Bibliography
[AMI 14] AMIROUDINE S., CALTAGIRONE J.-P., ERRIGUIBLE A., “A lagrangian-eulerian compressible model for the trans-critical path of near-critical fluids”, International Journal of Multiphase Flow, vol. 59, pp. 15– 23, 2014.
[ANG 99] ANGOT P., B RUNEAU C.-H., FABRIE P., “A penalization method to take into account obstacles in incompressible viscous flows”, Numerische Mathematik, vol. 81, no. 4, pp. 497–520, 1999.
[ANG 13] ANGOT P. , C ALTAGIRONE J.-P., FABRIE P., “Fast discrete Helmholtz-Hodge decompositions in bounded domains”, Applied Mathematics Letters, vol. 26, no. 4, pp. 445–451, 2013.
[ARI 62] ARIS R., Vectors, Tensors, and the basic Equations of Fluid Mechanics, Dover, New-York, 1962.
[ARQ 84] ARQUIS E., CALTAGIRONE J.-P., “Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide – milieu poreux : application à la convection naturelle”, C.R. Acad. Sciences, IIB, vol. 299, no. 1, pp. 1–4, 1984.
[BAT 67] BATCHELOR G., An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, 1967.
[BHA 12] BHATIA H., NORGARD G., PASCUCCI V. , et al., “The Helmholtz-Hodge Decomposition – A Survey”, IEEE Transactions on Visualization and Computer Graphics, vol. 99, no. 1, 2012.
[CAL 01] CALTAGIRONE J.-P., VINCENT S., “Sur une méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes”, C.R. Acad. Sciences IIB, vol. 329, pp. 607–613, 2001.
[CAL 13a] CALTAGIRONE J.-P., “Mécanique des Milieux Discrets”, HAL, vol. hal-00788639, pp. 1–65, 2013.
[CAL 13b] CALTAGIRONE J.-P., Physique des Écoulements Continus, Springer-Verlag, Berlin Heidelberg, 2013.
[CHA 99] CHAPMAN S., COWLING T., The Mathematical Theory of non-uniform Gases, Cambridge Mathematical Library, Third edition, Cambridge, 1999.
[COI 07] COIRIER J., NADOT-MARTIN C., Mécanique des Milieux Continus, Dunod, Paris, 2007.
[DES 05] DESBRUN M., HIRANI A., LEOK M., et al., “Discrete exterior calculus”, arXiv, vol. math/0508341v2, pp. 1–53, 2005.
[DES 13] DESRAYAUD G., CHéNIER E., JOULIN A., et al., “Sensitivity to the open boundary conditions of the natural convection flows in a vertical channel asymmetrically heated – From comparison exercise to benchmark solutions”, International Journal of Thermal Sciences, vol. 72, pp. 18–33, 2013.
[FOR 82] FORTIN M., GLOWINSKI R., Méthodes de lagrangien augmenté; Application à la résolution de problèmes aux limites, Dunod, Paris, 1982.
[GAD 95] GAD-EL-HAK M., “Stokes hypothesis for a newtonian, isotropic fluid”, J. of Fluids Engineering, vol. 117, no. 1, pp. 3–5, 1995.
[GER 95] GERMAIN P., MULLER P. , Introduction à la Mécanique des Milieux Continus, Masson, 2nd edition, Paris, 1995.
[GUY 91] GUYON E., HULIN J.-P., PETIT L., Hydrodynamique physique, Editions du CNRS, Paris, 1991.
[HAR 65] HARLOW F., WELCH J., “Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface”, Physics of Fluids, vol. 8, no. 12, pp. 2182–2189, 1965.
[HOL 11] HOLMES M., PARKER N., POVEY M., “Temperature dependence of bulk viscosity in water using acoustic spectroscopy”, J. Phys., vol. 269, no. xx, p. xx, 2011.
[LAD 63] LADYZHENSKAYA O., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1963.
[LAM 93] LAMB H., Hydrodynamics, 6th edition, Dover, New York, 1993.
[LAN 59] LANDAU L., LIFCHITZ E., Fluid Mechanics, Pergamon Press, London, 1959.
[LAN 71] LANDAU L., LIFCHITZ E., Mécanique des Fluides, Editions MIR, Moscou, 1971.
[MAR 02] MARSDEN J., RATIU T., ABRAHAM R., Manifolds, Tensor Analysis, and Applications, Springer-Verlag Publishing, Third edition, New York, 2002.
[MON 92] MONTEL F., CALTAGIRONE J.-P., PEBAYLE L., A convective segregation model for predicting reservoir fluid compositional distribution, Clarendon Press, Oxford, 1992.
[NEW 87] NEWTON I., Philosophiae Naturalis Principia Mathematica, Edmond Halley, 1687.
[SAL 02] SALENÇON J., Mécanique des milieux continus, Editions de l’Ecole Polytechnique, Palaiseau, 2002.
[TON 13] TONTI E., “Why starting from differential equations for computational physics?”, Journal of Computational Physics, vol. 257, pp. 1260–1290, 2013.
[TRU 65] TRUSDELL C., Rational mechanics of deformation and flow, in proceedings of the 4th congress on rheology, Wiley, New York, 1965.
[TRU 74] TRUSDELL C., Introduction à la mécanique rationnelle des milieux continus, Masson, Paris, 1974.
[TRU 92] TRUSDELL C., NOLL W., “The Non-Linear Field Theories of Mechanics”, Encyclopedia of Physics, Encyclopedia of Physics, Vol. III/3, Springer-Verlag, 1992.
[WHI 57] WHITNEY H., Geometric integration theory, Princeton University Press, Princeton, 1957.
[YUA 13] YUAN G., JIULIN S., KAIXING Z., et al., “Determination of bulk viscosity of liquid water via pulse duration measurements in stimulated Brillouin scattering”, Chinese Optics Letters, vol. 11, no. 11, p. 112902, 2013.