Todas as civilizações têm suas histórias sobre a criação. Os europeus vieram com uma esquisitice, no começo do século XX, que desde então é refinada e reelaborada por estudiosos de todas as partes do mundo. Ela foi chamada de big bang, mas se metamorfoseou em algo conhecido como modelo-padrão da cosmologia. Nós achamos que é uma teoria, enquanto chamamos as outras explicações de mitos. O que torna o big bang diferente da proposta dos maias, de que somos todos feitos de milho branco e amarelo? Será que a fé da ciência em sua explicação se justifica? Quais os limites do conhecimento atual?
A ideia do big bang surgiu da teoria da relatividade geral de Einstein, concluída em 1915, depois de mais de uma década de trabalho. A relatividade geral é um conjunto de equações que descreve a forma como gravidade, espaço, tempo, energia e matéria interagem. Com sua formulação, Einstein pedia às pessoas que descartassem a muito bem-sucedida e satisfatória teoria de Isaac Newton, para aceitar em seu lugar algumas ideias muito estranhas, que pareciam contradizer o que eles vivenciavam no cotidiano. A metafísica é um cortejo de argumentos só com a abertura e o encerramento, sem necessidade de apresentar evidências no meio. Na ciência, só importa a evidência. Por isso, quando Einstein disse que há uma realidade oculta subjacente, bem diversa do mundo que percebemos com nossos sentidos, nenhum cientista acreditaria nele se não encontrasse uma série de provas. E elas foram encontradas.
Embora a relatividade geral possa ser aplicada ao Universo como um todo, as aplicações que fornecem as verificações mais fáceis de sua validade são as que conseguem explicar sistemas simples como um planeta orbitando o Sol, ou um raio de luz estelar passando ali por perto. Foram essas aplicações que forneceram a primeira evidência física de que Einstein tinha descoberto alguma coisa. No caso do planeta, a teoria esclarecia uma irregularidade já observada na órbita de Mercúrio, que se desviava das previsões das leis de Newton. Era uma irregularidade pequena, por isso, a maioria dos cientistas antes de Einstein simplesmente coçou a cabeça, esperando que algum dia se encontrasse uma explicação trivial para aquilo. Einstein mostrou que a explicação não era nada trivial. Como essa irregularidade já era conhecida, o teste ainda mais impressionante da teoria foi sua nova previsão (na época, espantosa) de que, por efeito da relatividade, a gravidade curvaria os raios de luz, e, portanto, nossa observação das estrelas distantes seria alterada quando a luz passasse perto do Sol. Para confirmar esse efeito sem que a luz da estrela fosse ofuscada pela do Sol, era preciso realizar as observações durante um eclipse solar total. O experimento foi feito, e a teoria de Einstein se mostrou correta, ao prever não apenas que a luz se curva como também o ângulo do desvio.
O triunfo de Einstein – e o igualmente revolucionário triunfo da teoria quântica – não significou que de repente toda a visão de mundo de Newton ficava invalidada. Não é o caso de a civilização acordar de manhã e perceber que tinha construído seus prédios e pontes da forma errada, que a lâmpada de Edison na verdade é um laser quântico, ou que, se você dirigir mais rápido que a velocidade da luz, nunca mais vai precisar de creme antirrugas. A teoria de Newton já havia passado por muitos testes e, à parte o problema da órbita de Mercúrio, nunca falhou; mas as ideias de Einstein não negavam o fato de que a teoria de Newton fornecia uma excelente descrição dos eventos que vivenciamos no cotidiano. Na verdade, quando aplicada a essas situações, a teoria de Einstein resulta em previsões tão próximas das de Newton que a diferença só pode ser detectada por instrumentos muito sofisticados. Porém, sob certas condições, importantes para astrofísicos e em alguns laboratórios de experimentos, as previsões de Newton diferem de forma significativa daquelas decorrentes da teoria de Einstein. Então, quando os cientistas afirmam que a teoria newtoniana está “errada”, estão dizendo que ela é correta apenas de forma aproximada. Ainda assim, a teoria de Einstein é uma descrição mais acertada e fundamental da natureza, revelando características do espaço e do tempo num nível muito mais profundo que o vislumbrado por Newton.
A confirmação experimental de suas teorias transformou Einstein em celebridade internacional, mas as implicações mais espantosas dessas ideias ainda estavam por vir. Nos anos 1920, um padre e astrônomo belga chamado Georges Lemaître aplicou as equações de Einstein ao Universo como um todo. Ele descobriu o que na época podia parecer ao mesmo tempo óbvio e chocante. Primeiro, a parte óbvia. Como a gravidade é uma força de atração, quando você joga uma maçã no ar, a força da gravidade faz com que ela caia de novo na Terra. Ou seja, a maçã se afasta da Terra, depois volta a cair, mas não paira no ar (a não ser naquele instante único que marca o limite de sua trajetória). A parte chocante surgiu quando Lemaître demonstrou que, da mesma forma, graças à atração mútua da matéria e à energia que ela contém, o Universo pode se expandir, desacelerar e talvez se contrair, mas não permanece com um tamanho fixo, como todos na época acreditavam – inclusive Einstein. Se o Universo estiver se expandindo, isso significa que, se você reverter a história do Universo no tempo, vai vê-lo ficar cada vez menor. Por essa razão, Lemaître foi adiante e especulou que o Universo começou como um só ponto. Essa ideia hoje é conhecida como teoria do big bang.
A teoria do big bang estava intimamente relacionada à relatividade geral de Einstein, mas, se não resultasse em previsões verificáveis, seria só um pouco melhor do que dizer que o Universo era feito de milho. Um dos elementos críticos da teoria foi confirmado pouco depois do trabalho de Lemaître, quando Edwin Hubble descobriu que o Universo está em expansão. Porém, a implicação mais específica do cenário de Lemaître é que, quando essa bola de fogo primordial esfriou até 1 bilhão de graus centígrados, nos primeiros minutos após o big bang, diversos elementos leves foram criados em certas proporções definidas. Em particular, cerca de 25% da matéria no Universo deveria estar sob a forma de hélio – e é exatamente o que constatamos. Outra implicação é que o Universo deve ter esfriado muito mais desde então. Segundo a teoria, o espaço hoje deveria estar permeado por uma radiação numa temperatura de 2,7°C acima do zero absoluto, na média. Mais uma vez, isso está de acordo com as observações.
Nos anos 1970, o modelo do big bang já tinha explicado com sucesso a maior parte da história do Universo. Mas ainda restavam algumas aparentes anomalias. Por exemplo, considere uma frigideira numa temperatura uniforme, com exceção de um ponto que esteja mais quente que o resto. Pouco depois, esse ponto mais quente vai estar mais frio, enquanto a região da frigideira mais próxima a ele estará ligeiramente mais aquecida. Mais tarde ainda, o ponto quente esfria mais, transferindo seu calor para áreas cada vez maiores da frigideira. No fim, a frigideira toda estará numa temperatura uniforme. Mas essa transição para a uniformidade leva tempo. O Universo é como essa frigideira depois de um longo tempo – sua temperatura é quase uniforme. O problema é que nós sabemos que ainda não se passou o período necessário para isso ocorrer. Então, por que o Universo está tão próximo dos 2,7°C em todas as direções? Por que não existe um ponto quente aqui e outro ponto frio ali? Os físicos deram a isso o nome de problema do horizonte.
O chamado problema do Universo plano era outro enigma. A relatividade geral diz que a quantidade de matéria e energia no Universo determina a curvatura do espaço. O que significa isso? A curvatura do nosso espaço tridimensional pode ser difícil de visualizar, mas a ideia é similar quando pensamos em duas dimensões. Então, vamos considerar esse caso. Um plano simples é uma superfície bidimensional, sem curvatura. A superfície de uma esfera, por outro lado, curva-se sobre si mesma, e é um exemplo de superfície com o que se chama de curvatura positiva. Em comparação, uma sela é curvada para fora, portanto, afirma-se que ela tem uma curvatura negativa. As equações da relatividade geral nos dizem que, se existir mais que certa quantidade crítica de matéria e energia por unidade de volume no Universo, o espaço se curva numa forma esférica e acaba desabando sobre si mesmo. Se essa densidade crítica for menor, o espaço se curvará para fora, como uma sela. O espaço só poderá ser plano se a concentração média de matéria e energia estiver exatamente dentro do valor crítico. Essa densidade crítica varia com a idade do Universo. Muito tempo atrás, era muito alta, mas hoje equivale a cerca de seis átomos de hidrogênio por metro cúbico de espaço.
Podemos medir diretamente a curvatura do espaço em grande escala, e ele parece mesmo plano, pelo menos com a precisão com que conseguimos realizar a medição. O problema é que as equações da relatividade geral mostram que, se a densidade do Universo se desviasse do valor crítico, esse desvio logo seria imensamente amplificado. Assim, se, no início, a densidade de matéria fosse apenas ligeiramente menor que a densidade crítica, o Universo hoje teria a forma de uma sela e seria muito mais diluído do que podemos perceber. Ou que, se a densidade fosse só um pouco mais alta que o valor crítico, o Universo há muito teria desabado sobre si mesmo, como um balão que perdesse o ar. Por causa desse efeito de amplificação, para que o modelo do big bang responda pelo aspecto plano que observamos, quando o Universo tinha um segundo de idade, a concentração de matéria e energia devia estar afinada com o valor crítico numa precisão de uma parte em mil trilhões.
Alguém poderia perguntar: “E daí? O Universo não poderia simplesmente ter se formado dessa maneira?” Poderia, mas isso ilustra um ponto importante na ciência. Os aspectos-chave de uma teoria devem seguir algum princípio, e não serem projetados de modo a fazer a teoria funcionar. Para um cientista, afirmar que a existência do Universo depende do fato de ele ter se formado há muito tempo e de um modo bastante preciso não é algo muito satisfatório. Os cientistas querem entender a razão subjacente, as leis naturais que explicam essa circunstância específica.
O problema do horizonte, o problema do espaço plano e outras dificuldades na teoria do big bang foram resolvidos no final dos anos 1970, quando os físicos descobriram um novo capítulo na evolução do Universo, um capítulo chamado inflação, descoberto por Alan Guth, jovem teórico de partículas que, segundo ele próprio admitiu, não tinha realizado muita coisa até então. Guth mudou a situação quando percebeu que certas condições que os físicos acreditavam estar presentes quando o Universo tinha uma fração de segundo de idade teriam levado o cosmo a enlouquecer, dobrando de tamanho em menos de 1 bilionésimo de trilionésimo de trilionésimo de segundo. Supondo-se que esse aumento continuasse por “apenas” cem ciclos, uma parcela do Universo com o diâmetro de uma moeda teria aumentado para mais de 10 milhões de vezes o diâmetro da Via Láctea.
Como pode a inflação beneficiar um cosmólogo confuso? Imagine que passemos um filme do Universo de trás para diante, a partir de hoje. Quando chegarmos à inflação, o Universo observável será esmagado para uma região minúscula. Por isso, a inflação significa que regiões do Universo hoje muito separadas estavam tão próximas, nos tempos pré-inflacionários, que suas diferenças de temperatura poderiam ter se uniformizado antes da expansão. Isso resolve o problema do horizonte. A inflação também soluciona o problema da forma plana. Para entender por que, imagine o que aconteceria com um minúsculo balão que de repente enchesse até atingir o diâmetro do Sol, por exemplo. Ainda que fosse fácil medir a curvatura do balão antes de ele encher, quando estivesse do tamanho do Sol, alguém que estivesse sobre a sua superfície veria o balão muito mais plano. De uma forma análoga, a inflação achatou nosso Universo.
A teoria de Guth não poderia ter sido prevista por Einstein, Lemaître ou qualquer outro estudioso solitário da relatividade geral. Ela dependia de ideias extraídas de outra revolução do século XX, a teoria quântica. Esta não é na verdade uma teoria, mas um conjunto de princípios que definem um tipo de teoria. As ideias desenvolvidas de acordo com esses princípios quânticos são chamadas de teorias quânticas. A relatividade geral não é uma teoria quântica, e ainda nem sabemos exatamente como formular uma. Mas há meios de extrair previsões limitadas que se baseiam nos princípios das duas teorias. Em seu trabalhos, Guth apoiou-se em muitas ideias quânticas desenvolvidas entre os anos 1930 e 1970.
Uma das doutrinas básicas de qualquer teoria quântica moderna é que para cada partícula existe um campo, algo como os campos de força que vemos nas obras de ficção científica. Segundo essa teoria, os campos não podem permanecer constantes em magnitude, pois estão sujeitos a contínuas flutuações quânticas, em escala microscópica. Quando a inflação começou, e as rugas do espaço começaram a se esticar, surgiram novas rugas quânticas microscópicas para substituí-las. À medida que progredia, a inflação esticou essas rugas até uma dimensão macroscópica, resultando num padrão específico de variação na densidade matéria/energia do Universo pós-inflacionário. Como a gravidade é uma força de atração, as áreas surgidas com a inflação, mais densas que os arredores, atraíram ainda mais matéria, criando as sementes das galáxias. Dessa forma, as flutuações quânticas expandidas levaram à estrutura que hoje observamos no Universo – aglomerados de galáxias, galáxias e estrelas. Sem as flutuações quânticas, o Universo seria uma sopa uniforme e inespecífica.
O padrão de variação da densidade criado pela inflação pode ser detectado até hoje. Há pouco dissemos que o fato de a temperatura do Universo ser a mesma em qualquer lugar era um mistério explicado pela inflação, mas ela vai um pouco além: a inflação prevê que, embora seja quase constante em qualquer direção em que você olhar, a temperatura varia levemente, e segundo um padrão específico. Essa é uma previsão muito precisa, demonstrada por inúmeras evidências, mas já se observaram variações exatamente como as previstas pela inflação ocorrendo numa gama de menos de 100 milionésimos de grau centígrado.
Este é, em resumo, o retrato científico de como o Universo chegou até aqui – e algumas provas desse cenário. O começo do Universo não foi a grande explosão do big bang, mas o período de inflação, uma expansão muitas vezes mais drástica que a prevista pelo cenário original do modelo, que aconteceu um instante depois do início do Universo.
O que aconteceu antes da inflação? Por enquanto, as respostas científicas são muito mais especulativas e menos precisas que a imagem que acabamos de descrever. Respostas melhores estão à espera de progressos na construção de uma versão quântica da relatividade geral (se for verdadeira, a teoria das cordas conseguirá fazer isso). Muitos físicos argumentam que essa nova teoria, quando a tivermos, mostrará que, em algum momento antes da inflação, não existia o tempo tal como o conhecemos. Contudo, a mais chocante especulação sobre o que uma teoria quântica, que inclua a relatividade geral, poderia nos dizer vem de um princípio chamado flutuações do vácuo.
Mencionei que as galáxias são produtos de microscópicas flutuações de campos quânticos. As flutuações do vácuo se referem à previsão quântica de que até o “nada” – que, na teoria quântica, tem uma definição matemática precisa – apresenta flutuações, e portanto é instável, em certo sentido. Isto é, mesmo que você esteja numa região do espaço onde não haja matéria nem energia, a situação não permanece a mesma. Em vez disso, o nada é um caldeirão em ebulição no qual as partículas estão sempre aparecendo e desaparecendo. Trata-se de um conceito estranho ao contexto da experiência cotidiana, mas é um efeito conhecido para os que passam seus dias estudando o comportamento das partículas elementares. As flutuações do vácuo são um dos resultados mais bem confirmados de toda a ciência e já foram medidas com a precisão de dez casas decimais. Elas devem ser consideradas em todos os cálculos e experimentos da moderna física das partículas. Aliás, a maior parte de sua massa vem dos prótons nos átomos de que somos compostos, e a maior parte da massa de um próton não vem da massa dos quarks que o formam, mas da energia do espaço “vazio” entre esses quarks, um turbulento cadinho de partículas saídas do nada e que nele logo desaparecem. Por isso, da próxima vez que você pensar em quanto você pesa, lembre-se de que a maior parte de seu peso corresponde a espaço vazio.
Muitos físicos acreditam que as flutuações do vácuo indicam uma assombrosa previsão: o Universo teria surgido espontaneamente do nada. Será? Ainda não sabemos, pois não entendemos exatamente como se podem combinar a teoria geral da relatividade e a teoria quântica. Mesmo se acharmos que entendemos, primeiro é preciso elaborar previsões específicas relacionadas aos fenômenos observáveis, que depois devem ser testadas. Os físicos vão conseguir fazer isso, pois, em última análise, esse é o trabalho da ciência. Ao contrário das especulações filosóficas, metafísicas e místicas, que não são limitadas pela restrição das evidências, uma teoria científica sobre a origem do Universo deve passar por testes observacionais. A imagem resultante pode não satisfazer aos que procuram uma fonte divina na nossa origem, mas será a resposta da ciência.
O primeiro e maior de todos os mistérios é como o Universo começou. Para a espiritualidade, o tema parece uma causa perdida antes mesmo de a discussão começar. A física moderna assumiu a questão da gênese, e sua resposta – o big bang e tudo o que aconteceu nos 13,7 bilhões de anos seguintes – conseguiu acabar com a credibilidade da Bíblia, do Corão, dos Vedas e de todas as outras versões nativas da criação. Mas agora, no momento exato em que a ciência parece estar pronta para aplicar o golpe de misericórdia, alguma coisa emperrou. A física quântica foi obrigada a parar à beira do abismo que precedeu a criação, sem meios de seguir adiante até que esse abismo seja transposto por uma explicação. A opinião de Leonard, partilhada pela física em geral, é de que a explicação plena será encontrada pela matemática. Meu parecer, partilhado por estudiosos da consciência em geral, é de que o próprio significado da existência está em questão. Nos tempos modernos, deixamos a cosmologia para os especialistas, da mesma forma como deixamos os genes para os geneticistas. Mas não se pode pendurar uma placa na criação dizendo “Entrada proibida; você não sabe a matemática necessária”. Todos nós nos interessamos pela gênese, e isso é bom, pois, na nossa época, está na iminência de brotar uma nova história da criação, e todas as versões prévias terão de passar por uma revisão radical.
Esse abismo é o ponto de partida para qualquer história da criação, seja ela científica ou espiritual. O Gênesis nos diz que “a terra não tinha forma, era vazia, e a escuridão jazia sobre a face das profundezas”. Porém, arranjar um lugar para Deus nesse abismo não satisfaz a mente científica, e a espiritualidade deve superar algumas fortes objeções suscitadas pelos céticos, que incluem as seguintes, entre outras:
• Não há prova científica da existência de Deus nem de qualquer criador.
• Não se pode provar que o Universo segue um projeto.
• O pré-Universo pode ser inimaginável. À medida que nossa experiência acontece no tempo e no espaço, não seria inútil tentar explicar a realidade antes do surgimento do espaço e do tempo?
• A aleatoriedade parece ser a vencedora de longo prazo no Universo, pois as estrelas morrem, e a energia se aproxima do zero absoluto.
Essas parecem objeções esmagadoras, e Leonard exemplifica a teimosa resistência da ciência a outras formas de explicar o cosmo. Ele vê com desconfiança as explicações não científicas, ou até pior: encara-as como superstições primitivas (“milho branco e amarelo”) ou ilusões. Para ele, todos os processos no cosmo, visíveis ou invisíveis, podem ser explicados em termos materialistas. Mas é fascinante perceber como a espiritualidade ressurgiu no debate; e por que, do meu ponto de vista, vencerá no final. Todas as objeções da ciência podem ser rebatidas. Nesse processo, vamos fincar as bases de uma nova história da criação.
Stephen Hawking é considerado, na cultura popular, o gênio do momento, e assim como Einstein carrega o peso total da ciência em seus pronunciamentos. Hawking ganhou manchetes no mundo todo em 2010, ao declarar que “não é necessário invocar Deus … para fazer o Universo funcionar”. O mundo dos devotos tinha mais uma razão para ver na ciência a inimiga da fé. Pessoalmente, Einstein se mostrava reverente e maravilhado diante do mistério que paira no horizonte longínquo do cosmo. Mas, desde então, o Universo da física teórica se tornou aleatório, complexo, paradoxal, árido demais para uma presença divina.
Hawking e outros dizem que os princípios quânticos tornam possível o surgimento do Universo a partir do nada. Mas, para diferenciar isso do vácuo onde começa o Gênesis, a física se enroscou em um nó. Se esse “nada” deu origem ao anseio humano de significado, por que ele não será importante? O Universo se manifesta de forma aleatória, mas esse aleatório criou o cérebro humano, que faz todos os tipos de coisas não aleatórias (como os escritos de Shakespeare e dizer “Eu te amo”). Então, como a ausência de projeto deu origem ao projeto?
A natureza ainda não comprovada do “nada” é uma abertura para a espiritualidade, que, ao contrário do que diz Leonard, não precisa voltar aos mitos pré-científicos. Pelo contrário, pode apresentar vislumbres sobre o que existe além do espaço e do tempo. A nova história da criação irá se basear no seguinte:
1. Totalidade: O Universo, incluindo o nada que precede a criação, é um sistema. A base da existência não é o vazio inerte, mas um campo dinâmico que envolve a criação numa totalidade singular. Processos menores no campo quântico podem estar relacionados a esse sistema, mesmo que a anos-luz de distância. Vemos vários tipos de coisas ocorrer ao nosso redor que não podem estar totalmente desconectadas: como um vaga-lume, numa abafada noite de verão, se relaciona com os pinguins imperadores marchando centenas de quilômetros pelo gelo antártico, ou com uma tempestade tropical na Índia Ocidental? A verdade mais profunda é que a totalidade deve incluir tudo isso.
Nossos cinco sentidos são confundidos pela diversidade, e parte do trabalho da diversidade é parecer desconectada; é isso que nos fascina na infinita variedade da vida. A totalidade, por outro lado, é invisível. Só pode ser conhecida com uma sondagem mental, numa análise mais profunda – esta é a perspectiva espiritual. A única forma externa de vislumbrar a totalidade é com a matemática. Como Einstein observou, ele elaborou o conceito de relatividade em termos matemáticos e ficou surpreso quando a natureza se pôs de acordo com isso. Mas uma experiência interna da totalidade – o que Buda e outros sábios relatam – é uma forma igualmente válida de conhecimento, afinal, até mais satisfatória, como espero demonstrar.
2. Regularidade: As leis naturais que regem o Universo são regulares porque podem ser explicadas matematicamente. Eventos que parecem aleatórios, da dispersão da luz ao bombardeio de átomos ou erupções de ventos vulcânicos, nos distraem da verdade mais profunda: o aleatório é apenas uma forma de passar de um estado de regularidade a outro. Dizendo de outra maneira, a aleatoriedade é o modo de o Universo quebrar os ovos para fazer omeletes cósmicas. À medida que ordens superiores vão surgindo, elas passam por transições caóticas que parecem uma manifestação aleatória – a forma como os vegetais se empilham num composto para decair e se transformar em solo fértil –, mas o aleatório não é o estágio final, é apenas o passo intermediário para um nível de organização novo e mais complexo. É apenas um passo da realidade ao significado, e isso implica que o Universo na verdade significa alguma coisa.
3. Evolução: Um dos parentes próximos da aleatoriedade é a entropia, a lei segundo a qual o calor é constantemente disperso pelo Universo. A entropia faz o cosmo minguar em direção ao zero absoluto, ao congelamento que aguarda todas as coisas. Mas existe outra força que cria o oposto – zonas quentes de criação, onde o calor se concentra, levando ao DNA e à vida na Terra. Essa força opositora é a evolução, a tendência que faz tudo crescer. A espiritualidade acredita que a evolução é dominante na natureza. O crescimento, quando começa, nunca termina.
4. Criatividade: A evolução não monta velhos ingredientes em novas fôrmas; nem apenas transforma pequenos pedaços de matéria em pedaços maiores. A evolução dá saltos de criatividade. Isso acontece de maneira quântica – isto é, há o surgimento repentino de uma propriedade que não existia antes. A água surge a partir de dois gases invisíveis, o hidrogênio e o oxigênio. Nada a respeito desses gases poderia antecipar o que é a água. Os saltos quânticos predominam na criação onde quer que a observemos, mas são especiais na linda e espantosa novidade das formas de vida na Terra. O cosmo é regido pela criatividade.
5. Consciência: Para ser criativo é preciso ser consciente. A espiritualidade afirma que a consciência é a base da criação. Ela sempre existiu, e o Universo visível se desdobra como uma amostra do que a consciência deseja analisar. A totalidade não poderia se desdobrar seguindo apenas leis mecânicas como a gravidade. Olhando ao nosso redor, podemos ver muita experimentação, inventividade e imaginação na natureza. Em vez de dizer que essas coisas são fantasias não científicas da mente humana, muitos pensadores especulativos fazem o contrário. Para chegar ao DNA, à vida na Terra e à mente humana, o Universo estava consciente de si mesmo e podia entender o que fazia. A ciência é obrigada a aceitar as explicações mais singelas e elegantes para as coisas. É muito mais simples aceitar a consciência como uma premissa do que elaborar torturantes esquemas que se tornam cada vez mais complexos ao negar o papel central da consciência.
Criação sem consciência é como a fábula do quarto cheio de macacos teclando aleatoriamente uma máquina de escrever até que por fim produzem as obras completas de Shakespeare, milhões de anos depois. Na verdade, um pesquisador chegou a criar um gerador de números aleatórios (um macaco atualizado) para cuspir letras e ver se surgiam algumas palavras coerentes. Elas surgiram, mas houve inúmeras tentativas até se formar uma simples frase. A improbabilidade de produzir um Hamlet é astronomicamente grande. (O personagem Hamlet tem 1.495 linhas de fala. Se o nosso computador-macaco escrevesse a última sílaba errada – registrando “O resto é silente”, em vez de “O resto é silêncio” –, ele teria de repetir todo o processo aleatório desde o início. Depois disso, só haveria mais 36 peças a serem escritas!) O DNA humano é milhares de vezes mais complexo em estrutura que as letras nos textos de Shakespeare. Em lugar de achar que a natureza teve de voltar ao começo cada vez que aleatoriamente esqueceu um traço genético, é mais razoável supor que o Universo se lembra dos passos da evolução e é capaz de construir a partir daí. Em outras palavras, o Universo tem consciência de si mesmo, ele é consciente.
Assim, a espiritualidade dispõe de argumentos viáveis sobre como o Universo começou, argumentos transcendendo o modelo matemático de Leonard, que se mostra incompleto. A matemática não começou a explicar por que os ingredientes do Universo primordial se parecem estranhamente aos materiais necessários para a vida consciente. Como observou o físico teórico Freeman Dyson: “Contra todas as probabilidades, a vida pode ter conseguido moldar o Universo segundo os seus propósitos.” Para os que insistem na primazia da matéria, também há convincentes dados materiais que levam a jogar o aleatório pela janela. Na época do big bang, o número de partículas criadas foi só um pouco maior que o número de antipartículas. Para cada bilhão de antipartículas, havia 1 bilhão de partículas mais um. Essas partículas e antipartículas colidiram e se aniquilaram instantaneamente, enchendo o Universo de fótons. Porém, por causa do minúsculo desequilíbrio inicial, ainda restaram algumas delas depois da aniquilação, e foi daí que se criou o que conhecemos como mundo material. Qual a probabilidade de isso acontecer? Mais ou menos a mesma de explodir um arranha-céu com dinamite e encontrar um novo arranha-céu formado pela poeira que restou.
Leonard apresentou descrições ainda mais intricadas dos primeiros segundos depois do big bang, porém, prefiro ficar com um conceito mais simples. Se só o que importa são os dados, então você, eu, todas as espécies vivas, bem como as estrelas e galáxias no nosso Universo, são resultado de um pequeno e aberrante desequilíbrio no momento da criação. O Universo físico tinha todas as probabilidades de não acontecer. Mas aconteceu. E ocorreu algo mais: uma força organizadora que, sem se tornar visível, moldou a semente do conturbado e caótico cosmo.
Na ausência dessa força modeladora, as probabilidades de você ou eu termos aparecido são pequenas demais para se tornar críveis. Os físicos acrescentaram muitas outras coincidências às enumeradas por Leonard, mas ele minimiza o espantoso estado das coisas daí resultante: as partes do Universo se encaixam com precisão infinita e infinitesimal. Não importa se em pequena ou em grande escala, o cosmo continua tão exato que descarta o aleatório. Alguma coisa deve ter causado isso, e ela deve existir além do Universo visível. Mesmo segundo sua própria ótica, os materialistas estão diante de uma região transcendental, e expulsar Deus dessa região não vai torná-lo menos verdadeiro.
Mesmo assim, para chegar a uma nova história da criação, não há necessidade de invocar Deus no sentido tradicional (ainda que, segundo Leonard, a sensação de espanto e alumbramento seja necessária para alguém que queira realizar descobertas científicas). O crucial, para o meu lado do debate, é que a ciência foi obrigada a olhar para o abismo existente além do tempo e do espaço, abrindo a porta para consciência, criatividade, evolução, regularidade e totalidade como princípios básicos da natureza. Como vou demonstrar, sem essas características, o Universo não poderia ter produzido o DNA, a vida na Terra, a espécie humana e a civilização. Como tudo isso existe, a causa da espiritualidade nem de longe está perdida. Ela apenas começa a se afirmar.