PART ONE
JUST ANOTHER SPECIES OF BIG MAMMAL
THE CLUES ABOUT when, why, and in what ways we ceased to be just another species of big mammal come from three types of evidence. Part One considers some of the traditional evidence from archaeology, which studies fossil bones and preserved tools, plus newer evidence from molecular biology. Other evidence from studies of living apes and people will be taken up in Parts Two and Three.
One basic question concerns just how extensive the genetic differences between ourselves and chimps are. That is, do we differ in ten, fifty, or ninety-nine per cent of our genes? Merely looking at humans and chimps or counting up visible traits would not be any help, because many genetic changes have no visible effects at all, while other changes have sweeping effects. For example, the visible differences between breeds of dogs such as great danes and pekinese are far greater than those between chimps and ourselves. Yet all dog breeds are interfertile, breed with each other (insofar as it is mechanically feasible) when given the opportunity, and belong to the same species. To a naive observer, the appearance of great danes and pekinese would suggest that they are genetically much further apart than chimps are from humans. Those visible differences among dog breeds in size, proportions, and hair colour depend on relatively few genes which have negligible consequences for reproductive biology.
How, then, can we estimate our genetic distance from chimps? Chapter One describes how this problem has been solved only within the past half a dozen years by molecular biologists. The answer is not just intellectually surprising but may also have some practical ethical implications for how we treat chimps. We shall see that gene differences between us and chimps, although large compared to those among living human populations or among breeds of dogs, are still small compared to differences among many other familiar pairs of related species. Evidently, changes in only a small percentage of chimpanzee genes had enormous consequences for our behaviour. It has also proved possible to work out a calibration between genetic distance and elapsed time, and thereby to get an approximate answer to the question of when we and chimps split apart from our common ancestor. That turns out to be somewhere around seven million years ago, give or take a few million years.
While the molecular biological story of the first chapter yields overall measures of genetic distance and elapsed time, it tells us nothing about how specifically we differ from chimps, and when those specific differences appeared. Hence Chapter Two will consider what more can be learned from bones and tools left by creatures variously intermediate between our ape-like ancestor and modern humans. The changes in bones constitute the traditional subject matter of physical anthropology. Especially important were our increase in brain size, skeletal changes associated with walking upright, and decreases in skull thickness, tooth size, and jaw muscles.
Our large brain was surely prerequisite for the development of human language and innovativeness. One might therefore expect the fossil record to show a close parallel between increased brain size and sophistication of tools. In fact, the parallel is not at all close. This proves to be the greatest surprise and puzzle of human evolution. Stone tools remained very crude for hundreds of thousands of years after we had undergone most of our expansion of brain size. As recently as 40,000 years ago, Neanderthals had brains even larger than those of modern humans, yet their tools show no signs of innovativeness and art. Neanderthals were still just another species of big mammal. Even for tens of thousands of years after some other human populations had achieved virtually modern skeletal anatomy, their tools too remained as boring as those of Neanderthals.
These paradoxes sharpen the conclusion drawn from Chapter One. Within the modest percentage of genes that differs between us and chimps, there must have been an even smaller percentage of genes which were not involved in the shapes of our bones, but which were responsible for the distinctively human traits of innovation, art, and complex tools. At least in Europe, those traits appear unexpectedly suddenly, at the time of the replacement of Neanderthals by Cro-Magnons. That is the time when we finally ceased to be just another species of big mammal. In Chapter Two I shall speculate about what those few changes were that triggered our steep rise to human status.