ENDNOTES

CHAPTER 4

* The benefits of the most touted and expensive interventions (medicines and surgery) are often so disappointing that they are statistically undetectable. (p. 37)

People are often astounded when enlightened about the statistical realities regarding medical procedures. In fact, most physicians are also shocked, as few are aware of the truth about their own intervention techniques. Many of the most popular and touted medical procedures thought to be effective are, in reality, almost totally ineffective. We believe there are two primary reasons for this confusion.

First, few people understand the concept of appropriate experimental control. For example, it is not uncommon for people to think: "Well, my mother had surgery and chemotherapy for her breast cancer, and she is still living 5 years later, so it obviously worked for her!" However, precisely nothing has been demonstrated by this outcome. In reality, one must randomly assign a group of patients either to a treatment group, or to a no-treatment control group. This way, it can be observed how long those treated manage to survive as compared to how long those not treated manage to survive. Not all science requires the same type of control group, but in this case, a no-treatment control group would be required for any inferences about treatment effectiveness.

With most major medical procedures such as most heart surgery and most cancer treatments, the comparison between treatment and no-treatment groups has demonstrated an astonishing degree of ineffectiveness with medical intervention. This statement is extremely well supported by the scientific literature. One may see excellent reviews of the relevant literature in books by John McDougall, M.D., such as McDougall's Medicine: A Challenging Second Opinion, The McDougall Program for Women, and The McDougall Program for a Healthy Heart. However, please do not take this disquieting report as a wholesale rejection of medical techniques, some of which are quite useful. Simply be alerted that for the primary causes of premature death and disability in the U.S. and other industrialized nations, modern medicine offers surprisingly little hope.

Part of the reason that the public is confused is that physicians themselves are confused. Few physicians receive any substantial education in inferential statistical methods. This is a second major reason for the widespread misunderstanding of medical effectiveness. Physicians largely believe in the effectiveness of their procedures despite the overwhelming scientific evidence that the procedures are worthless or near-worthless! There may be a number of reasons for this misunderstanding, but surely one is that few physicians understand the difference between a scientific observation that is statistically significant versus one that is clinically significant.

A given study can show that a procedure is statistically significant and yet that procedure may have essentially no practical significance whatsoever. A classic example is medication for high blood pressure. Although studies have indicated that blood pressure medications have been shown to decrease stroke risk "significantly," the literature touting the scientific support for such medications is extremely misleading to both naïve physician and patient. The clinical value to the average patient may be the possibility of perhaps a few days of extended life, with significant side effects and other risks in exchange for this extremely small potential benefit. For example, the difference between a life expectancy of 22 years and 6 months (with no medication) versus 22 years, 7 months (with medication), can easily be statistically significant if the study has sufficient statistical "power" to detect this infinitesimal difference! Very large studies, such as those done on high blood pressure medication, bypass surgery, and breast cancer treatment, have huge sample sizes that lend such studies great statistical power. As a result, even very small real effects (of highly questionable clinical value) are statistically significant. Physicians, hearing about the "scientific support" for such procedures are impressed, and may honestly reassure their patients that the procedures are effective. The unfortunate reality is that most major medical procedures have disappointing small positive effects—when they have positive effects at all. For an eye-opening review of the effect sizes of many medical procedures see an article by Gregory Meyer et al (2001) in the American Psychologist, entitled "Psychological Testing and Psychological Assessment." (vol. 56, 128-165).

CHAPTER 6

* This bias makes it difficult for us to grasp that dietary excesses are at the root of our modern health problems. (p. 58)

Some readers may be concerned that this paragraph suggests a Lamarckian view of evolution, that is, the idea that such thinking is present within us because our ancestors thought such things and passed that thinking down through the generations. Of course, nothing of the sort happens. What we mean is that the genes that have built the neural design for modern humans were shaped in environments of caloric scarcity. Those ancient individuals who were not naturally anxious about scarcity were not as successful biologically as those who were more vigilant. Therefore the genes that built the brains that were naturally more scarcity-wary are the genes that now proliferate in the human gene pool. For a discussion of how evolutionary processes "design" both the bodies and minds of animal life (including humans), see The Blind Watchmaker by Richard Dawkins. For the reader who is interested in exploring more about how our natural history shaped our current psychology, see The Moral Animal by Robert Wright, and also Evolutionary Psychology: The New Science of the Mind by David Buss.

CHAPTER 7

* This principle is what we have termed the Law of Satiation. (p. 64)

Though the term "Law of Satiation" is our creation, the concept is not new. The fact that animal minds are designed with extremely sensitive homeostatic mechanisms for optimal hunger, thirst, temperature regulation, and other functions has long been understood by physiological psychologists. This is beginning to become more widely recognized in the field of weight regulation science. While there are exceptions to every rule (of course), such as individuals with rare disorders that disrupt the mechanisms of satiation, it is clear that humans are just as well endowed with feeding regulation equipment as any other species. As such, our design will not lead us astray given a diet consistent with our natural history.

One point that is often mentioned is that animals typically live within environments of scarcity rather than environments of abundance. This being recognized, it is then sometimes argued that modern humans overeat simply because they have access to an abundance of food. It is assumed that omnipresent food itself is the root of today's weight problems. This is incorrect. Animals living within environments that are abundant with food are not observed to overeat and gain excessive body fat. Instead, they are likely to parlay their good fortune into an increase in the quantity of their offspring, and thus send more genes into the genetic hereafter. Neither human nor other animal has been shown to systematically overeat when presented with food consistent with the organism's natural history. On the contrary, such a diet, eaten to satiety, results in weight regulation that requires no conscious control of intake quantity. Our results at TrueNorth Health Center corroborate this observation. If patients are overweight, they lose weight when eating to satiety on a whole natural foods diet. In observing 5,000 patients over twenty years at our inpatient facility, we have yet to observe an exception.

* The system is comprised of a set of neural equipment that we have dubbed the "yowel" circuits. (p. 72)

Readers will not find the term "yowel circuits" in the scientific literature, as this term is our invention. We do not specify the known mechanisms with precision for two reasons: First, our discussion is meant to be a general explanation rather than a technical one. Second, discoveries in this area are happening with rapidity, and we don't wish to mislead the reader with an explanation that is undoubtedly only a piece of the puzzle. By all accounts, it appears that there are many mechanisms involved in the organization of feeding behavior, including several that are involved in reducing fat stores should they become excessive. Leptin levels, for example, increase as fat storage becomes excessive, signaling to the hypothalamus to reduce caloric intake. This means that appetite is suppressed when the body senses that it is overweight. It has also been demonstrated that excessive fat stores cause increases in body temperature. This increased temperature requires more calories to be utilized. This is called "diet-induced thermogenesis." Both of these mechanisms are examples of "yowel circuits," methods that the body utilizes to drive excessive fat storage down toward optimal levels.

If this is true, it seems reasonable to ask the following question: "If we have such mechanisms, why is anyone fat?" The answer appears to be that these excess fat reduction mechanisms were never intended to do battle with the degree of dietary indulgence caused by modern processed foods. We are no longer dealing with mildly elevated caloric intakes, but rather with a problem of massively excessive calories and excess body fat. Like a stereo with a volume that can be turned up only so far, these special mechanisms are limited in their behavioral impact. They evolved over the course of our natural history in response to times when our ancestors may have temporarily gained a few extra pounds. This could have happened when, on rare occasions, a plentiful supply of high-calorie natural foods was present for an extended period. Such foods might have included nuts, fish, and even high-calorie fruits.

During such times of high-density caloric bounty, moderate weight gain may have been common. Appetite suppression circuitry that we refer to collectively as "yowel" circuits would have then been useful for at least two purposes: (1) to discourage excessive caloric intake, excessive body fat, and reduced speed and agility for dealing with predators and competitors, and (2) to discourage unnecessary eating so that more time was made available for other biologically important tasks. The presence of these mechanisms makes it unnecessary to consciously regulate food intake when attempting to lose weight. All that is necessary for the overweight person to lose weight is to eat to satiety on a whole natural foods diet. The "yowel" circuits will cause systematic undereating until excess body fat has been reduced to near-optimal levels.

CHAPTER 11

* Despite the escalating aggressiveness of surgery and chemotherapy, women do not live longer post-diagnosis than they did in the 1920s, and more than 90 percent of women diagnosed with breast cancer will die of this disease. (p. 130)

Many people find this difficult to believe, given the upbeat propaganda about the value of early detection and treatment for breast cancer. The truth is that results for breast cancer treatments have been a huge disappointment. A recent review indicated that treatments on average may increase a woman's survivability by between one and two percentile points. This means that the expected increase in length of life may be close to zero. In his excellent review, John McDougall, M.D., found that statistical analyses examining treatment effects have indicated that "as few as 6 percent of women have their lives prolonged by fourteen months." (The McDougall Program for Women, p. 131)

This means that, according to some estimates, 94 percent of women have their lives lengthened by zero to fourteen months with the standard treatments of surgery, radiation, and chemotherapy. This is hardly what we would call "treatment." Of women that contract breast cancer, nearly all will die of the disease. McDougall explains the bleak fact that "…despite improved surgical techniques, advanced methods of radiation, and the widespread use of chemotherapy, the death rate from breast cancer has not changed meaningfully during the last fifty years." (The McDougall Program for Women, p. 125)

Breast cancer is a classic example of a terrifying problem for which women are being routinely sold false hope. The solution is not in early detection—how could it be when the treatments are of so little use? The best solution by far is prevention, and that solution is robust. It is conservatively estimated that at least 80 percent of breast cancers could be prevented through the adoption of the diet and lifestyle modifications we have recommended.

CHAPTER 14

* The wise parent, coach, or mentor knows that a key to motivation is to keep expectations at achievable levels, or else a self-protective paralysis becomes likely. (p. 167)

It is often assumed that giving people support and encouragement is a helpful motivational technique. Sometimes this is true. Sometimes, however, the would-be helpful parent, coach, or friend is overly encouraging. This sets the stage for a most curious motivational reversal or paralysis. It appears to work according to logic described as follows.

Our status is not something that we have within us; it is actually located within other people's minds. The amount of status that we have with one person is different than the amount we have with another. The amount of status we have can be roughly translated as being how important the other person perceives us to be. This judgment is related to their estimation of our current abilities, as well as our latent talent.

Status is a critically important variable in our psychology, and we carry within us a status monitoring mechanism, neural equipment to monitor how well or poorly others think of us. (We can think of this status monitoring mechanism as our "ego.") Status has been intimately related to survival and reproductive success throughout the natural history of our species.

If we perceive that our actions have raised our status, we typically feel pride or excitement, i.e., moods of happiness (it is "ego enhancing"). If we observe that others have reduced their evaluations of us, we are sensitive to this status loss and may feel ashamed or embarrassed, i.e., moods of unhappiness (the ego "hurts"). Because of its value in survival and reproductive processes, it can be valuable to have as much status as possible even when it is based upon false perceptions. When others give us too much credit for our abilities, we may feel uncomfortable, but the right move—in the natural history of our species—is to refrain from disillusioning them about their overestimation of us. A young man on a solitary hunt who killed a wildebeest with its foot stuck in a snake hole might have been rewarded with an extra dose of status for his remarkable success. Though uncomfortable with this unearned status, he might well refrain from explaining the exact details of his success. The young women of the tribe might have found him to be suddenly more attractive. As a result, an honest recounting of the hunt might not have been the wisest course, biologically speaking.

His extra, unearned status would come with the discomfort of knowing that it would probably have to be given back at some point. The young man might avoid the next group hunt, feigning injury or illness. Sooner or later his real status would eventually be realigned with reality, but it would be in his best interests to delay the discovery of his actual abilities. The best move would often be to avoid participation as much as possible. This phenomenon is routinely observed in children who are told by their parents that they can "be great" at something they are attempting to do. Studies have shown—to the surprise of self-esteem champions—that such encouragements are often a significant deterrent to achievement. Few situational forces can undermine motivation as effectively as bequeathing unearned status. The receiving party dares not give their best effort, as it feels dangerously expensive to risk the near-inevitable status reduction when performance is beneath expectations. We refer to this paradoxical motivational problem as "the Ego Trap."

CHAPTER 16

* Fasting is a way to help the body restore optimum health. And it does this in a diversity of ways. (p. 197)

There are quite a surprising number of known physiological benefits of fasting. In fact, with respect to many of the benefits listed below, these processes are significantly more pronounced during fasting than at any other time. Fasting, done properly, is a period of profound rest during which time the body activates a wide variety of beneficial physiological activities, including the following:

1. Neuroadaptation. Fasting helps your taste sensors adapt to a low salt intake. By allowing your body to "neuroadapt" to low-salt food, fasting rapidly facilitates the adoption of a health-promoting diet. This process of neuroadaptation appears to take place more rapidly during fasting than merely eating a low salt diet.

2. Enzymatic Recalibration. During fasting your body induces enzymatic changes that can affect numerous systems ranging from detoxification of endogenous and exogenous substances to the mobilization of fat, glycogen, and protein reserves. These changes seem to persist after the fasting process, which may explain some of the dramatic clinical changes seen in patients after fasting.

3. Weight Loss. Although fasting is not generally recommended as a primary weight loss strategy, weight loss is a predictable consequence of fasting. Most people average a loss of approximately one pound per day over the course of a fast. (When weight loss is your primary concern, a health-promoting diet coupled with exercise is usually your best approach.)

4. Detoxification. Fasting is generally thought of as a tool to facilitate detoxification, promoting the mobilization and elimination of endogenous substances such as cholesterol and uric acid and exogenous substances such as dioxin, PCBs, and other toxic chemical residue.

5. Insulin Resistance. Fasting appears to have a profound effect on insulin resistance, which is thought to be intimately involved with diabetes and high blood pressure. When your body produces adequate insulin, but it is ineffective due to resistance at the cells in the liver and elsewhere, your blood sugar levels rise. This can lead to serious clinical consequences. Fortunately, after a period of fasting, this problem is often dramatically improved.

6. Natriuresis. Water-only fasting induces a powerful natriuretic effect, which allows the body to eliminate excess sodium and water from your body. This process allows for the resolution of chronic problems with edema and helps reduce the increased blood volume associated with high blood pressure.

7. Reducing Gut Leakage. When chronic inflammation involves the intestinal mucosa, a condition arises whereby small particles of incompletely digested foods can be absorbed into the blood stream. These foreign peptide molecules may stimulate an immunological cascade of effects collectively known as gut leakage. In genetically vulnerable individuals, gut leakage may be associated with the aggravation of numerous clinical entities including arthritis, colitis, asthma, allergies, and fatigue.

8. Sympatheticotonia. Hypersympatheticotonia (increased tone of the sympathetic nervous system) is thought to be associated with many problems ranging from digestive disturbances to anxiety disorders. Fasting appears to have a profound normalizing effect on the overall tone of the autonomic nervous system.

In all there are many mechanisms through which fasting may be having its profound effect. Further research into these and other areas should prove illuminating.