.5-7

Rational function, 1.7-4, 4.2-2

Rational-function approximations, 20.5-7, 20.6-7

Rational integral function, 1.6-3

Rational numbers, 1.1-2

Rationalizing denominators, 1.2-2

Rayleigh-Ritz method, 11.7-2

Rayleigh’s quotient, 14.8-8, 15 4-7

Real axis, 1.3-1

Real numbers, 1.1-2

Real part, 1.3-1

Real roots of algebraic equations, 1.6-6, 20.2-1, 20.2-3

Real vector space, 14.2-1

Realization of a group, 12.2-9

Reciprocal, 1.1-2

Reciprocal bases, 6.3-3, 14.7-65 16.7-3, 16.8-2

Reciprocal differences, 20.5-7

Reciprocal kernel (see Resolvent kernel) Reciprocal one-to-one correspondence, 12.1-4

Rectangular distribution (see Uniform distribution) Rectangular hyperbola, 2.5-2, 21.2-5

Rectangular pulses, D-l Rectifiable curve, 4.6-9

Rectified waveform, 8.3-2

      table, D-2

Rectifying plane, 17.2-2, 17.2-4

Recurrence relation (see Recursion formulas) Recursion formulas, for associated Legendre polynomials, 21.8-10

      for cylinder functions, 21.8-1, 21.8-6, 21.8-8

      for orthogonal polynomials, 21.7-1

Reduced equation (see Complementary equation) Reducible operator, 14.8-2

Reducible representation, 14.9-2

Reducibility, 14.9-2

Reduction of elliptic integrals, 21.6-5

Reference system (see Coordinate system) Reflected wave, 10.3-5

Reflection, 7.9-2

      of extremals, 11.6-7, 11.8-5

      principle of, 7.8-2

Reflection-rotation group, 12.2-11

Reflexivity, 12.1-3

Refraction, of extremals, 11.6-7, 11.5-2a, 11.8-5

Regression, 18.4-6, 18.4-9, 19.7-2, 19.9-4

Regression coefficient, 18.4-6, 18.4-9, 19.7-2

      distribution of, 19.7-4

      test for, 19.7-4

Regula falsi, 20.2-2

Regular arc, 3.1-13, 17.2-1, 17.4-2

Regular column, 20.2-56

Regular curve, 3.1-13

Regular function, 7.3-3

Regular operator, 14.3-5

Regular point, of a curve, 3.1-13, 17.1-1

      of a differential equation. 9.3-6

      of a surface, 3.1-14

Regular polygons, A-2

Regular polyhedra, A-6

Regular representation, of a group, 12.2-9; 14.9-1

      of a linear algebra, 14.9-7

Regular singular point, 9.3-6

Regular surface, 3t1-14

Regular surface element, 17.3-1

Rejection region (see Critical region) Relative frequency (see Statistical relative frequency) Relative scalar, 16.2-1

Relative stability, 20.8-56

Relative tensor, 16.2-1

      covariant derivative of, 16.10-2

Relative topology, 12.5-1

Relatively prime polynomials, 1.7-3

Relativity theory, 16.7-1, 17.4-4, 17.4-6

Relaxation methods, 20.2-66, 20.3-5, 20.9-4

Remainder, in interpolation, 20.5-2, 20.5-3

      of Laurent series, 7.5-3

      of quotient, 1.7-2, 20.2-3

      of series, 4.8-1

      of Taylor’s series, 4.10-4, 4.10-5, 7.5-2

Remainder theorem, 1.7-2

Removable singularity, 7.6-2

Rendezvous problem, 11.8-3c Repeated trials (see Independent trials) Repetition in combinations, table, C-2

Replacement, C-2

Representation, 12.2-9

      of groups (see Group representation) Representation space, 14.9-1

Residual, 20.2-4, 20.3-2

      of a regression, 18.4-9

Residual spectrum, 14.8-3, 15.4-5

Residue, 7.7-1

      at infinity, 7.7-1

Residue class, 12.2-10

Residue theorem, 7.7-2

Resolvent kernel, 15.3-7, 15.3-8, 15.5-2

Resolvent matrix, 13.4-2

Resolvent operator, 14.8-3

Resubstitution of solutions, 1.6-2, 9.1-2, 20.1-2

Result function, z transform, 8.7-3

Resultant of an algebraic equation, 1.6-5, 1.7-3

Retarded potential, 15.6-10

Reversion of series, 20.5-4

Rhombus rules, 20.2-5a Riccati equation, 9.2-4

Ricci principal directions, 17.4-5

Ricci tensor, 17.4-5

Ricci’s theorem, 16.10-5

Riemann-Christoffel curvature tensor (see Curvature tensor) Riemann-Green function, 10.3-6

Riemann integral, 4.6-1, 4.6-16

Riemann-Lebesgue theorem, 4.11-2

Riemann space, 16.7-1 to 16.10-11, 17.3-7, 17.4-1 to 17.4-7

Riemann-Stieltjes integral, 4.6-17

Riemann surface, 7.4-3

Riemann-Volterra method, 10.3-6

Riemannian coordinates, 17.4-5

Riemann’s differential equation, 9.3-9

Riemann’s elliptic integrals, 21.6-5

Riemann’s mapping theorem, 7.10-1, 15.6-9

Riemann’s zeta function, E-5

Riesz-Fischer theorem, 15.2-4

      generalized, 15.2-2

Right continuous function, 4.4-7

Right-hand derivative, 4.5-1

Right-handed coordinate system, 3.1-3, 6.2-3, 16.7-1

Right spherical triangle, B-7

Right triangle, B-l, B-2

Ring, 12.3-1

Risk, conditional, 19.9-2

      expected, 19.9-1

Rodrigues’s formula, 21.7-1/ Rolle’s theorem, 1.6-6

Root-squaring method, 20.2-56

Roots, of equations, 1.6-2

      of numbers, 1.2-1

      real, location of, 1.6-6

Rotation, Cayley-Klein parameters, 14.10-4

      in complex plane, 7.9-2

      of coordinate axes, 2.1-6, 2.1-7, 3.1-12

      about coordinate axis, 14.10-6

Euler angles, 14.10-6

      with reflection, 12.2-11, 14.10-1, representation by matrix, 14.10-1

      in space, 14.10-1 to 14.10-8

Rotation axis, 14.10-2

Rotation group, 12.2-11, 14.10-8

Rotation-reflection group, 12.2-11

Rotational, theorem of the, 5.6-1 (See also Curl) Rouché’s theorem, 7.6-1

Round-off error, 20.1-2, 20.8-8 (See also Numerical Stability) Routh-Hurwitz criterion, 1.6-6

Row matrix, 13.2-1

Rule of correspondence, 12.1-1

Ruled surface, 3.1-15

Run, 18.7-3

Runge-Kutta methods, 20.8-2, 20.8-5 to 20.8-7

Saddle point, of a game, 11.4-4

      in phase plane, 9.5-3, 9.5-4

      of a surface, 17.3-5

Saddle-point method, 7.7-3

Saltus, 4.4-7

Sample, 19.1-1

      combination, table, C-2

Sample average, 19.2-2, 19.7-2

      distribution of, 19.5-3

      from grouped data, 19.2-2, 19.2-5

      for random process, 19.8-4

Sample central moments, 19.2-4

Sample covariance, 19.7-2

Sample deciles, 19.2-2

Sample dispersion, 19.2-4

Sample distribution, 19.2-2

Sample fractiles, 19.2-2

      distribution of, 19.5-2

Sample function, 18.9-1

Sample mean (see Sample average) Sample median, 19.2-2

      distribution of, 19.5-2

Sample moments, 19.2-4

      functions of, 19.4-2, 19.4-3, 19.5-2

Sample percentiles, 19.2-2

Sample point, 18.2-7, 18.9-1

Sample quantiles, 19.2-2

Sample quartiles, 19.2-2

Sample range, 19.2-6

      distribution of, 19.5-4

Sample size, 19.1-2

Sample space, 18.2-7, 18.7-1, 18.9-1, 19.6-1

Sample standard deviation, 19.2-4

Sample values of a random process, 18.9-1

Sample variance, 19.2-4, 19.2-5, 19.7-2

      distribution of, 19.5-3

      from grouped data, 19.2-5

Sampled-data frequency-response function, 20.8-8

Sampled-data measurements, 19.8-1 to 19.8-3

Sampling function, 18.11-2, 21.3-1, D-2, F-21

Sampling property, of impulse function, 21.9-2

      of sine function, 18.1

      l-2a Sampling ratio, 19.5-5

Sampling theorem, 18.11-2

Scalar, 5.2-1, 12.4-1, 13.2-2, 14.2-1

      of a dyadic, 16.9-2 (See also Absolute scalar) Scalar curvature, 17.4-6

Scalar field, 5.4-2

Scalar potential, 5.7-1, 5.7-3

Scalar product, 5.2-1, 16.8-1, 16.8-2

      of a dyadic, 16.9-2

      in Riemann space, 16.8-1

      in terms of curvilinear coordinates, 6.3-4, 6.4-2 (See also Inner product) Scalar triple product 5.2-8, 6.4-2, 16.8-4

Scatter coefficient, 18.4-8

Scheme of measurements, 5.2-4, 14.1-5, 14.6-2, 16.1-4, 16.2-1, 16.6-2

Schlaefli’s integral, 21.7-7

Schmidt (see Gram-Schmidt orthogonali- zation process) Schmidt-Hilbert formula, 15.3-8

Schrödinger equation, 10.4-6

Schur-Cohn test, 20.4-8

Schur’s lemma, 14.9-2

Schwarz, 21.9-2 (See also Cauchy-Schwarz inequality) Schwarz-Christoffel transformation, 7.9-4, 7.10-1

Search, for maxima and minima, 20.2-6, 20.2-7

Second fundamental form of a surface, 17.3-5, 17.3-8, 17.3-9

Second probability distribution, 18.9-2

Sector of a circle, A-3

Sectorial spherical harmonics, 10.4-3, 21.8-12

Secular equation (see Characteristic equation) Segment, of a circle, A-3

      of a sphere, A-5

Self-adjoint operator (see Hermitian operator) Self-conjugate operator, 14.4-4

Self-conjugate vector space, 14.4-9

Self-osculation, 17.1-3

Semiconvergence, 4.8-6

Semidefinite form, 13.5-2 to 13.5-6

Semidefinite integral form, 15.3-6

Semidefinite matrix, 13.5-2 to 13.5-6

Semidefinite operator, 14.4-5

Semi-invariants, 18.3-9, 18.3-10, 18.4-10, 18.5-3

Sensitivity coefficient, 13.6-4

Separable kernel, 15.3-1, 15.3-3

Separable space, 12.5-1, 14.2-7

Separated sets, 12.5-1

Separation, of variables, 9.2-4, 10.1-3, 10.2-3, 10.4-1, 10.4-2

Separation constant, 10.1-3

Sequence, 4.2-1

      convergent, 4.4-1

Sequential test, 19.6-9

Series, operations with, table, E-l reversion of, 20.5-4

      tables, E-5 to E-7

Serret-Frenet formulas, 17.2-3

Set function, 4.6-15, 18.2-7

Shannon’s sampling theorem, 18.11-2« Sheppard’s corrections, 19.2-5

Shift operator, 20.4-1, 20.4-3

Shift theorem, Fourier transforms, 4.11-5

Laplace transforms, 8.3-1

Sigma function, 21.6-3

Sign test, 19.6-8

Signal detection, 19.9-3

Signal extraction, 19.9-4

Signature, 13.5-4

Similar matrices, 13.4-1, 13.4-2, 14.6-2 (See also Similarity transformation) Similar representations, 14.9-1

Similarity theorem, for Fourier transforms, 4.11-5

      for Laplace transforms, 8.3-1

Similarity transformation, 13.3-3, 13.4-1, 13.4-3, 13.4-4, 14.6-2, 14.9-1 (See also Similar matrices) Simple character, 14.9-4

Simple closed curve, 3.1-13

Simple curve, 3.1-13

Simple event, 18.2-7, 18.7-2

Simple group, 12.2-5

Simple statistical hypothesis, 19.6-1

Simple surface, 3.1-14

Simplex method, 11.4-2

Simplex tableau, 11.4-2

Simply ordered set, 12.6-2

Simpson’s rule, 20.7-2

Simultaneous equations, 1.9-1

      linear (see Linear equations) sine function, 18.11-2, 21.3-1

      table, F-21

Sine integral, 21.3-1

Sine series, 4.11-3, 4.11-5

Sine transform, finite, 8.7-1 (See also Fourier sine transform) Single-valued function, 4.2-2, 12.1-4

Singular distribution, 18.4-8

Singular integral, of an ordinary differential equation, 9.1-2, 9.2-2

      of a partial differential equation, 10.1-2, 10.2-1, 10.2-4

Singular kernel, 15.3-8, 15.3-10

Singular matrix, 13«2-3

Singular operator, 14.3-5

Singular point, of a complex function, 7.6-2

      of a curve, 17.1-3

      at infinity, 7.6-3

Singular point, in phase plane, 9.5-3

      of a surface, 17.3-1

Singular transformation, 14.3-5

Sinus amplitudinis, 21.6-7

Skew field, 12.3-1

Skew-hermitian matrix, 13.3-2

Skew-hermitian operator, 14.4-4, 14.4-7, 14.4-10

Skew-symmetric dyadic, 16.9-2

Skew-symmetric matrix, 14.10-5

Skew-symmetric operator, 14.4-6, 14.4-7, 14.10-5

Skew-symmetric part, of linear operator, 14.4-8

      of matrix, 13.3-4

Skew-symmetry of tensors, 16.5-1

Skewness, 18.3-3, 19.2-4, 19, 5-3

Slack variable, 11.4-16

Slope of tangent, 4.5-1, 17.1-1

Smoluchovski, 18.11-4

Smoothing, 20.6-1, 20.7-lc Snedecor (see v2 distribution) Solenoidal vector field, 5.7-2, 5.7-3

Solid angle, 15.6-5

Solution, of game, 11.4-4

      spherical, B-7 to B-9

      of triangles, B-4

Solvable group, 12.2-6

Sommerfeld’s integral, 21.8-2

Space form of the wave equation, solutions, 10.4-4

Spaces, of sequences and functions, 12.5-5, 15.2-1

Sparse matrix, 20.3-2, 20.9-2, 20.9-4

Spearman, 19.7-6

Special unitary group, 14.10-7

Spectral decomposition, of power, 18.10-5

Spectral density, 18.10-3 to 18.10-10

      non-ensemble, 18.10-8

Spectral representation, 14.8-4

Spectrum, of a linear operator, 14.8-3

      of a probability distribution, 18.2-1, 18.2-2, 18.4-2, 18.4-7 (See also Eigenvalue) Sphere, 3.5-9, A-5

      geometry on a, 17.3-13

      in metric space, 12.5-3

Spherical Bessel function, 10.4-4, 21.8-8, 21.8-13

Spherical coordinates, 3.1-6

      vector relations in, 6.5-1

Spherical defect, B-6

Spherical excess, B-6

Spherical harmonies, 10.4-3, 14.10-7, 21.8-12

      expansion in series of, 10.4-9

Spherical triangle, B-5 to B-9

Spherical waves, 10.4-8

Spheroid, 3.5-7, A-5

Spin matrices, 14.10-6

Spiral, of Archimedes, 2.6-2

      linear, 2.6-2

      logarithmic, 2.6-2

      parabolic, 2.6-2

Spur (see Trace) Square, A-2

Square root, computation of, 20 2-2

Stability, of difference equations, 20.4-8, 20.8-5 & of equilibrium, 9.5-4, 13.6-5, 13.6-6

      of finite-difference approximations, 20.8-5, 20.9-5, 20.9-8

      of limit cycle, 9.5-3

      of linear system, 9.4-4

Lyapunov’s theory, 13.6-5

      numerical, 20.1-2. 20.3-ld, 20.8-5, 20.9-8

      of solutions, 13.6-5 to 13.6-7

Standard deviation, 18.3-3, 19.2-4

Standard form, of a conic, 2.4-8

      of a quadric, 3.5-7

Standardized normal distribution, 18.8-3, 18.8-4, 18.8-8

Standardized random variable, 18.5-3, 18.5-5

Standing waves, 10.4-8. 10.4-9 (See also Space form of the wave equation) State equations, 11.8-1, 11.9-1, 13.6-1

      difference equations, 20.4-7

State-transition matrix, 13.6-2

      for difference equations, 20.4-7

State variable, 11.8-1, 13.6-1

State vector, 13.6-1

Stationary random process, 18.10-1 to 18.10-10

Stationary values, and eigenvalue problems, 14.8-8 (See also Maxima and minima) Statistic, 19.1-1

Statistical dependence, 18.4-12

Statistical hypothesis, 19.1-3. 19.6-1

Statistical independence, 18.2-3 to 18.2-5, 18.4-11, 18.6-2, 18.8-8

      test for, 19.7-5, 19.7-6

Statistical relative frequency, 18.2-1

Steady-state solution, 9.4-2, 9.4-6

Steepest descent, 20.2-7, 20.3-2 (See also Saddle-point method) Steffens-Aitken algorithm, 20.2-2d Steffensen’s interpolation formula, 20.5-3

Step function, 21.9-1

Step matrix, 13.2-9, 13.4-6, 14.8-6 (See also Direct sum) Step-size change, in optimization, 20.2-7

      in solution of ordinary differential equations, 20.8-3c, 20.8-5

      in solution of partial differential equations, 20.9-5

Stereographic projection, 7.2-4. 14.10-6

Stieltjes integral, 4.6-17, 14.8-4, 18.3-6 21.9-2

Stieltjes-integral form of Laplace transformation, 8.6-3

Stieltjes measure, 4.6-15

Stirling numbers, 21.5-1

Stirling’s formula, 21.4-2, 21.5-4

Stirling’s interpolation formula, 20.5-3, 20.7-1

Stirling’s series, 21.4-2

Stochastic independence (sec Statistical independence) Stochastic process (see Random process) Stochastic relation. 19.7-7

Stochastic variables (see Random variables) Stokes’s theorem, 5.6-2

Store enumerator, C-2

Straight line, in plane, equation, 2.2-1, 2.2-2

      normal form, 2.2-1

      in space, equation, 3.3-1, 3.3-2

Strategy, mixed, 11. 4-46

      pure, 11.4-4a Streamlines, 5.4-3, 15.6-8

Strictly triangular matrix, 13.2-1

String, vibrations of, 10.4-9, 15.4-10

String property, of ellipse, 2.5-2

      of involute, 17.2-5

Strip condition, 10.2-1, 10.2-4

Strongly monotonie function, 4.4-8

Strophoid, 2.6-1

Student’s ratio, 19.5-3

Student’s t (see t distribution) Sturm-Liouville operator, 15.4-3, 15.4-8 to 15.4-10, 15.4-12

Sturm-Liouville problem, 15.4-8 to 15.4-10, 15.5-2, 21.7-1

Sturm’s method, 1.6-6

Subfield, 12.3-2

Subgroup, 12.2-2

Subharmonic resonance, 9.5-5

Subinterval, 4.3-4

Submatrix, 13.2-8

Subring, 12, 3-2

Subset, 4.3-2

Subspace, 12.5-1, 14=2-2

Successive approximations (see Iteration methods; Picard’s method) Sufficient estimate, 19.4-1, 19.4-2, 19.4-4

Summable function, 4.6-15

Summation, by arithmetic means, 4.8-5, 411-7

      of series, 4.8-5, 21.5-3, E-4

      toE-7

      by use of residues, 7.7-4

Sums, finite, 20.4-3, E-4

Superposition integral, 9.4-3, 18.12-2, 18.12-3

Superposition theorems, 9.3-19 10.4-1, 10.4-2, 13.6-2, 14.3-1, 15.4-2

      for linear difference equations, 20.4-4

Surface, 3.1-14

      of revolution, 3.1-15

Surface areas, formulas, A-4 to A-6

Surface coordinates, 17.3-1

Surface discontinuity, 5.6-3

Surface-distribution potential, 15.6-5, 15.6-7

Surface divergence, 5.6-3

Surface gradient, 5.6-3

Surface integral, 4.6-12, 5.4-6, 6.2-3, 6.4-3, 17.3-3

Surface normal, 17.3-2

Surface rotational, 5.6-3

Sylvester’s criterion, 13.5-6

Sylvester’s dialytic method, 1.9-1

Sylvester’s theorem, 13.4-7, 13.6-2

Symbolic differential equation, 9.4-3, 15.5-1

Symbolic function, 21.9-2 (See also Impulse functions) Symbolic logic, 12.8-5

Symmetric dyadic, 16.9-2, 16.9-3

Symmetric function, 1.4-3

Symmetric group, 12.2-8

Symmetric integral form, 15.3-6

Symmetric interpolation formulas, 20.5-3

Symmetric kernel, 15, 3-1

Symmetric linear operator, 14.4-6, 14.4-7

Symmetric matrix, 13.3-2 to 13.3-4, 13.4-4, 13.5-6, 20.3-1, 20.3-2

Symmetric part, of a linear operator, 14, 4-8

      of a matrix, 13.3-4

Symmetric quadratic form, 13.5-2

Symmetrical game, 11.4-4

Symmetrical step function (see Step function) Symmetry, of a relation, 1.1-3, 12.1-3

      of tensors, 16.5-1

System determinant, 1.9-2, 9.4-5

System matrix, 1.9-4

Systematic overtaxation, 20.3-2d Systems of differential equations, 9.1-3, 9.5-4, 10.1-2c, 13.6-1 to 13.6-7

      numerical solution of, 20.8-6 t average, 18.10-7 I distribution, 19.5-3, 19.6-6, 19.7-4 t test, 19.6-4, 19.6-6

Tangent, to a conic, 2.4-10 to a plane curve, 17.1-1 to a space curve, 17.2-2 to 17.2-4

Tangent plane, 17.3-2

      of a quadric, 3.5-8

Tangent surface, 17.2-5

Tangent vector, 17.2-2

      in curved space, 17.4-3

Tangential acceleration, 17.2-3

Tangential curvature {see Geodesic curvature) Tangential developable, 17.2-5

Tauber’s theorem, 4.10-3

Taxicab norm, 13.2-1t, 13.6-5

Taylor’s series expansion, 4.10-4

      complex, 7.5-2

      multidimensional, 4.10-5

      operator notation, 20.4-2

      for solution of differential equation, 9.1-5, 9.2-5, 9.3-5, 20.8-1

      vector notation, 5.5-4

Telegrapher’s equation, 10.4-8, 10.5-4

Tensor equality, 16.3-1

Term, 1.2-5

Terminal-state manifold, 11.8-lc Tesseral spherical harmonics, 10.4-3, 21.8-21

Test, of significance, 19.6-4 to 19.6-6

      in statistics, 19.1-3, 19.6-2, 19.7-7

      with random parameters, 19.9-1 to 19.9-3

Test statistic, 19.6-4, 19.6-6, 19.9-3

Tetrahedron, A-6

Theta functions, 21.6-8, 21.6-9

Thiele’s interpolation formula, 20.5-7

Three-index symbols (see Christoff el three-index symbols) Time average (see Finite-time average; t average) Time constant, 9.4-1

Time-invariant system, 13.6-2, 18.12-3

Time-optimal control, 11.8-36, 11.8-3c Time series (see Random process) Tolerance interval, 19.6-4

Tolerance limits, 19.6-4

      of normal deviate, 18.8-4

Topological spaces, 12.5-1

      examples, 12.5-5

Topology, 12.5-1, 12.5-3

      in a normed vector space, 12.5-2, 14.2-7

Toroidal coordinates, 6.5-1

Torsion; 17.2-3, 17.2-4

Torus, A-5

Total curvature, 17.2-3

Total differential equation, 9.6-1, 9.6-2

Trace, of direct product, 13.2-10

      of a linear operator, 14 6-2

      of a matrix, 13.2-7, 13.4-1, 13.4-3, 13.4-5, 20.3-3

      of a tensor, 16.3-5

Tractrix, 2.6-2, 17.3-13

Transcendental numbers, 1.1-2

Transfer function, 9.4-7

Transfer matrix, 9=4-7

Transfinite number. 4 3-2

Transform, 12.1-4

Transformation, of coordinates, 2.1-5 to 2.1-7, 3.1-12, 6.5-1, 14.6-1

      admissible, 6.2-1, 16.1-2

      of elliptic functions, 21.6-7

      of elliptic integrals, 21.6-6

      of linear operators, 14.6-2

      of quadratic and hermitian forms, 13.5-4

      of variables in a differential equation, 9.2-3, 9.3-8

      of vector components, 6.3-3, 14.6-1, 16.2-1 (See also Linear operator) Transformation theory of dynamics (see Hamilton -Jacobi equation) Transient, 9.4-2

Transitivity of a relation, 1.1-3, 12.1-3

Translation, in complex plane, 7.9-2

      of coordinate axes, 2.1-5, 2.1-7, 3.1-12

Transmission-line equation, 10o£-8, 10.5-4 I Transpose, of a linear operator, ‘J4.4-6

      of a matrix, 13.3-1

      o Transposed dyadic, 16.10-11 u1 Transposed kernel, 15.3-1 \ Transversality condition, 11.6-8,’11.8-2, 11.8-3

Transverse axis, 2.5-2

Trapezoid, A-l Trapezoidal pulses, table, D-2

Trapezoidal rule, 20, 7-2, 20.8-3

Triangle area, plane, 2.1-4

      space, 3.1-10

Triangle computations, B-l to B-4

      for spherical triangles, B-5 to B-9

Triangle property, 12.5-2 (See also Minkowski’s inequality) Triangular matrix, 13.2-1, 13.4-3

Triangular pulses, table, D-2

Trigonometric functions, 21.2-1 to 21.2-13

      continued fractions, E-9

      infinite products, E-8

      power series, E-7

Trigonometric interpolation, 20.6-6

Trigonometric polynomial, 4.7-3, 4.11-2, 20.6-6

Trigonometric series, 4.11-2

Triple scalar product (see Scalar triple product) Trisectrix, 2.6-1

True representation, 14.9-1

Truncated normal distribution, 19.3-4

Truncation error, 20.1-2

      in differential-equation solutions, 20.8-1

      local, 20.8-1

Truth table, 12.8-7

Truth value, 12.8-6

Tcchebycheff (see under Chebyshev) Twelve-ordinate scheme, 20.6-6

Two-person game, 11.4-4

Two-sided Laplace transform, 8.6-2, 18.12-5

Two-tailed test, 19.6-4, 19.6-8

Two-valued logic, 12.8-6

Two-way classification, 19.6-6

Type form (see Standard form) Ultraspherical polynomials, 21.7-8

Umbilic point, 17.3-5

Umbral index (see Dummy-index notation) Unbiased estimate, 19.1-3, 19.4-1, 19.8-1

Unbiased test, 19.6-3, 19.6-4

Unconditional convergence, 4.8-3, 4.8-7

Uncorrelated functions, 18.10-9

Uncorrelated variables, 18-4-11, 18.5-5, 18.8-8

      test for, 19.7-4

Undamped natural circular frequency, 9.4-1

Undetermined coefficients, 9.4-1, 20.4-5

Uniform bounds, 4.3-3

Uniform continuity, 4.4-6

Uniform convergence, 4.4-4., 12.5-52

      of infinite product, 4.8-7

      of an integral, 4.6-2

      of series, 4.8-2

Uniform distribution, 18.8-5, 19.5-4

Uniformly most powerful test, 19.6-3, 19.6-4

Unilateral continuity, 4.4-7

Unilateral limits, 4o4-7

Unimodal distribution, 18.3-3, 18.3-5

Unimodular group. 14.10-7

Unimodular matrix, 14.10-6

Union, in Boolean algebra, 12.8-1

      of events, 18.2-1

      of sets, 4.3-2

Uniqueness theorem, for Fourier series, 4.11-2, 411-5

      for Fourier transforms, 4oll-5

      for harmonic functions, 15.6-2

      for Laplace transforms, 8.2-8

      for orthogonal vector components, 14, 7-4

      for power series, 4.10-2

Unit impulse (see Impulse functions) Unit-step function (see Step function) Unit-step response, 9.4-3

Unit vector, 5.2-4, 14.2-5, 14.7-3, 16 8-1

Unitary matrix, 13.3-2, 13.3-3, 13.3-4, 13.4-4

Unitary operator, 14.4-5, 14.4-7

Unitary representation, 14.9-1

Unitary transformation, 13.5-5, 14.4-5 (See also Unitary operator) Unitary vector space, 14.2-6, 14.7-1

Unity, 12.3-1

Universe (see Population) Unknown periodic components, 12.6-6

Unstable solution, 13.6-5 v2 distribution, 19.5-3, 19.6-6

      table, F-18 v2 test, 19.6-6

Value, of a game, 11.4-4

Vandermonde’s determinant, 1.6-5, 13.4-7

      binomial theorem, 21.5-1

Van der Pol’s differential equation, 9.5-4, 9.5-5

Van der Pol’s method of solution, 9.5-5

Variance, 18.3-3, 18, 4-4, 18.4-8, 18.5-6; 18.5-7

      of estimate, 19.2-1 to 19.2-4, 19.7-3, 19.8-1 to 19.8-4 (See also Sample variance) Variance law, 18.5-6

Variance ratio (see v2 distribution) Variation, 11.4-1

      of constants, 9.3-3, 13.6-3

      for difference equation 20.4-4

      total, 4.4-8

Vector of a dyadic 16.9-2

Vector field, 5.4-3

Vector potential, 5.7-2, 5.7-3

Vector product, 5 2-7, 6.3-4, 6.4-2, 16.8-4

      dyadic, 16.9-2

Vector space (see Linear vector space) Venn diagram, 12.8-5

Versed cosine, B-9

Versed sine, B-9

Vertex of a conic, 2.4-9

Vibrating membrane, 15.4-10

Vibrating string, 10.4-9, 11.5-7, 15.4-10

Volterra-type integral equation, 15.3-2, 15.3-10

Volume, 3.1-11, 4.6-11, 5.4-6 6.2-3, 17.3-3

      formulas, A-4 to A-6

Volume-distribution potential, 15.6-5

Volume element, 6.2-3, 6.4-3

      in Riemann space, I60IO-IO Volume integral, 4.6-12, 5.4-6, 5.4-7, 6.2-3, 6.4-3

Von Neumann-Goldstine rotation method, 20.3-5

Vortex point, 9.5-3, 9.5-4

Wave equation, 10.3-5, 10.4-8, 10.4-9, 11.5-7, 15.6-10, 20.9-8

      two-dimensional, 10.4-6, 10.4-8 (See also Space form of the wave equation) Wave number, 10.4-8

Wavelength, 10.4-8

Weakly monotonie function, 4 4-8

Weber, 21.8-1

Weddle’s rule 20.7-2« Weierstrass E function, 11.6-10

Weierstrass-Erdmann conditions, 11.6-7, 11.8-5

Weierstrass’s approximation theorems, 4.7-3

Weierstrass’s elliptic functions, 21.6-1, 21.6-2, 21.6-3, 21.6-9

Weierstrass’s necessary condition, 11.6-10, 11.8-1

Weierstrass’s normal elliptic integrals, 21.6-1 to 21.6-3, 21.6-5

      of the first kind. 21.6-2

      of the second kind, 21.6-3

Weierstrass’s test for convergence, 4.9-2

Weierstrass’s theorem, on essential singularities, 7-6-4

      on product expansion, 7.6-6

Weight, of a configuration, C-2

      of a figure, C-2

      of a relative tensor, 16.2-1

Weighting function, 9.3-3, 9.4-3, 9.4-7, 18.12-2, 19.8-2

      of an inner product, 15.2-1 (See also Green’s function) Weighting-function method, Galerkin’s, 20.9-9, 20.9-10

Weingarten equations, 17.3-8

Well-defined transformation, 12.1-4

Well-ordered set, 1.1-2. 12.6-2

Wiener-Khinchine relations, 18.10-3

      for integrated spectra, 18.10-105

      for non-ensemble spectral densities, 18.10-8

      for real processes, 18.10-4

Wiener-Lee relations, 18.12-2, 18.12-3

Wiener-Paley theorem, 4.11-4e Wiener’s quadratic-variation theorem, 18.10-10

Witch of Agnesi, 2.6-1

Wronskian, 9.3-2

      for cylinder functions, 21.8-1 z distribution, 19.5-3, 19.6-6 z transform, 8.7-3, 20.4-6

Zermelo’s navigation problem, 11.8-3a Zero (number), 1.1-2

      of complex function, 7t 6-1, 7.6-9

      at infinity, 7.6-3

Zero-argument values, of theta functions, 21.6-8

Zero divisor, 13.2-5

Zero-sum game, 11 4-4

Zeros, of Bessel functions, 21.8-3

      of cylinder functions, 21.8-3

      of orthogonal polynomials, 21.7-2

      of solutions, 9.3-8

Zeta function, Riemann’s, E-5

Weierstrass’s, 21.6-3

Zonal spherical harmonics, 10.4-4, 21.8-12

Zone, sphere, A-5