Notes

Chapter 1: Fighting the Global Anxiety Epidemic

1. APA Public Opinion Polls. American Psychiatric Association. Accessed February 15, 2023. https://psychiatry.org/news-room/apa-public-opinion-polls.

2. New Poll: COVID-19 Impacting Mental Well-Being: Americans Feeling Anxious, Especially for Loved Ones; Older Adults Are Less Anxious. American Psychiatric Association. March 25, 2020. Accessed February 15, 2023. https://psychiatry.org/News-room/News-Releases/new-poll-covid-19-impacting-mental-well-being-amer.

3. After Two Years of COVID-19, Americans’ Anxiety Turns to Global Events, Says APA Annual Mental Health Poll. American Psychiatric Association. May 22, 2022. Accessed February 15, 2023. https://psychiatry.org/news-room/news-releases/americans-anxiety-global-events.

4. As Midterms Approach, 79% of Americans Believe Mental Health Is a Public Health Emergency That Needs More Attention from Lawmakers. American Psychiatric Association. October 6, 2022. Accessed February 15, 2023. https://www.psychiatry.org/News-room/News-Releases/Midterms-poll-mental-health-priority.

5. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues in Clinical Neuroscience. 2015;17(3):327–35. https://doi.org/10.31887/dcns.2015.17.3/bbandelow.

6. Anxiety Disorders—Facts & Statistics. Anxiety & Depression Association of America. Accessed February 15, 2023. https://adaa.org/understanding-anxiety/facts-statistics.

7. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research. 2011;45(8):1027–35. https://doi.org/10.1016/j.jpsychires.2011.03.006.

8. Eken HN, Dee EC, Powers AR III, Jordan A. Racial and ethnic differences in perception of provider cultural competence among patients with depression and anxiety symptoms: A retrospective, population-based, cross-sectional analysis. Lancet Psychiatry. 2021;8(11):957–68. https://doi.org/10.1016/s2215-0366(21)00285-6.

9. HHS Leaders Urge States to Maximize Efforts to Support Children’s Mental Health. May 25, 2022. Accessed February 15, 2023. https://www.hhs.gov/about/news/2022/05/25/hhs-leaders-urge-states-maximize-efforts-support-childrens-mental-health.html.

10. Baumgaertner E. Health panel recommends anxiety screening for all adults under 65. New York Times. September 20, 2022. Accessed February 15, 2023. https://www.nytimes.com/2022/09/20/health/anxiety-screening-recommendation.html.

11. Karlsen HR, Matejschek F, Saksvik-Lehouillier I, Langvik E. Anxiety as a risk factor for cardiovascular disease independent of depression: A narrative review of current status and conflicting findings. Health Psychology Open. 2021;8(1):205510292098746. https://doi.org/10.1177/2055102920987462.

12. Chien IC, Lin CH. Increased risk of diabetes in patients with anxiety disorders: A population-based study. Journal of Psychosomatic Research. 2016;86:47–52. https://doi.org/10.1016/j.jpsychores.2016.05.003.

13. Siegmann EM, Müller HHO, Luecke C, Philipsen A, Kornhuber J, Grömer TW. Association of depression and anxiety disorders with autoimmune thyroiditis. JAMA Psychiatry. 2018;75(6):577. https://doi.org/10.1001/jamapsychiatry.2018.0190.

14. Becker E, Orellana Rios CL, Lahmann C, Rücker G, Bauer J, Boeker M. Anxiety as a risk factor of Alzheimer’s disease and vascular dementia. British Journal of Psychiatry. 2018;213(5):654–60. https://doi.org/10.1192/bjp.2018.173.

15. Murniati N, Al Aufa B, Kusuma D, Kamso S. A scoping review on biopsychosocial predictors of mental health among older adults. International Journal of Environmental Research and Public Health. 2022;19(17):10909. https://doi.org/10.3390/ijerph191710909.

16. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI Journal. 2017;16:1057–72. https://doi.org/10.17179/excli2017-480. PMID: 28900385; PMCID: PMC5579396.

17. Barrett, LF. The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience. 2017;12(1):1–23. https://doi.org/10.1093/scan/nsw154.

18. McRae K, Hughes B, Chopra S, Gabrieli JDE, Gross JJ, Ochsner KN. The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience. 2010;22(2):248–62. https://doi.org/10.1162/jocn.2009.21243; Ellard KK, Barlow DH, Whitfield-Gabrieli S, Gabrieli JDE, Deckersbach T. Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Social Cognitive and Affective Neuroscience. 2017;12(6):1009–21. https://doi.org/10.1093/scan/nsx025; Taren AA, Gianaros PJ, Greco CM, et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: A randomized controlled trial. Social Cognitive and Affective Neuroscience. 2015;10(12):1758–68. https://doi.org/10.1093/scan/nsv066.

19. Barrett LF. You Aren’t at the Mercy of Your Emotions. Presented at TED@IBM; filmed December 2017 in San Francisco, CA. TED video, 18:20. Accessed July 11, 2022. https://www.ted.com/talks/lisa_feldman_barrett_you_aren_t_at_the_mercy_of_your_emotions_your_brain_creates_them?language=en.

20. Mobbs D, Adolphs R, Fanselow MS, et al. Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience. 2019;22(8):1205–16. https://doi.org/10.1038/s41593-019-0456-6.

21. Tiller JW. Depression and anxiety. Medical Journal of Australia. 2013;199(S6):S28–S31. https://doi.org/10.5694/mja12.10628.

22. Collier S. What Should You Do During a Psychiatric Medication Shortage? Harvard Health Blog. July 2, 2020. Accessed February 15, 2023. https://www.health.harvard.edu/blog/what-should-you-do-during-a-psychiatric-medication-shortage-2020070220526.

23. Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues in Clinical Neuroscience. 2015;17(3):337–46. https://doi.org/10.31887/dcns.2015.17.3/akaczkurkin.

24. Weiner S. A Growing Psychiatrist Shortage and an Enormous Demand for Mental Health Services. Association of American Medical Colleges. August 9, 2022. Accessed February 17, 2023. https://www.aamc.org/news-insights/growing-psychiatrist-shortage-enormous-demand-mental-health-services.

25. Bulkes NZ, Davis K, Kay B, Riemann BC. Comparing efficacy of telehealth to in-person mental health care in intensive-treatment-seeking adults. Journal of Psychiatric Research. 2022;145:347–52. https://doi.org/10.1016/j.jpsychires.2021.11.003.

26. Orme-Johnson DW, Barnes VA. Effects of the Transcendental Meditation technique on trait anxiety: A meta-analysis of randomized controlled trials. Journal of Alternative and Complementary Medicine. 2014;20(5):330–41. https://doi.org/10.1089/acm.2013.0204.

27. Novaes MM, Palhano-Fontes F, Onias H, et al. Effects of yoga respiratory practice (bhastrika pranayama) on anxiety, affect, and brain functional connectivity and activity: A randomized controlled trial. Frontiers in Psychiatry. 2020;11. https://doi.org/10.3389/fpsyt.2020.00467.

28. Kandola A, Stubbs B. Exercise and anxiety. Advances in Experimental Medicine and Biology. 2020;1228:345–52. https://doi.org/10.1007/978-981-15-1792-1_23.

29. Haghighatdoost F, Feizi A, Esmaillzadeh A, et al. Drinking plain water is associated with decreased risk of depression and anxiety in adults: Results from a large cross-sectional study. World Journal of Psychiatry. 2018;8(3):88–96. https://doi.org/10.5498/wjp.v8.i3.88.

30. One in Four Americans Plans a Mental Health New Year’s Resolution for 2022. American Psychiatric Association. December 20, 2021. Accessed February 15, 2023. https://psychiatry.org/News-room/News-Releases/One-in-Four-Americans-Plans-a-Mental-Health-New-Ye.

31. Roy-Byrne P. Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues in Clinical Neuroscience. 2015;17(2):191–206.

32. World Obesity Day 2022—Accelerating Action to Stop Obesity. World Health Organization. March 4, 2022. Accessed February 15, 2023. https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity.

33. Adult Obesity Facts. Centers for Disease Control and Prevention. Accessed February 15, 2023. https://www.cdc.gov/obesity/data/adult.html.

Chapter 2: Gut Feelings

1. Lichtenstein GR. Letter from the editor. Gastroenterology and Hepatology. 2013 Sep;9(9):552. PMID: 24729764; PMCID: PMC3983972.

2. Pariente N. A Field Is Born. Nature Portfolio. June 17, 2019. Accessed February 15, 2023. https://www.nature.com/articles/d42859-019-00006-2.

3. Mackowiak PA. Recycling Metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Frontiers in Public Health. 2013;1. https://doi.org/10.3389/fpubh.2013.00052.

4. Lederberg J, McCray AT. Ome SweetOmics—a genealogical treasury of words. Scientist. 2001;15(7):8.

5. Jefferson T. Thomas Jefferson to Maria Cosway, October 12, 1786. Founders Online. Accessed February 15, 2023. https://founders.archives.gov/documents/Jefferson/01-10-02-0309.

6. Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Current Opinion in Neurobiology. 2020;62:133–40. https://doi.org/10.1016/j.conb.2020.03.006.

7. North CS. Relationship of functional gastrointestinal disorders and psychiatric disorders: Implications for treatment. World Journal of Gastroenterology. 2007;13(14):2020. https://doi.org/10.3748/wjg.v13.i14.2020.

8. Mohammad S, Chandio B, Soomro AA, et al. Depression and anxiety in patients with gastroesophageal reflux disorder with and without chest pain. Cureus. Published online November 8, 2019. https://doi.org/10.7759/cureus.6103.

9. Goodwin RD. Generalized anxiety disorder and peptic ulcer disease among adults in the United States. Psychosomatic Medicine. 2002;64(6):862–66. https://doi.org/10.1097/01.psy.0000038935.67401.f3.

10. Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integrative Medicine (Encinitas, Calif.). 2014;13(6):17–22.

11. Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology. Published online July 29, 2022. https://doi.org/10.1038/s41579-022-00768-z.

12. Human Microbiome Project. National Institutes of Health. Accessed February 15, 2023. https://commonfund.nih.gov/hmp.

13. Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: A narrative review. European Journal of Clinical Nutrition. 2021;76(4):489–501. https://doi.org/10.1038/s41430-021-00991-6; Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine. 2018;216(1):20–40. https://doi.org/10.1084/jem.20180448.

14. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutrition Reviews. 2012;70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.

15. Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357(6353):802–6. https://doi.org/10.1126/science.aan4834.

16. Galley JD, Nelson MC, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiology. 2014;14(1):189. https://doi.org/10.1186/1471-2180-14-189.

17. Added Sugar Repository. Hypoglycemia Support Foundation. Accessed February 15, 2023. https://hypoglycemia.org/added-sugar-repository/.

18. Kose J, Cheung A, Fezeu LK, et al. A comparison of sugar intake between individuals with high and low trait anxiety: Results from the NutriNet-Santé study. Nutrients. 2021;13(5):1526. https://doi.org/10.3390/nu13051526.

19. Di Rienzi SC, Britton RA. Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Advances in Nutrition. 2019;11(3):616–29. https://doi.org/10.1093/advances/nmz118.

20. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harbor Perspectives in Biology. 2015 Jan 5;7(1):a020412. https://doi.org/10.1101/cshperspect.a020412.

21. Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13(6):2099. https://doi.org/10.3390/nu13062099.

22. Terry N, Margolis KG. Serotonergic mechanisms regulating the GI tract: Experimental evidence and therapeutic relevance. Gastrointestinal Pharmacology. Published online. 2016:319–42. https://doi.org/10.1007/164_2016_103.

23. Kaur H, Bose C, Mande SS. Tryptophan metabolism by gut microbiome and gut-brain-axis: An in silico analysis. Frontiers in Neuroscience. 2019;13:1365. https://doi.org/10.3389/fnins.2019.01365.

24. Moncrieff J, Cooper RE, Stockmann T, et al. The serotonin theory of depression: A systematic umbrella review of the evidence. Molecular Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01661-0.

25. Duranti S, Ruiz L, Lugli GA, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-70986-z.

26. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression—a systematic review. Clinical Psychology Review. 2021;83:101943. https://doi.org/10.1016/j.cpr.2020.101943.

27. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clinics and Practice. 2017 Sep 15;7(4):987. https://doi.org/10.4081/cp.2017.987.

28. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology. 2020;11. https://doi.org/10.3389/fendo.2020.00025; Müller B, Rasmusson AJ, Just D, et al. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosomatic Medicine. 2021 Sep 1;83(7):693–99. https://doi.org/10.1097/PSY.0000000000000965.

29. Yang B, Wei J, Ju P, Chen J. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. General Psychiatry. 2019;32(2):e100056. https://doi.org/10.1136/gpsych-2019-100056.

Chapter 3: Immune to Anxiety

1. Wigren M, Nilsson J, Kaplan MJ. Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: Common mechanisms and possible targets for intervention. Journal of Internal Medicine. 2015;278(5):494–506. https://doi.org/10.1111/joim.12357.

2. Guo M, Wang H, Xu S, et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes. 2020;11(6):1758–73. https://doi.org/10.1080/19490976.2020.1768644.

3. Ilchmann-Diounou H, Menard S. Psychological stress, intestinal barrier dysfunctions, and autoimmune disorders: An overview. Frontiers in Immunology. 2020 Aug 25;11:1823. https://doi.org/10.3389/fimmu.2020.01823.

4. Seiler A, Fagundes CP, Christian LM. The impact of everyday stressors on the immune system and health. In Choukèr A, ed. Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies. Cham: Springer International Publishing; 2020:71–92. https://doi.org/10.1007/978-3-030-16996-1_6.

5. Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy, Asthma, and Clinical Immunology. 2011;7 Suppl 1(Suppl 1):S1. https://doi.org/10.1186/1710-1492-7-S1-S1.

6. Zhang JM, An J. Cytokines, inflammation, and pain. International Anesthesiology Clinics. 2007;45(2):27–37. https://doi.org/10.1097/aia.0b013e318034194e.

7. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: Development, maturation, and clinical utilization. Frontiers in Immunology. 2018;9. https://doi.org/10.3389/fimmu.2018.01869.

8. Fowlkes A, Gaglani M, Groover K, et al. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection among frontline workers before and during B.1.617.2 (Delta) variant predominance—eight U.S. locations, December 2020–August 2021. Morbidity and Mortality Weekly Report. 2021;70(34):1167–69. https://doi.org/10.15585/mmwr.mm7034e4.

9. Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews. 2017;81(4). https://doi.org/10.1128/mmbr.00036-17.

10. Reyman M, van Houten MA, van Baarle D, et al. Impact of delivery mode–associated gut microbiota dynamics on health in the first year of life. Nature Communications. 2019;10(1). https://doi.org/10.1038/s41467-019-13014-7.

11. van den Elsen LWJ, Garssen J, Burcelin R, Verhasselt V. Shaping the gut microbiota by breastfeeding: The gateway to allergy prevention? Frontiers in Pediatrics. 2019 Feb 27;7:47. https://doi.org/10.3389/fped.2019.00047.

12. Zhang H, Zhang Z, Liao Y, Zhang W, Tang D. The complex link and disease between the gut microbiome and the immune system in infants. Frontiers in Cellular and Infection Microbiology. 2022;12:924119. https://doi.org/10.3389/fcimb.2022.924119.

13. Borbet TC, Pawline MB, Zhang X, et al. Influence of the early-life gut microbiota on the immune responses to an inhaled allergen. Mucosal Immunology. 2022;15:1000–1011. https://doi.org/10.1038/s41385-022-00544-5.

14. de Goffau MC, Fuentes S, van den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569–77. https://doi.org/10.1007/s00125-014-3274-0.

15. Mahana D, Trent CM, Kurtz ZD, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Medicine. 2016;8(1):48. https://doi.org/10.1186/s13073-016-0297-9.

16. Carpay NC, Kamphorst K, de Meij TGJ, Daams JG, Vlieger AM, van Elburg RM. Microbial effects of prebiotics, probiotics and synbiotics after Caesarean section or exposure to antibiotics in the first week of life: A systematic review. PLOS One. 2022;17(11):e0277405. https://doi.org/10.1371/journal.pone.0277405.

17. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021;13(3):886. https://doi.org/10.3390/nu13030886.

18. Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental and Molecular Medicine. 2017;49(5):e338. https://doi.org/10.1038/emm.2017.20.

19. Turner JR. Intestinal mucosal barrier function in health and disease. Nature Reviews. Immunology. 2009;9(11):799–809. https://doi.org/10.1038/nri2653.

20. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Research. 2020;30(6):492–506. https://doi.org/10.1038/s41422-020-0332-7.

21. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber–deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016 Nov 17;167(5):1339–53.e21. https://doi.org/10.1016/j.cell.2016.10.043.

22. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterology. 2014;14(1). https://doi.org/10.1186/s12876-014-0189-7.

23. Wang YH, Li JQ, Shi JF, et al. Depression and anxiety in relation to cancer incidence and mortality: A systematic review and meta-analysis of cohort studies. Molecular Psychiatry. 2020;25(7):1487–99. https://doi.org/10.1038/s41380-019-0595-x.

24. Alghamdi BS, Alatawi Y, Alshehri FS, Tayeb HO, Tarazi FI. Relationship between public mental health and immune status during the COVID-19 pandemic: Cross-sectional data from Saudi Arabia. Risk Management and Healthcare Policy. 2021 Apr 9;14:1439–47. https://doi.org/10.2147/RMHP.S302144.

25. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: Implications for health. Nature Reviews. Immunology. 2005;5(3):243–51. https://doi.org/10.1038/nri1571.

26. Dhabhar FS. The short-term stress response—mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Frontiers in Neuroendocrinology. 2018;49:175–92. https://doi.org/10.1016/j.yfrne.2018.03.004.

27. Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16(5):300–317. https://doi.org/10.1159/000216188.

28. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: Implications for health. Nature Reviews. Immunology. 2005;5(3):243–51. https://doi.org/10.1038/nri1571.

29. Segerstrom SC, Miller GE. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin. 2004 Jul;130(4):601–30. https://doi.org/10.1037/0033-2909.130.4.601.

30. Bae YS, Shin EC, Bae YS, Van Eden W. Editorial: Stress and immunity. Frontiers in Immunology. 2019 Feb 14;10:245. https://doi.org/10.3389/fimmu.2019.00245.

31. Hou R, Garner M, Holmes C, et al. Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: Case-controlled study. Brain, Behavior, and Immunity. 2017;62:212–18. https://doi.org/10.1016/j.bbi.2017.01.021.

32. Wingo AP, Gibson G. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder. Brain, Behavior, and Immunity. 2015;43:184–91. https://doi.org/10.1016/j.bbi.2014.09.016.

33. Vieira MM, Ferreira TB, Pacheco PA, et al. Enhanced Th17 phenotype in individuals with generalized anxiety disorder. Journal of Neuroimmunology. 2010;229(1–2):212–18. https://doi.org/10.1016/j.jneuroim.2010.07.018.

34. Jeppesen R, Benros ME. Autoimmune diseases and psychotic disorders. Frontiers in Psychiatry. 2019;10. https://doi.org/10.3389/fpsyt.2019.00131.

35. Song H, Fang F, Tomasson G, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018;319(23):2388–2400. https://doi.org/10.1001/jama.2018.7028.

Chapter 4: Inflammation on the Brain

1. Manjunatha N, Ram D. Panic disorder in general medical practice—a narrative review. Journal of Family Medicine and Primary Care. 2022 Mar;11(3):861–69. https://doi.org/10.4103/jfmpc.jfmpc_888_21.

2. Kiecolt-Glaser JK. Stress, food, and inflammation: Psychoneuroimmunology and nutrition at the cutting edge. Psychosomatic Medicine. 2010 May;72(4):365–69. Epub April 21, 2010. https://doi.org/10.1097/PSY.0b013e3181dbf489.

3. Noncommunicable Diseases. World Health Organization. Accessed February 15, 2023. https://www.who.int/health-topics/noncommunicable-diseases#tab=tab_1.

4. Pahwa R, Goyal A, Jialal I. Chronic Inflammation. StatPearls. 2022:Jan–. Updated June 19, 2022. https://www.ncbi.nlm.nih.gov/books/NBK493173/.

5. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nature Medicine. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.

6. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology. 2014 Sep 4;6(10):a016295. https://doi.org/10.1101/cshperspect.a016295. PMID: 25190079; PMCID: PMC4176007.

7. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017 Dec 14;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208. PMID: 29467962; PMCID: PMC5805548.

8. Renna ME, O’Toole MS, Spaeth PE, Lekander M, Mennin DS. The association between anxiety, traumatic stress, and obsessive-compulsive disorders and chronic inflammation: A systematic review and meta-analysis. Depression and Anxiety. 2018;35(11):1081–94. https://doi.org/10.1002/da.22790.

9. Costello H, Gould RL, Abrol E, Howard R. Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open. 2019;9(7):e027925. https://doi.org/10.1136/bmjopen-2018-027925.

10. Kennedy E, Niedzwiedz CL. The association of anxiety and stress-related disorders with C-reactive protein (CRP) within UK Biobank. Brain, Behavior, and Immunity Health. 2021;19:100410. https://doi.org/10.1016/j.bbih.2021.100410.

11. Ye Z, Kappelmann N, Moser S, et al. Role of inflammation in depression and anxiety: Tests for disorder specificity, linearity and potential causality of association in the UK Biobank. eClinicalMedicine. 2021;38:100992. https://doi.org/10.1016/j.eclinm.2021.100992.

12. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain, Behavior, and Immunity. 2020;87:901–9. https://doi.org/10.1016/j.bbi.2020.02.010.

13. Mesquita AR, Correia-Neves M, Roque S, et al. IL-10 modulates depressive-like behavior. Journal of Psychiatric Research. 2008;43(2):89–97. https://doi.org/10.1016/j.jpsychires.2008.02.004.

14. Dantzer R, O’Connor J, Freund G, et al. From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews. Neuroscience. 2008;9:46–56. https://doi.org/10.1038/nrn2297.

15. Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Frontiers in Human Neuroscience. 2017 Jun 20;11:316. https://doi.org/10.3389/fnhum.2017.00316.

16. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosomatic Medicine. 2014;76(3):181–89. https://doi.org/10.1097/PSY.0000000000000049.

17. Kiecolt-Glaser JK, McGuire L, Robles TF, Glaser R. Emotions, morbidity, and mortality: New perspectives from psychoneuroimmunology. Annual Review of Psychology. 2002;53:83–107. https://doi.org/10.1146/annurev.psych.53.100901.135217.

18. Glaser R, Robles TF, Sheridan J, Malarkey WB, Kiecolt-Glaser JK. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Archives of General Psychiatry. 2003;60(10):1009–14. https://doi.org/10.1001/archpsyc.60.10.1009.

19. Felger JC. Imaging the role of inflammation in mood and anxiety-related disorders. Current Neuropharmacology. 2018;16(5):533–58. https://doi.org/10.2174/1570159X15666171123201142.

20. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254–70. https://doi.org/10.1038/npp.2016.146.

21. Hou R, Ye G, Liu Y, et al. Effects of SSRIs on peripheral inflammatory cytokines in patients with generalized anxiety disorder. Brain, Behavior, and Immunity. 2019;81:105–10. https://doi.org/10.1016/j.bbi.2019.06.001.

22. Hu K, Sjölander A, Lu D, et al. Aspirin and other non-steroidal anti-inflammatory drugs and depression, anxiety, and stress-related disorders following a cancer diagnosis: A nationwide register-based cohort study. BMC Medicine. 2020;18(1):238. https://doi.org/10.1186/s12916-020-01709-4.

23. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. Journal of Neurochemistry. 2016 Oct;139 Suppl 2(Suppl 2):136–53. https://doi.org/10.1111/jnc.13607.

24. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50. https://doi.org/10.1007/s00213-016-4218-9.

25. León-Rodríguez A, Fernández-Arjona M del M, Grondona JM, Pedraza C, López-Ávalos MD. Anxiety-like behavior and microglial activation in the amygdala after acute neuroinflammation induced by microbial neuraminidase. Scientific Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-15617-5.

26. Wang H, He Y, Sun Z, et al. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation. 2022;19(1). https://doi.org/10.1186/s12974-022-02492-0.

27. Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Frontiers in Cellular Neuroscience. 2018;12.

28. Fontana L, Ghezzi L, Cross AH, Piccio L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. Journal of Experimental Medicine. 2021;218(2):e20190086. https://doi.org/10.1084/jem.20190086.

29. Zhou L, Chen L, Li X, Li T, Dong Z, Wang YT. Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behavioural Brain Research. 2019;364:374–82. https://doi.org/10.1016/j.bbr.2018.01.011.

30. Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food allergies among US adults. JAMA Network Open. 2019;2(1):e185630. https://doi.org/10.1001/jamanetworkopen.2018.5630.

31. Bunyavanich S, Berin MC. Food allergy and the microbiome: Current understandings and future directions. Journal of Allergy and Clinical Immunology. 2019 Dec;144(6):1468–77. https://doi.org/10.1016/j.jaci.2019.10.019. PMID: 31812181; PMCID: PMC6905201.

32. Bolte LA, Vich Vila A, Imhann F, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021;70(7):1287–98. https://doi.org/10.1136/gutjnl-2020-322670.

Chapter 5: Anxiety and Leptin, the Appetite Hormone

1. van Strien T, Gibson EL, Baños R, Cebolla A, Winkens LHH. Is comfort food actually comforting for emotional eaters? A (moderated) mediation analysis. Physiology and Behavior. 2019;211:112671. https://doi.org/10.1016/j.physbeh.2019.112671.

2. Cinti F, Cinti S. The endocrine adipose organ: A system playing a central role in COVID-19. Cells. 2022;11(13):2109. https://doi.org/10.3390/cells11132109.

3. Bouillon-Minois JB, Trousselard M, Thivel D, et al. Leptin as a biomarker of stress: A systematic review and meta-analysis. Nutrients. 2021;13(10):3350. https://doi.org/10.3390/nu13103350.

4. Tomiyama AJ, Schamarek I, Lustig RH, et al. Leptin concentrations in response to acute stress predict subsequent intake of comfort foods. Physiology and Behavior. 2012;107(1):34–39. https://doi.org/10.1016/j.physbeh.2012.04.021.

5. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019 Jan 25;12:191–98. https://doi.org/10.2147/DMSO.S182406.

6. Misch M, Puthanveetil P. The head-to-toe hormone: Leptin as an extensive modulator of physiologic systems. International Journal of Molecular Sciences. 2022;23(10):5439. https://doi.org/10.3390/ijms23105439.

7. Côté I, Green SM, Toklu HZ, et al. Differential physiological responses to central leptin overexpression in male and female rats. Journal of Neuroendocrinology. 2017 Dec;29(12):10.1111/jne.12552. https://doi.org/10.1111/jne.12552.

8. Behre HM, Simoni M, Nieschlag E. Strong association between serum levels of leptin and testosterone in men. Clinical Endocrinology. 1997;47(2):237–40. https://doi.org/10.1046/j.1365-2265.1997.2681067.x.

9. Van Harmelen V, Reynisdottir S, Eriksson P, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998;47(6):913–17. https://doi.org/10.2337/diabetes.47.6.913.

10. Dornbush S, Aeddula NR. Physiology, Leptin. StatPearls. 2022. Accessed October 14, 2022. http://www.ncbi.nlm.nih.gov/books/NBK537038/.

11. Wang W, Liu S, Li K, et al. Leptin: A potential anxiolytic by facilitation of fear extinction. CNS Neuroscience and Therapeutics. 2015;21(5):425–34. https://doi.org/10.1111/cns.12375; Liu J, Garza JC, Bronner J, Kim CS, Zhang W, Lu XY. Acute administration of leptin produces anxiolytic-like effects: A comparison with fluoxetine. Psychopharmacology. 2010;207(4):535–45. https://doi.org/10.1007/s00213-009-1684-3.

12. Gold PW. Endocrine factors in key structural and intracellular changes in depression. Trends in Endocrinology and Metabolism. 2021;32(4):212–23. https://doi.org/10.1016/j.tem.2021.01.003; Lawson EA, Miller KK, Blum JI, et al. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clinical Endocrinology. 2012;76(4):520–25. https://doi.org/10.1111/j.1365-2265.2011.04182.x.

13. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209637lbl.pdf.

14. https://pubmed.ncbi.nlm.nih.gov/19853906/.

15. Masdrakis VG, Papageorgiou C, Markianos M. Associations of plasma leptin to clinical manifestations in reproductive aged female patients with panic disorder. Psychiatry Research. 2017;255:161–66. https://doi.org/10.1016/j.psychres.2017.05.025.

16. Salerno PSV, Bastos CR, Peres A, et al. Leptin polymorphism rs3828942: Risk for anxiety disorders? European Archives of Psychiatry and Clinical Neuroscience. Published online August 16, 2019. https://doi.org/10.1007/s00406-019-01051-8.

17. Atmaca M, Tezcan E, Kuloglu M, Ustundag B. Serum leptin levels in obsessive-compulsive disorder. Psychiatry and Clinical Neurosciences. 2005;59(2):189–93. https://doi.org/10.1111/j.1440-1819.2005.01356.x.

18. Lei Y, Wang D, Bai Y, et al. Leptin enhances social motivation and reverses chronic unpredictable stress-induced social anhedonia during adolescence. Molecular Psychiatry. Published online September 22, 2022. https://doi.org/10.1038/s41380-022-01778-2.

19. Renna ME, Shrout MR, Madison AA, et al. Fluctuations in depression and anxiety predict dysregulated leptin among obese breast cancer survivors. Journal of Cancer Survivorship. 2021;15(6):847–54. https://doi.org/10.1007/s11764-020-00977-6.

20. Byrne ME, Tanofsky-Kraff M, Jaramillo M, et al. Relationships of trait anxiety and loss of control eating with serum leptin concentrations among youth. Nutrients. 2019;11(9):2198. https://doi.org/10.3390/nu11092198.

21. Farr OM, Ko BJ, Joung KE, et al. Posttraumatic stress disorder, alone or additively with early life adversity, is associated with obesity and cardiometabolic risk. Nutrition, Metabolism, and Cardiovascular Diseases. 2015;25(5):479–88. https://doi.org/10.1016/j.numecd.2015.01.007.

22. Changchien TC, Tai CM, Huang CK, Chien CC, Yen YC. Psychiatric symptoms and leptin in obese patients who were bariatric surgery candidates. Neuropsychiatric Disease and Treatment. 2015;11:2153–58. https://doi.org/10.2147/NDT.S88075.

23. Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50(12):2786–91. https://doi.org/10.2337/diabetes.50.12.2786.

24. Enriori PJ, Evans AE, Sinnayah P, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metabolism. 2007;5(3):181–94. https://doi.org/10.1016/j.cmet.2007.02.004.

25. Mendoza-Herrera K, Florio AA, Moore M, et al. The leptin system and diet: A mini review of the current evidence. Frontiers in Endocrinology. 2021;12:749050. https://doi.org/10.3389/fendo.2021.749050.

26. Shapiro A, Tümer N, Gao Y, Cheng KY, Scarpace PJ. Prevention and reversal of diet-induced leptin resistance with a sugar-free diet despite high fat content. British Journal of Nutrition. 2011;106(3):390–97. https://doi.org/10.1017/S000711451100033X.

27. Spruijt-Metz D, Belcher B, Anderson D, et al. A high-sugar/low-fiber meal compared with a low-sugar/high-fiber meal leads to higher leptin and physical activity levels in overweight Latina females. Journal of the American Dietetic Association. 2009 Jun;109(6):1058–63. https://doi.org/10.1016/j.jada.2009.03.013.

Chapter 6: The Dangers of Metabolic Disruption

1. Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: A systematic review. Journal of Psychosomatic Research. 2002;53(6):1053–60. https://doi.org/10.1016/s0022-3999(02)00417-8.

2. Li C, Barker L, Ford ES, Zhang X, Strine TW, Mokdad AH. Diabetes and anxiety in US adults: Findings from the 2006 Behavioral Risk Factor Surveillance System. Diabetic Medicine. 2008;25(7):878–81. https://doi.org/10.1111/j.1464-5491.2008.02477.x.

3. Khuwaja AK, Lalani S, Dhanani R, Azam IS, Rafique G, White F. Anxiety and depression among outpatients with type 2 diabetes: A multi-centre study of prevalence and associated factors. Diabetology and Metabolic Syndrome. 2010;2(1):72. https://doi.org/10.1186/1758-5996-2-72.

4. Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: A systematic review. Journal of Psychosomatic Research. 2002;53(6):1053–60. https://doi.org/10.1016/s0022-3999(02)00417-8.

5. Esposito K, Giugliano D. The metabolic syndrome and inflammation: Association or causation? Nutrition, Metabolism and Cardiovascular Diseases. 2004;14(5):228–32. https://doi.org/10.1016/s0939-4753(04)80048-6.

6. Araújo J, Cai J, Stevens J. Prevalence of optimal metabolic health in American adults: National Health and Nutrition Examination Survey 2009–2016. Metabolic Syndrome and Related Disorders. 2019;17(1):46–52. https://doi.org/10.1089/met.2018.0105.

7. Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA. 2020;323(24):2526–28. https://doi.org/10.1001/jama.2020.4501.

8. National Diabetes Statistics Report. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed January 10, 2023.

9. Humer E, Pieh C, Probst T. Metabolomic biomarkers in anxiety disorders. International Journal of Molecular Sciences. 2020;21(13):4784. https://doi.org/10.3390/ijms21134784.

10. Peter H, Goebel P, Müller S, Hand I. Clinically relevant cholesterol elevation in anxiety disorders: A comparison with normal controls. International Journal of Behavioral Medicine. 1999;6(1):30–39. https://doi.org/10.1207/s15327558ijbm0601_3.

11. Han A. Association between lipid ratio and depression: A cross-sectional study. Scientific Reports. 2022;12:6190. https://doi.org/10.1038/s41598-022-10350-5.

12. Cruz JN da, Magro DDD, Lima DD de, Cruz JGP da. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N-methyl-D-aspartate receptor in anxiety: A literature review. Brazilian Journal of Pharmaceutical Sciences. 2017;53(1). https://doi.org/10.1590/s2175-97902017000116102.

13. Koorneef LL, Bogaards M, Reinders MJT, Meijer OC, Mahfouz A. How metabolic state may regulate fear: Presence of metabolic receptors in the fear circuitry. Frontiers in Neuroscience. 2018;12:594. https://doi.org/10.3389/fnins.2018.00594.

14. Kahl KG, Schweiger U, Correll C, et al. Depression, anxiety disorders, and metabolic syndrome in a population at risk for type 2 diabetes mellitus. Brain and Behavior. 2015;5(3):e00306. https://doi.org/10.1002/brb3.306.

15. Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: A systematic review and meta-analysis. International Journal of Obesity. 2010;34(3):407–19. https://doi.org/10.1038/ijo.2009.252.

16. Labenz C, Huber Y, Michel M, et al. Nonalcoholic fatty liver disease increases the risk of anxiety and depression. Hepatology Communications. 2020;4(9):1293–1301. https://doi.org/10.1002/hep4.1541.

17. Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: Relationship and cellular pathways. Oxidative Medicine and Cellular Longevity. 2009 Apr–Jun;2(2):63–67. https://doi.org/10.4161/oxim.2.2.7944. PMID: 20357926; PMCID: PMC2763246.

18. Ryan KK. Stress and Metabolic Disease. Washington, DC: National Academies Press; 2014. Accessed October 31, 2022. https://www.ncbi.nlm.nih.gov/books/NBK242443/.

19. de Kluiver H, Jansen R, Milaneschi Y, et al. Metabolomic profiles discriminating anxiety from depression. Acta Psychiatrica Scandinavica. 2021;144(2):178–93. https://doi.org/10.1111/acps.13310.

20. Needham BD, Funabashi M, Adame MD, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature. 2022;602(7898):647–53. https://doi.org/10.1038/s41586-022-04396-8.

21. Martin AM, Sun EW, Rogers GB, Keating DJ. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Frontiers in Physiology. 2019;10:428. https://doi.org/10.3389/fphys.2019.00428.

22. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota metabolism and interaction with food components. International Journal of Molecular Sciences. 2020 May 23;21(10):3688. https://doi.org/10.3390/ijms21103688; Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nature Reviews. Microbiology. 2021;19(1):55–71. https://doi.org/10.1038/s41579-020-0433-9.

23. Fukao A, Takamatsu J, Arishima T, et al. Graves’ disease and mental disorders. Journal of Clinical and Translational Endocrinology. 2020;19. https://doi.org/10.1016/j.jcte.2019.100207.

24. Vásquez-Alvarez S, Bustamante-Villagomez SK, Vazquez-Marroquin G, et al. Metabolic age, an index based on basal metabolic rate, can predict individuals that are high risk of developing metabolic syndrome. High Blood Pressure and Cardiovascular Prevention. 2021;28(3):263–70. https://doi.org/10.1007/s40292-021-00441-1.

25. Troisi A, Moles A, Panepuccia L, Lo Russo D, Palla G, Scucchi S. Serum cholesterol levels and mood symptoms in the postpartum period. Psychiatry Research. 2002;109(3):213–19. https://doi.org/10.1016/s0165-1781(02)00020-3.

Chapter 7: Macronutrients

1. La Berge AF. How the ideology of low fat conquered America. Journal of the History of Medicine and Allied Sciences. 2008;63(2):139–77. https://doi.org/10.1093/jhmas/jrn001.

2. Oh R, Gilani B, Uppaluri KR. Low Carbohydrate Diet. StatPearls. July 11, 2022. https://www.ncbi.nlm.nih.gov/books/NBK537084/.

3. Wheatley SD, Deakin TA, Arjomandkhah NC, Hollinrake PB, Reeves TE. Low carbohydrate dietary approaches for people with type 2 diabetes—a narrative review. Frontiers in Nutrition. 2021;8:687658. https://doi.org/10.3389/fnut.2021.687658.

4. Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutrition and Diabetes. 2017;7(3):e256. https://doi.org/10.1038/nutd.2017.3.

5. Chang CY, Ke DS, Chen JY. Essential fatty acids and human brain. Acta Neurologica Taiwanica. 2009;18(4):231–41.

6. Ventriglio A, Sancassiani F, Contu MP, et al. Mediterranean diet and its benefits on health and mental health: A literature review. Clinical Practice and Epidemiology in Mental Health. 2020 Jul 30;16(Suppl 1):156–64. https://doi.org/10.2174/1745017902016010156.

7. Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. International Journal of Molecular Sciences. 2020 Jun 8;21(11):4093. https://doi.org/10.3390/ijms21114093.

8. Rocha DM, Bressan J, Hermsdorff HH. The role of dietary fatty acid intake in inflammatory gene expression: A critical review. Sao Paulo Medical Journal. 2017;135(2):157–68. https://doi.org/10.1590/1516-3180.2016.008607072016.

9. Sheashea M, Xiao J, Farag MA. MUFA in metabolic syndrome and associated risk factors: Is MUFA the opposite side of the PUFA coin? Food and Function. 2021;12(24):12221–34. https://doi.org/10.1039/d1fo00979f.

10. Fatemi F, Siassi F, Qorbani M, Sotoudeh G. Higher dietary fat quality is associated with lower anxiety score in women: A cross-sectional study. Annals of General Psychiatry. 2020 Feb 26;19:14. https://doi.org/10.1186/s12991-020-00264-9. PMID: 32127909; PMCID: PMC7045483.

11. Wolfe AR, Ogbonna EM, Lim S, Li Y, Zhang J. Dietary linoleic and oleic fatty acids in relation to severe depressed mood: 10 years follow-up of a national cohort. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2009;33(6):972–77. https://doi.org/10.1016/j.pnpbp.2009.05.002.

12. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2018;132:41–48. https://doi.org/10.1016/j.plefa.2018.03.004.

13. DiNicolantonio JJ, O’Keefe JH. The importance of marine omega-3s for brain development and the prevention and treatment of behavior, mood, and other brain disorders. Nutrients. 2020 Aug 4;12(8):2333. https://doi.org/10.3390/nu12082333.

14. Su KP, Tseng PT, Lin PY, et al. Association of use of omega-3 polyunsaturated fatty acids with changes in severity of anxiety symptoms: A systematic review and meta-analysis. JAMA Network Open. 2018 Sep 7;1(5):e182327. https://doi.org/10.1001/jamanetworkopen.2018.2327; Yang R, Wang L, Jin K, et al. Omega-3 polyunsaturated fatty acids supplementation alleviate anxiety rather than depressive symptoms among first-diagnosed, drug-naïve major depressive disorder patients: A randomized clinical trial. Frontiers in Nutrition. 2022 Jul 12;9:876152; Su KP, Tseng PT, Lin PY, et al. Association of use of omega-3 polyunsaturated fatty acids with changes in severity of anxiety symptoms: A systematic review and meta-analysis. JAMA Network Open. 2018 Sep 7;1(5):e182327. https://doi.org/10.1001/jamanetworkopen.2018.2327; Polokowski AR, Shakil H, Carmichael CL, Reigada LC. Omega-3 fatty acids and anxiety: A systematic review of the possible mechanisms at play. Nutritional Neuroscience. 2018;23(7):494–504. https://doi.org/10.1080/1028415x.2018.1525092.

15. 7 Things to Know about Omega-3 Fatty Acids. National Center for Complementary and Integrative Health. https://www.nccih.nih.gov/health/tips/things-to-know-about-omega-fatty-acids.

16. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotherapy. 2002;56(8):365–79. https://doi.org/10.1016/s0753-3322(02)00253-6.

17. Yehuda S, Rabinovitz S, Mostofsky DI. Mixture of essential fatty acids lowers test anxiety. Nutritional Neuroscience. 2005;8(4):265–67. https://doi.org/10.1080/10284150500445795.

18. Nakajima S, Fukasawa K, Gotoh M, Murakami-Murofushi K, Kunugi H. Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level. International Journal of Obesity. 2020;44(3):727–38. https://doi.org/10.1038/s41366-019-0468-z.

19. Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health. Frontiers in Neuroscience. 2019 Mar 26;13:265. https://doi.org/10.3389/fnins.2019.00265.

20. Astrup A, Magkos F, Bier DM, et al. Saturated fats and health: A reassessment and proposal for food-based recommendations. Journal of the American College of Cardiology. 2020;76(7):844–57. https://doi.org/10.1016/j.jacc.2020.05.077.

21. Dhaka V, Gulia N, Ahlawat KS, Khatkar BS. Trans fats—sources, health risks and alternative approach—a review. Journal of Food Science and Technology. 2011 Oct;48(5):534–41. https://doi.org/10.1007/s13197-010-0225-8.

22. Mozaffarian D. Trans fatty acids—effects on systemic inflammation and endothelial function. Atherosclerosis Supplements. 2006;7(2):29–32. https://doi.org/10.1016/j.atherosclerosissup.2006.04.007.

23. Pase CS, Roversi K, Trevizol F, et al. Influence of perinatal trans fat on behavioral responses and brain oxidative status of adolescent rats acutely exposed to stress. Neuroscience. 2013;247:242–52. https://doi.org/10.1016/j.neuroscience.2013.05.053; Meichtry LB, Poetini MR, Dahleh MMM, et al. Addition of saturated and trans-fatty acids to the diet induces depressive and anxiety-like behaviors in drosophila melanogaster. Neuroscience. 2020;443:164–75.

24. Hashemi S, Amani R, Cheraghian B, Neamatpour S. Stress and anxiety levels are associated with erythrocyte fatty acids content in young women. Iranian Journal of Psychiatry. 2020 Jan;15(1):47–54. PMID: 32377214; PMCID: PMC7193237; Ford PA, Jaceldo-Siegl K, Lee JW, Tonstad S. Trans fatty acid intake is related to emotional affect in the Adventist Health Study-2. Nutrition Research. 2016 Jun;36(6):509–17. https://doi.org/10.1016/j.nutres.2016.01.005;2.

25. Aucoin M, LaChance L, Naidoo U, et al. Diet and anxiety: A scoping review. Nutrients. 2021 Dec 10;13(12):4418. https://doi.org/10.3390/nu13124418. PMID: 34959972; PMCID: PMC8706568.

26. Aucoin M, Bhardwaj S. Generalized anxiety disorder and hypoglycemia symptoms improved with diet modification. Case Reports in Psychiatry. 2016;2016:7165425. https://doi.org/10.1155/2016/7165425.

27. Gangwisch JE, Hale L, Garcia L, et al. High glycemic index diet as a risk factor for depression: Analyses from the Women’s Health Initiative. American Journal of Clinical Nutrition. 2015 Aug;102(2):454–63. https://doi.org/10.3945/ajcn.114.103846.

28. Kim Y, Chen J, Wirth MD, Shivappa N, Hebert JR. Lower dietary inflammatory index scores are associated with lower glycemic index scores among college students. Nutrients. 2018 Feb 7;10(2):182. https://doi.org/10.3390/nu10020182.

29. Campbell GJ, Senior AM, Bell-Anderson KS. Metabolic effects of high glycaemic index diets: A systematic review and meta-analysis of feeding studies in mice and rats. Nutrients. 2017 Jun 22;9(7):646. https://doi.org/10.3390/nu9070646.

30. Saghafian F, Sharif N, Saneei P, et al. Consumption of dietary fiber in relation to psychological disorders in adults. Frontiers in Psychiatry. 2021 Jun 24;12:587468. https://doi.org/10.3389/fpsyt.2021.587468.

31. Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutrition Reviews. 2020;78(5):394–411. https://doi.org/10.1093/nutrit/nuz072.

32. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: A meta-analysis. American Journal of Clinical Nutrition. 1999;69(1):30–42. https://doi.org/10.1093/ajcn/69.1.30.

33. Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition. 2018 Jan 29;2(3):nzy005. https://doi.org/10.1093/cdn/nzy005. PMID: 30019028; PMCID: PMC6041804.

34. Myhrstad MCW, Tunsjø H, Charnock C, Telle-Hansen VH. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients. 2020 Mar 23;12(3):859. https://doi.org/10.3390/nu12030859.

35. Fiber. The Nutrition Source. Harvard T.H. Chan School of Public Health. Accessed February 16, 2023. https://www.hsph.harvard.edu/nutritionsource/carbohydrates/fiber/.

36. Kose J, Cheung A, Fezeu LK, et al. A comparison of sugar intake between individuals with high and low trait anxiety: Results from the NutriNet-Santé study. Nutrients. 2021 Apr 30;13(5):1526. https://doi.org/10.3390/nu13051526. PMID: 33946586; PMCID: PMC8147234.

37. Westover AN, Marangell LB. A cross-national relationship between sugar consumption and major depression? Depression and Anxiety. 2002;16(3):118–20. https://doi.org/10.1002/da.10054.

38. Alam YH, Kim R, Jang C. Metabolism and health impacts of dietary sugars. Journal of Lipid and Atherosclerosis. 2022;11(1):20–38. https://doi.org/10.12997/jla.2022.11.1.20.

39. Satokari R. High intake of sugar and the balance between pro- and anti-inflammatory gut bacteria. Nutrients. 2020 May 8;12(5):1348. https://doi.org/10.3390/nu12051348.

40. Jacques A, Chaaya N, Beecher K, Ali SA, Belmer A, Bartlett S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neuroscience and Biobehavioral Reviews. 2019;103:178–99. https://doi.org/10.1016/j.neubiorev.2019.05.021.

41. https://www.who.int/news/item/14-07-2023-aspartame-hazard-and-risk-assessment-results-released.

42. Okasha EF. Effect of long term-administration of aspartame on the ultrastructure of sciatic nerve. Journal of Microscopy and Ultrastructure. 2016 Oct–Dec;4(4):175–83. https://doi.org/10.1016/j.jmau.2016.02.001.

43. Choudhary AK, Lee YY. Neurophysiological symptoms and aspartame: What is the connection? Nutrition Neuroscience. 2018;21(5):306–16. https://doi.org/10.1080/1028415X.2017.1288340.

44. Norwitz NG, Naidoo U. Nutrition as metabolic treatment for anxiety. Frontiers in Psychiatry. 2021;12. https://doi.org/10.3389/fpsyt.2021.598119.

45. de Lorgeril M, Salen P. Gluten and wheat intolerance today: Are modern wheat strains involved? International Journal of Food Sciences and Nutrition. 2014;65(5):577–81. https://doi.org/10.3109/09637486.2014.886185.

46. Clappison E, Hadjivassiliou M, Zis P. Psychiatric manifestations of coeliac disease, a systematic review and meta-analysis. Nutrients. 2020;12(1):142. https://doi.org/10.3390/nu12010142.

47. Casella G, Pozzi R, Cigognetti M, et al. Mood disorders and non-celiac gluten sensitivity. Minerva Gastroenterology. 2017;63(1):32–37. https://doi.org/10.23736/S1121-421X.16.02325-4.

48. Khanna P, Aeri BT. Association of quantity and quality of protein intake with depression and anxiety symptoms among adolescent boys and girls (13–15 years) studying in public schools of Delhi. Journal of Nutritional Science and Vitaminology. 2020;66(Supp):S141–S148. https://doi.org/10.3177/jnsv.66.S141.

49. Leitzmann C. Vegetarian nutrition: Past, present, future. American Journal of Clinical Nutrition. 2014;100 Suppl 1:496S–502S. https://doi.org/10.3945/ajcn.113.071365.

50. Forgrieve J. The Growing Acceptance of Veganism. Forbes. November 2, 2018. https://www.forbes.com/sites/janetforgrieve/2018/11/02/picturing-a-kindler-gentler-world-vegan-month/?sh=44639a4f2f2b.

51. Varian E. It’s called “plant-based,” look it up. New York Times. December 28, 2019. https://www.nytimes.com/2019/12/28/style/plant-based-diet.html.

52. Dobersek U, Teel K, Altmeyer S, Adkins J, Wy G, Peak J. Meat and mental health: A meta-analysis of meat consumption, depression, and anxiety. Published online ahead of print, October 6, 2021. Critical Reviews in Food Science and Nutrition. 2021;1–18. https://doi.org/10.1080/10408398.2021.1974336.

53. Beezhold B, Radnitz C, Rinne A, DiMatteo J. Vegans report less stress and anxiety than omnivores. Nutritional Neuroscience. 2015;18(7):289–96. https://doi.org/10.1179/1476830514Y.0000000164.

54. Bègue L, Shankland R. Is vegetarianism related to anxiety and depression? A cross-sectional survey in a French sample. Journal of Health, Population and Nutrition. 2022;41(18). https://doi.org/10.1186/s41043-022-00300-2.

55. Lee MF, Eather R, Best T. Plant-based dietary quality and depressive symptoms in Australian vegans and vegetarians: A cross-sectional study. BMJ Nutrition, Prevention and Health. 2021;e000332. https://doi.org/10.1136/bmjnph-2021-000332.

56. Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016 Jan 20;8(1):56. https://doi.org/10.3390/nu8010056.

57. Lindseth G, Helland B, Caspers J. The effects of dietary tryptophan on affective disorders. Archives of Psychiatric Nursing. 2015 Apr;29(2):102–7. https://doi.org/10.1016/j.apnu.2014.11.008.

58. Wurtman RJ, Hefti F, Melamed E. Precursor control of neurotransmitter synthesis. Pharmacological Reviews. 1980;32(4):315–35.

59. Hudson C, Hudson S, MacKenzie J. Protein-source tryptophan as an efficacious treatment for social anxiety disorder: A pilot study. Canadian Journal of Physiology and Pharmacology. 2007;85(9):928–32. https://doi.org/10.1139/Y07-082.

60. Schopman SME, Bosman RC, Muntingh ADT, et al. Effects of tryptophan depletion on anxiety, a systematic review. Translational Psychiatry. 2021;11(118). https://doi.org/10.1038/s41398-021-01219-8.

61. Zanfirescu A, Ungurianu A, Tsatsakis AM, et al. A review of the alleged health hazards of monosodium glutamate [published correction appears in Comprehensive Reviews in Food Science and Food Safety. 2020 Jul;19(4):2330]. Comprehensive Reviews in Food Science and Food Safety. 2019;18(4):1111–34. https://doi.org/10.1111/1541-4337.12448.

62. Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate systems in DSM-5 anxiety disorders: Their role and a review of glutamate and GABA psychopharmacology. Frontiers in Psychiatry. 2020;11:548505.

63. Onaolapo OJ, Aremu OS, Onaolapo AY. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2017;390(7):677–89. https://doi.org/10.1007/s00210-017-1371-6.

64. Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicology Reports. 2021;8:938–61. https://doi.org/10.1016/j.toxrep.2021.04.009.

Chapter 8: Micronutrients

1. Lopresti AL. The effects of psychological and environmental stress on micronutrient concentrations in the body: A review of the evidence. Advances in Nutrition. 2020;11(1):103–12. https://doi.org/10.1093/advances/nmz082.

2. Petroski W, Minich DM. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients. 2020 Sep 24;12(10):2929. https://doi.org/10.3390/nu12102929.

3. Schlemmer U, Frølich W, Prieto RM, Grases F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition and Food Research. 2009;53 Suppl 2:S330–S375. https://doi.org/10.1002/mnfr.200900099.

4. Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition. 2020;2(1). https://doi.org/10.1186/s43014-020-0020-5.

5. Dwyer JT, Wiemer KL, Dary O, et al. Fortification and health: Challenges and opportunities. Advances in Nutrition. 2015 Jan 15;6(1):124–31. https://doi.org/10.3945/an.114.007443.

6. Young LM, Pipingas A, White DJ, Gauci S, Scholey A. A systematic review and meta-analysis of B vitamin supplementation on depressive symptoms, anxiety, and stress: Effects on healthy and “at-risk” individuals. Nutrients. 2019;11(9):2232. https://doi.org/10.3390/nu11092232.

7. Blasko I, Hinterberger M, Kemmler G, et al. Conversion from mild cognitive impairment to dementia: Influence of folic acid and vitamin B12 use in the VITA cohort. Journal of Nutrition, Health and Aging. 2012;16(8):687–94. https://doi.org/10.1007/s12603-012-0051-y; Tangney CC, Aggarwal NT, Li H, et al. Vitamin B12, cognition, and brain MRI measures: A cross-sectional examination. Neurology. 2011;77(13):1276–82. https://doi.org/10.1212/WNL.0b013e3182315a33.

8. Mahdavifar B, Hosseinzadeh M, Salehi-Abargouei A, Mirzaei M, Vafa M. Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. Journal of Affective Disorders. 2021;288:92–98. https://doi.org/10.1016/j.jad.2021.03.055.

9. Field DT, Cracknell RO, Eastwood JR, et al. High-dose vitamin B6 supplementation reduces anxiety and strengthens visual surround suppression. Human Psychopharmacology. 2022;37(6):e2852. https://doi.org/10.1002/hup.2852.

10. Moore K, Hughes CF, Hoey L, et al. B-vitamins in relation to depression in older adults over 60 years of age: The Trinity Ulster Department of Agriculture (TUDA) Cohort Study. Journal of the American Medical Directors Association. 2019;20(5):551–57.e1. https://doi.org/10.1016/j.jamda.2018.11.031.

11. Young LM, Pipingas A, White DJ, Gauci S, Scholey A. A systematic review and meta-analysis of B vitamin supplementation on depressive symptoms, anxiety, and stress: Effects on healthy and “at-risk” individuals. Nutrients. 2019;11(9):2232. https://doi.org/10.3390/nu11092232.

12. B Vitamins. The Nutrition Source. Harvard T.H. Chan School of Public Health. Accessed February 16, 2023. https://www.hsph.harvard.edu/nutritionsource/vitamins/vitamin-b/.

13. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic Reviews. 2013;2013(1):CD000980. https://doi.org/10.1002/14651858.CD000980.pub4.

14. Harrison FE, May JM. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radical Biology and Medicine. 2009 Mar 15;46(6):719–30. https://doi.org/10.1016/j.freeradbiomed.2008.12.018.

15. Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: A systematic review. BMC Psychiatry. 2020;20:315. https://doi.org/10.1186/s12888-020-02730-w.

16. Sim M, Hong S, Jung S, et al. Vitamin C supplementation promotes mental vitality in healthy young adults: Results from a cross-sectional analysis and a randomized, double-blind, placebo-controlled trial. European Journal of Nutrition. 2022;61(1):447–59. https://doi.org/10.1007/s00394-021-02656-3.

17. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. Journal of Nutritional Biochemistry. 2020;85:108459. https://doi.org/10.1016/j.jnutbio.2020.108459.

18. de Oliveira IJ, de Souza VV, Motta V, Da-Silva SL. Effects of oral vitamin C supplementation on anxiety in students: A double-blind, randomized, placebo-controlled trial. Pakistan Journal of Biological Sciences. 2015;18(1):11–18. https://doi.org/10.3923/pjbs.2015.11.18.

19. Vitamin C. The Nutrition Source. Harvard T.H. Chan School of Public Health. Accessed February 16, 2023. https://www.hsph.harvard.edu/nutritionsource/vitamin-c/.

20. Ginde AA, Liu MC, Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Archives of Internal Medicine. 2009;169(6):626–32. https://doi.org/10.1001/archinternmed.2008.604.

21. Soni M, Kos K, Lang IA, Jones K, Melzer D, Llewellyn DJ. Vitamin D and cognitive function. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum. 2012;243:79–82. https://doi.org/10.3109/00365513.2012.681969.

22. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role of vitamin D in brain health: A mini literature review. Cureus. 2018 Jul 10;10(7):e2960. https://doi.org/10.7759/cureus.2960.

23. Cheng YC, Huang YC, Huang WL. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depression and Anxiety. 2020;37(6):549–64. https://doi.org/10.1002/da.23025.

24. Bičíková M, Dušková M, Vítků J, et al. Vitamin D in anxiety and affective disorders. Physiological Research. 2015;64(Suppl 2):S101–S103. https://doi.org/10.33549/physiolres.933082.

25. Zhu C, Zhang Y, Wang T, et al. Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency. Brain and Behavior. 2020;10(11):e01760. https://doi.org/10.1002/brb3.1760.

26. Eid A, Khoja S, AlGhamdi S, et al. Vitamin D supplementation ameliorates severity of generalized anxiety disorder (GAD). Metabolic Brain Disease. 2019;34(6):1781–86. https://doi.org/10.1007/s11011-019-00486-1.

27. Armstrong DJ, Meenagh GK, Bickle I, Lee AS, Curran ES, Finch MB. Vitamin D deficiency is associated with anxiety and depression in fibromyalgia. Clinical Rheumatology. 2007;26(4):551–54. https://doi.org/10.1007/s10067-006-0348-5.

28. Norwitz NG, Naidoo U. Nutrition as metabolic treatment for anxiety. Frontiers in Psychiatry. 2021;12:598119. https://doi.org/10.3389/fpsyt.2021.598119.

29. La Fata G, Weber P, Mohajeri MH. Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients. 2014 Nov 28;6(12):5453–72. https://doi.org/10.3390/nu6125453.

30. Terada Y, Ohashi H, Otani Y, Tokunaga K, Takenaka A. Increased anxiety-like behaviour is an early symptom of vitamin E deficiency that is suppressed by adrenalectomy in rats. British Journal of Nutrition. 2021;125(11):1310–19. https://doi.org/10.1017/S0007114520001889.

31. Lee ARYB, Tariq A, Lau G, Tok NWK, Tam WWS, Ho CSH. Vitamin E, alpha-tocopherol, and its effects on depression and anxiety: A systematic review and meta-analysis. Nutrients. 2022 Feb 3;14(3):656. https://doi.org/10.3390/nu14030656.

32. Traber MG. Vitamin E inadequacy in humans: Causes and consequences. Advances in Nutrition. 2014;5(5):503–14. https://doi.org/10.3945/an.114.006254.

33. Du C, Hsiao PY, Ludy MJ, Tucker RM. Relationships between dairy and calcium intake and mental health measures of higher education students in the United States: Outcomes from moderation analyses. Nutrients. 2022 Feb 12;14(4):775. https://doi.org/10.3390/nu14040775.

34. Alkhatatbeh MJ, Khwaileh HN, Abdul-Razzak KK. High prevalence of low dairy calcium intake and association with insomnia, anxiety, depression and musculoskeletal pain in university students from Jordan. Public Health Nutrition. 2021;24(7):1778–1786. https://doi.org/10.1017/S1368980020002888.

35. Alkhatatbeh MJ, Abdul-Razzak KK, Khwaileh HN. Poor sleep quality among young adults: The role of anxiety, depression, musculoskeletal pain, and low dietary calcium intake. Perspectives in Psychiatric Care. 2021;57(1):117–28. https://doi.org/10.1111/ppc.12533.

36. Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. Journal of Nutritional Biochemistry. 2014 Nov;25(11):1101–7. https://doi.org/10.1016/j.jnutbio.2014.07.003.

37. Chen MH, Su TP, Chen YS, et al. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: A nationwide population-based study. BMC Psychiatry. 2013;13:161. https://doi.org/10.1186/1471-244X-13-161.

38. Shah HE, Bhawnani N, Ethirajulu A, et al. Iron deficiency–induced changes in the hippocampus, corpus striatum, and monoamines levels that lead to anxiety, depression, sleep disorders, and psychotic disorders. Cureus. 2021 Sep 20;13(9):e18138. https://doi.org/10.7759/cureus.

39. Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. Journal of Nutritional Biochemistry. 2014 Nov;25(11):1101–7. https://doi.org/10.1016/j.jnutbio.2014.07.003.

40. Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World Journal of Diabetes. 2015 Aug 25;6(10):1152–57. https://doi.org/10.4239/wjd.v6.i10.1152.

41. Hu L, Bai Y, Hu G, Zhang Y, Han X, Li J. Association of dietary magnesium intake with leukocyte telomere length in United States middle-aged and elderly adults. Frontiers in Nutrition. 2022;9:840804. https://doi.org/10.3389/fnut.2022.840804.

42. Botturi A, Ciappolino V, Delvecchio G, Boscutti A, Viscardi B, Brambilla P. The role and the effect of magnesium in mental disorders: A systematic review. Nutrients. 2020 Jun 3;12(6):1661. https://doi.org/10.3390/nu12061661.

43. Jacka FN, Overland S, Stewart R, Tell GS, Bjelland I, Mykletun A. Association between magnesium intake and depression and anxiety in community-dwelling adults: The Hordaland Health Study. Australian and New Zealand Journal of Psychiatry. 2009;43(1):45–52. https://doi.org/10.1080/00048670802534408; Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Medical Hypotheses. 2006;67(2):362–70. https://doi.org/10.1016/j.mehy.2006.01.047.

44. Pickering G, Mazur A, Trousselard M, et al. Magnesium status and stress: The vicious circle concept revisited. Nutrients. 2020 Nov 28;12(12):3672. https://doi.org/10.3390/nu12123672.

45. Boyle NB, Lawton C, Dye L. The effects of magnesium supplementation on subjective anxiety and stress—a systematic review. Nutrients. 2017 Apr 26;9(5):429. https://doi.org/10.3390/nu9050429.

46. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academies Press; 1997. Accessed November 20, 2022. http://www.ncbi.nlm.nih.gov/books/NBK109825/.

47. Balachandran RC, Mukhopadhyay S, McBride D, et al. Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry. 2020 May 8;295(19):6312–29. https://doi.org/10.1074/jbc.REV119.009453.

48. Takeda A. Manganese action in brain function. Brain Research. Brain Research Reviews. 2003;41(1):79–87. https://doi.org/10.1016/s0165-0173(02)00234-5.

49. Ye Q, Kim J. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis. Environmental Toxicology and Pharmacology. 2015 Jul;40(1):333–41. https://doi.org/10.1016/j.etap.2015.06.016; Bowler RM, Mergler D, Sassine MP, Larribe F, Hudnell K. Neuropsychiatric effects of manganese on mood. Neurotoxicology. 1999;20(2–3):367–78.

50. Choi S, Hong DK, Choi BY, Suh SW. Zinc in the brain: Friend or foe? International Journal of Molecular Sciences. 2020 Nov 25;21(23):8941. https://doi.org/10.3390/ijms21238941.

51. Takeda A, Tamano H, Nishio R, Murakami T. Behavioral abnormality induced by enhanced hypothalamo-pituitary-adrenocortical axis activity under dietary zinc deficiency and its usefulness as a model. International Journal of Molecular Sciences. 2016 Jul 16;17(7):1149. https://doi.org/10.3390/ijms17071149.

52. Cope EC, Levenson CW. Role of zinc in the development and treatment of mood disorders. Current Opinion in Clinical Nutrition and Metabolic Care. 2010;13(6):685–89. https://doi.org/10.1097/MCO.0b013e32833df61a.

53. Russo AJ. Decreased zinc and increased copper in individuals with anxiety. Nutrition and Metabolic Insights. 2011;4:1–5. https://doi.org/10.4137/NMI.S6349.

54. Tahmasebi K, Amani R, Nazari Z, Ahmadi K, Moazzen S, Mostafavi SA. Association of mood disorders with serum zinc concentrations in adolescent female students. Biological Trace Element Research. 2017;178(2):180–88. https://doi.org/10.1007/s12011-016-0917-7.

55. Anbari-Nogyni Z, Bidaki R, Madadizadeh F, et al. Relationship of zinc status with depression and anxiety among elderly population. Clinical Nutrition ESPEN. 2020;37:233–39. https://doi.org/10.1016/j.clnesp.2020.02.008.

56. Li N, Zhao G, Wu W, et al. The efficacy and safety of vitamin C for iron supplementation in adult patients with iron deficiency anemia: A randomized clinical trial. JAMA Network Open. 2020 Nov 2;3(11):e2023644. https://doi.org/10.1001/jamanetworkopen.2020.23644.

57. de Oliveira MR, Silvestrin RB, Mello E, Souza T, Moreira JC. Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: Effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology. 2007;28(6):1191–99. https://doi.org/10.1016/j.neuro.2007.07.008.

58. Gancheva SM, Zhelyazkova-Savova MD. Vitamin K2 improves anxiety and depression but not cognition in rats with metabolic syndrome: A role of blood glucose? Folia Medica. 2016;58(4):264–72. https://doi.org/10.1515/folmed-2016-0032.

59. Russo AJ. Decreased zinc and increased copper in individuals with anxiety. Nutrition and Metabolic Insights. 2011;4:1–5. https://doi.org/10.4137/NMI.S6349.

60. Portnoy J, Wang J, Wang F, et al. Lower serum selenium concentration associated with anxiety in children. Journal of Pediatric Nursing. 2022;63:e121–e126. https://doi.org/10.1016/j.pedn.2021.09.026.

Chapter 9: Bioactives and Herbal Medicine

1. von Känel R, Kasper S, Bondolfi G, et al. Therapeutic effects of Silexan on somatic symptoms and physical health in patients with anxiety disorders: A meta-analysis. Brain and Behavior. 2021;11(4):e01997. https://doi.org/10.1002/brb3.1997.

2. Malcolm BJ, Tallian K. Essential oil of lavender in anxiety disorders: Ready for prime time? Mental Health Clinician. 2018 Mar 26;7(4):147–55. https://doi.org/10.9740/mhc.2017.07.147.

3. Kasper S, Müller WE, Volz HP, Möller HJ, Koch E, Dienel A. Silexan in anxiety disorders: Clinical data and pharmacological background. World Journal of Biological Psychiatry. 2018;19(6):412–20. https://www.tandfonline.com/doi/full/10.1080/15622975.2017.1331046.

4. Baldinger P, Höflich AS, Mitterhauser M, et al. Effects of Silexan on the serotonin-1A receptor and microstructure of the human brain: A randomized, placebo-controlled, double-blind, cross-over study with molecular and structural neuroimaging. International Journal of Neuropsychopharmacology. 2014;18(4):pyu063. https://doi.org/10.1093/ijnp/pyu063.

5. Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. Journal of Nutritional Science. 2016 Dec 29;5:e47. https://doi.org/10.1017/jns.2016.41. PMID: 28620474; PMCID: PMC5465813.

6. Gomez-Pinilla F, Nguyen TT. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience. 2012 May;15(3):127–33. https://doi.org/10.1179/1476830511Y.0000000035.

7. Wang X, Yu J, Zhang X. Dietary polyphenols as prospective natural-compound depression treatment from the perspective of intestinal microbiota regulation. Molecules. 2022;27(21):7637. https://doi.org/10.3390/molecules27217637.

8. Lin K, Li Y, Toit ED, Wendt L, Sun J. Effects of polyphenol supplementations on improving depression, anxiety, and quality of life in patients with depression. Frontiers in Psychiatry. 2021;12:765485. https://doi.org/10.3389/fpsyt.2021.765485.

9. Jia S, Hou Y, Wang D, Zhao X. Flavonoids for depression and anxiety: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. Published online April 9, 2022:1–11. https://doi.org/10.1080/10408398.2022.2057914.

10. Ocean N, Howley P, Ensor J. Lettuce be happy: A longitudinal UK study on the relationship between fruit and vegetable consumption and well-being. Social Science and Medicine. 2019;222:335–45. https://doi.org/10.1016/j.socscimed.2018.12.017.

11. Subash S, Essa MM, Al-Adawi S, Memon MA, Manivasagam T, Akbar M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regeneration Research. 2014 Aug 15;9(16):1557–66. https://doi.org/10.4103/1673-5374.139483.

12. Porter Y. Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. Bioscience Horizons. 2012;5(0):hzs004–hzs004. https://doi.org/10.1093/biohorizons/hzs004.

13. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition. 2016 Aug 16;3:24. https://doi.org/10.3389/fnut.2016.00024.

14. Manchali S, Chidambara Murthy KN, Patil BS. Crucial facts about health benefits of popular cruciferous vegetables. Journal of Functional Foods. 2012;4(1):94–106. https://doi.org/10.1016/j.jff.2011.08.004.

15. Kuran D, Pogorzelska A, Wiktorska K. Breast cancer prevention—is there a future for sulforaphane and its analogs? Nutrients. 2020;12(6):1559. https://doi.org/10.3390/nu12061559; Bagheri M, Fazli M, Saeednia S, Gholami Kharanagh M, Ahmadiankia N. Sulforaphane modulates cell migration and expression of β-catenin and epithelial mesenchymal transition markers in breast cancer cells. Iranian Journal of Public Health. 2020 Jan;49(1):77–85.

16. Kita M, Uchida S, Yamada K, Ano Y. Anxiolytic effects of theaflavins via dopaminergic activation in the frontal cortex. Bioscience, Biotechnology, and Biochemistry. 2019;83(6):1157–62. https://doi.org/10.1080/09168451.2019.1584523.

17. Steptoe A, Gibson EL, Vuononvirta R, et al. The effects of tea on psychophysiological stress responsivity and post-stress recovery: A randomised double-blind trial. Psychopharmacology. 2007;190(1):81–89. https://doi.org/10.1007/s00213-006-0573-2.

18. Yoto A, Fukui N, Kaneda C, et al. Black tea aroma inhibited increase of salivary chromogranin-A after arithmetic tasks. Journal of Physiological Anthropology. 2018 Jan 24;37(1):3. https://doi.org/10.1186/s40101-018-0163-0.

19. Dietz C, Dekker M. Effect of green tea phytochemicals on mood and cognition. Current Pharmaceutical Design. 2017;23(19):2876–905. https://doi.org/10.2174/1381612823666170105151800.

20. Hidese S, Ogawa S, Ota M, et al. Effects of L-theanine administration on stress-related symptoms and cognitive functions in healthy adults: A randomized controlled trial. Nutrients. 2019;11(10):2362. https://doi.org/10.3390/nu11102362.

21. Klevebrant L, Frick A. Effects of caffeine on anxiety and panic attacks in patients with panic disorder: A systematic review and meta-analysis. General Hospital Psychiatry. 2022;74:22–31. https://doi.org/10.1016/j.genhosppsych.2021.11.005.

22. Caffeine. The Nutrition Source. Harvard T.H. Chan School of Public Health. https://www.hsph.harvard.edu/nutritionsource/caffeine/.

23. Wu Y, Lu Y, Xie G. Bubble tea consumption and its association with mental health symptoms: An observational cross-sectional study on Chinese young adults. Journal of Affective Disorders. 2022;299:620–27. https://doi.org/10.1016/j.jad.2021.12.061.

24. Achour M, Ben Salem I, Ferdousi F, et al. Rosemary tea consumption alters peripheral anxiety and depression biomarkers: A pilot study in limited healthy volunteers. Journal of the American Nutrition Association. 2022;41(3):240–49. https://doi.org/10.1080/07315724.2021.1873871.

25. Bazrafshan MR, Jokar M, Shokrpour N, Delam H. The effect of lavender herbal tea on the anxiety and depression of the elderly: A randomized clinical trial. Complementary Therapies in Medicine. 2020;50:102393. https://doi.org/10.1016/j.ctim.2020.102393.

26. Mao JJ, Xie SX, Keefe JR, Soeller I, Li QS, Amsterdam JD. Long-term chamomile (Matricaria chamomilla L.) treatment for generalized anxiety disorder: A randomized clinical trial. Phytomedicine. 2016;23(14):1735–42. https://doi.org/10.1016/j.phymed.2016.10.012.

27. Piek H, Venter I, Rautenbach F, Marnewick JL. Rooibos herbal tea: An optimal cup and its consumers. Health SA. 2019;24:1090. https://doi.org/10.4102/hsag.v24i0.1090.

28. Fusar-Poli L, Gabbiadini A, Ciancio A, Vozza L, Signorelli MS, Aguglia E. The effect of cocoa-rich products on depression, anxiety, and mood: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. 2022;62(28):7905–16. https://doi.org/10.1080/10408398.2021.1920570.

29. Martin FP, Rezzi S, Peré-Trepat E, et al. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. Journal of Proteome Research. 2009;8(12):5568–79. https://doi.org/10.1021/pr900607v.

30. Pase MP, Scholey AB, Pipingas A, et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. Journal of Psychopharmacology. 2013;27(5):451–58. https://doi.org/10.1177/0269881112473791.

31. García-Blanco T, Dávalos A, Visioli F. Tea, cocoa, coffee, and affective disorders: Vicious or virtuous cycle? Journal of Affective Disorders. 2017;224:61–68. https://doi.org/10.1016/j.jad.2016.11.033.

32. Baum-Baicker C. The psychological benefits of moderate alcohol consumption: A review of the literature. Drug and Alcohol Dependence. 1985;15(4):305–22. https://doi.org/10.1016/0376-8716(85)90008-0.

33. Matias JN, Achete G, Campanari GSDS, et al. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Australian and New Zealand Journal of Psychiatry. 2021;55(5):451–62. https://doi.org/10.1177/0004867421998795.

34. Esmaily H, Sahebkar A, Iranshahi M, et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chinese Journal of Integrative Medicine. 2015;21(5):332–38. https://doi.org/10.1007/s11655-015-2160-z.

35. Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017;6(10):92. https://doi.org/10.3390/foods6100092.

36. Maqbool Z, Arshad MS, Ali A, et al. Potential role of phytochemical extract from saffron in development of functional foods and protection of brain-related disorders. Oxidative Medicine and Cellular Longevity. 2022;2022:6480590. https://doi.org/10.1155/2022/6480590.

37. Marx W, Lane M, Rocks T, et al. Effect of saffron supplementation on symptoms of depression and anxiety: A systematic review and meta-analysis [published online ahead of print, 2019 May 28]. Nutrition Reviews. 2019;nuz023. https://doi.org/10.1093/nutrit/nuz023.

38. Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iranian Journal of Basic Medical Sciences. 2020;23(9):1100–1112. https://doi.org/10.22038/ijbms.2020.45269.10541.

39. Jamshidi N, Cohen MM. The clinical efficacy and safety of tulsi in humans: A systematic review of the literature. Evidence-Based Complementary and Alternative Medicine. 2017;2017:9217567. https://doi.org/10.1155/2017/9217567.

40. Mechan AO, Fowler A, Seifert N, et al. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. British Journal of Nutrition. 2011;105(8):1150–63. https://doi.org/10.1017/S0007114510004940.

41. Rashrash M, Schommer JC, Brown LM. Prevalence and predictors of herbal medicine use among adults in the United States. Journal of Patient Experience. 2017;4(3):108–13. https://doi.org/10.1177/2374373517706612.

42. Bent S. Herbal medicine in the United States: Review of efficacy, safety, and regulation: Grand rounds at University of California, San Francisco Medical Center. Journal of General Internal Medicine. 2008 Jun;23(6):854–59. https://doi.org/10.1007/s11606-008-0632-y.

43. Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary, and Alternative Medicines. 2011;8(5 Suppl):208–13. https://doi.org/10.4314/ajtcam.v8i5S.9.

44. Akhgarjand C, Asoudeh F, Bagheri A, et al. Does ashwagandha supplementation have a beneficial effect on the management of anxiety and stress? A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research. 2022;36(11):4115–24. https://doi.org/10.1002/ptr.7598.

45. Pratte MA, Nanavati KB, Young V, Morley CP. An alternative treatment for anxiety: A systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera). Journal of Alternative and Complementary Medicine. 2014;20(12):901–8. https://doi.org/10.1089/acm.2014.0177.

46. Lopresti AL, Smith SJ, Malvi H, Kodgule R. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine. 2019;98(37):e17186. https://doi.org/10.1097/MD.0000000000017186.

47. Noor-E-Tabassum, Das R, Lami MS, et al. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications. Evidence-Based Complementary and Alternative Medicine. 2022;2022:8288818. https://doi.org/10.1155/2022/8288818.

48. Woelk H, Arnoldt KH, Kieser M, Hoerr R. Ginkgo biloba special extract EGb 761 in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial. Journal of Psychiatric Research. 2007;41(6):472–80. https://doi.org/10.1016/j.jpsychires.2006.05.004.

49. Lee S, Rhee DK. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. Journal of Ginseng Research. 2017 Oct;41(4):589–94. https://doi.org/10.1016/j.jgr.2017.01.010.

50. Sarris J, Byrne GJ, Bousman CA, et al. Kava for generalised anxiety disorder: A 16-week double-blind, randomised, placebo-controlled study. Australian and New Zealand Journal of Psychiatry. 2020;54(3):288–97. https://doi.org/10.1177/0004867419891246; Sarris J, Stough C, Bousman CA, et al. Kava in the treatment of generalized anxiety disorder: A double-blind, randomized, placebo-controlled study. Journal of Clinical Psychopharmacology. 2013;33(5):643–48. https://doi.org/10.1097/JCP.0b013e318291be67.

51. Ooi SL, Henderson P, Pak SC. Kava for generalized anxiety disorder: A review of current evidence. Journal of Alternative and Complementary Medicine. 2018;24(8):770–80. https://doi.org/10.1089/acm.2018.0001.

52. Janda K, Wojtkowska K, Jakubczyk K, Antoniewicz J, Skonieczna-Żydecka K. Passiflora incarnata in neuropsychiatric disorders—a systematic review. Nutrients. 2020 Dec 19;12(12):3894. https://doi.org/10.3390/nu12123894.

53. Panossian A, Wikman G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals. 2010 Jan 19;3(1):188–224. https://doi.org/10.3390/ph3010188.

54. Bystritsky A, Kerwin L, Feusner JD. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). Journal of Alternative and Complementary Medicine. 2008;14(2):175–80. https://doi.org/10.1089/acm.2007.7117.

55. Cropley M, Banks AP, Boyle J. The effects of Rhodiola rosea L. extract on anxiety, stress, cognition and other mood symptoms. Phytotherapy Research. 2015;29(12):1934–39. https://doi.org/10.1002/ptr.5486.

56. Sharpe L, Sinclair J, Kramer A, de Manincor M, Sarris J. Cannabis, a cause for anxiety? A critical appraisal of the anxiogenic and anxiolytic properties. Journal of Translational Medicine. 2020;18(1):374. https://doi.org/10.1186/s12967-020-02518-2.

Chapter 10: An Antianxiety Shopping Trip

1. Jin H, Lu Y. Evaluating consumer nutrition environment in food deserts and food swamps. International Journal of Environmental Research and Public Health. 2021 Mar 7;18(5):2675. https://doi.org/10.3390/ijerph18052675.

2. Bergmans RS, Sadler RC, Wolfson JA, Jones AD, Kruger D. Moderation of the association between individual food security and poor mental health by the local food environment among adult residents of Flint, Michigan. Health Equity. 2019 Jun 14;3(1):264–74. https://doi.org/10.1089/heq.2018.0103.

3. Vigar V, Myers S, Oliver C, Arellano J, Robinson S, Leifert C. A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients. 2019 Dec 18;12(1):7. https://doi.org/10.3390/nu12010007.

4. Glibowski P. Organic food and health. Roczniki Państwowego Zakładu Higieny. 2020;71(2):131–36. https://doi.org/10.32394/rpzh.2020.0110.

5. Zeni ALB, Camargo A, Dalmagro AP. Lutein prevents corticosterone-induced depressive-like behavior in mice with the involvement of antioxidant and neuroprotective activities. Pharmacology, Biochemistry, and Behavior. 2019;179:63–72. https://doi.org/10.1016/j.pbb.2019.02.004.

6. Sedlak TW, Nucifora LG, Koga M, et al. Sulforaphane augments glutathione and influences brain metabolites in human subjects: A clinical pilot study. Molecular Neuropsychiatry. 2018;3(4):214–22. https://doi.org/10.1159/000487639.

7. Cheng L, Pan GF, Sun XB, Huang YX, Peng YS, Zhou LY. Evaluation of anxiolytic-like effect of aqueous extract of asparagus stem in mice. Evidence-Based Complementary and Alternative Medicine. 2013;2013:587260. https://doi.org/10.1155/2013/587260.

8. Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens—a comprehensive review of bioactive molecules and health benefits. Molecules. 2023;28(2):867. https://doi.org/10.3390/molecules28020867.

9. Deepika, Maurya PK. Health benefits of quercetin in age-related diseases. Molecules. 2022;27(8):2498. https://doi.org/10.3390/molecules27082498.

10. Wang L, Tao L, Hao L, et al. A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: A randomized controlled trial. Journal of Nutrition. 2020;150(2):276–84. https://doi.org/10.1093/jn/nxz231.

11. Bouzari A, Holstege D, Barrett DM. Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. Journal of Agricultural and Food Chemistry. 2015;63(3):957–62. https://doi.org/10.1021/jf5058793.

12. Jensen IJ, Eilertsen KE, Otnæs CHA, Mæhre HK, Elvevoll EO. An update on the content of fatty acids, dioxins, PCBs and heavy metals in farmed, escaped and wild Atlantic salmon (Salmo salar L.) in Norway. Foods. 2020;9(12):1901. https://doi.org/10.3390/foods9121901.

13. Dawson P, Al-Jeddawi W, Remington N. Effect of freezing on the shelf life of salmon. International Journal of Food Science. 2018 Aug 12;2018:1686121. https://doi.org/10.1155/2018/1686121.

14. Norberg J, Blenckner T, Cornell SE, Petchey OL, Hillebrand H. Failures to disagree are essential for environmental science to effectively influence policy development. Ecology Letters. 2022 May;25(5):1075–93. https://doi.org/10.1111/ele.13984.

15. Jarmul S, Dangour AD, Green R, Liew Z, Haines A, Scheelbeek PF. Climate change mitigation through dietary change: A systematic review of empirical and modelling studies on the environmental footprints and health effects of “sustainable diets.” Environmental Research Letters. 2020 Dec 22;15:123014. https://doi.org/10.1088/1748-9326/abc2f7.

16. Provenza FD, Kronberg SL, Gregorini P. Is grassfed meat and dairy better for human and environmental health? Frontiers in Nutrition. 2019;6:26. https://doi.org/10.3389/fnut.2019.00026.

17. Chazelas E, Pierre F, Druesne-Pecollo N, et al. Nitrites and nitrates from food additives and natural sources and cancer risk: Results from the NutriNet-Santé cohort. International Journal of Epidemiology. 2022;51(4):1106–19. https://doi.org/10.1093/ije/dyac046.

18. Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW Jr. The health effects of soy: A reference guide for health professionals. Frontiers in Nutrition. 2022;9:970364. https://doi.org/10.3389/fnut.2022.970364.

19. Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. Soy isoflavones and breast cancer risk: A meta-analysis. In Vivo. 2022 Mar–Apr;36(2):556–62. https://doi.org/10.21873/invivo.12737.

20. Ota A, Yamamoto A, Kimura S, et al. Rational identification of a novel soy-derived anxiolytic-like undecapeptide acting via gut-brain axis after oral administration. Neurochemistry International. 2017;105:51–57. https://doi.org/10.1016/j.neuint.2016.12.020.

21. Fernandez ML, Murillo AG. Is there a correlation between dietary and blood cholesterol? Evidence from epidemiological data and clinical interventions. Nutrients. 2022 May 23;14(10):2168. https://doi.org/10.3390/nu14102168.

22. Drouin-Chartier JP, Chen S, Li Y, et al. Egg consumption and risk of cardiovascular disease: Three large prospective US cohort studies, systematic review, and updated meta-analysis. BMJ. 2020;368:m513. https://doi.org/10.1136/bmj.m513.

23. Alothman M, Hogan SA, Hennessy D, et al. The “grass-fed” milk story: Understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods. 2019 Aug 17;8(8):350. https://doi.org/10.3390/foods8080350.

24. Jaatinen N, Korpela R, Poussa T, et al. Effects of daily intake of yoghurt enriched with bioactive components on chronic stress responses: A double-blinded randomized controlled trial. International Journal of Food Sciences and Nutrition. 2014;65(4):507–14. https://doi.org/10.3109/09637486.2014.880669; Sousa RJM, Baptista JAB, Silva CCG. Consumption of fermented dairy products is associated with lower anxiety levels in Azorean University students. Frontiers in Nutrition. 2022;9:930949. https://doi.org/10.3389/fnut.2022.930949.

25. Hodges C, Archer F, Chowdhury M, et al. Method of food preparation influences blood glucose response to a high-carbohydrate meal: A randomised cross-over trial. Foods. 2019 Dec 25;9(1):23. https://doi.org/10.3390/foods9010023.

26. Devaraj RD, Reddy CK, Xu B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules. 2019;126:273–81. https://doi.org/10.1016/j.ijbiomac.2018.12.203.

27. Sugiyama M, Tang AC, Wakaki Y, Koyama W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. European Journal of Clinical Nutrition. 2003;57(6):743–52. https://doi.org/10.1038/sj.ejcn.1601606.

28. 10 of the Worst Foods for Blood Sugar—According to CGM Data. Levels Health. June 18, 2022. Updated November 2, 2022. Accessed February 22, 2023. https://www.levelshealth.com/blog/10-of-the-worst-foods-for-blood-sugar-according-to-cgm-data.

29. Flores M, Saravia C, Vergara CE, Avila F, Valdés H, Ortiz-Viedma J. Avocado oil: Characteristics, properties, and applications. Molecules. 2019 Jun 10;24(11):2172. https://doi.org/10.3390/molecules24112172.

30. Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented foods, health and the gut microbiome. Nutrients. 2022;14(7):1527. https://doi.org/10.3390/nu14071527.

31. Haghighatdoost F, Feizi A, Esmaillzadeh A, et al. Drinking plain water is associated with decreased risk of depression and anxiety in adults: Results from a large cross-sectional study. World Journal of Psychiatry. 2018;8(3):88–96. https://doi.org/10.5498/wjp.v8.i3.88.

32. Kaur S, Christian H, Cooper MN, Francis J, Allen K, Trapp G. Consumption of energy drinks is associated with depression, anxiety, and stress in young adult males: Evidence from a longitudinal cohort study. Depression and Anxiety. 2020;37(11):1089–98. https://doi.org/10.1002/da.23090.

33. Klevebrant L, Frick A. Effects of caffeine on anxiety and panic attacks in patients with panic disorder: A systematic review and meta-analysis. General Hospital Psychiatry. 2022;74:22–31. https://doi.org/10.1016/j.genhosppsych.2021.11.005.

34. Torvik FA, Rosenström TH, Gustavson K, et al. Explaining the association between anxiety disorders and alcohol use disorder: A twin study. Depression and Anxiety. 2019;36(6):522–32. https://doi.org/10.1002/da.22886.

35. Schleider JL, Ye F, Wang F, Hipwell AE, Chung T, Sartor C. Longitudinal reciprocal associations between anxiety, depression, and alcohol use in adolescent girls. Alcoholism, Clinical and Experimental Research. 2019;43(1):98–107. https://doi.org/10.1111/acer.13913.

36. Gibson-Smith D, Bot M, Brouwer IA, Visser M, Giltay EJ, Penninx BWJH. Association of food groups with depression and anxiety disorders. European Journal of Nutrition. 2020;59(2):767–78. https://doi.org/10.1007/s00394-019-01943-4.

37. Johnston M, McBride M, Dahiya D, Owusu-Apenten R, Nigam PS. Antibacterial activity of manuka honey and its components: An overview. AIMS Microbiology. 2018;4(4):655–64. https://doi.org/10.3934/microbiol.2018.4.655.

38. Callahan A. Do I need to avoid dark chocolate now? New York Times. February 9, 2023. Accessed February 23, 2023. https://www.nytimes.com/2023/02/09/well/eat/dark-chocolate-metal-lead.html.

Chapter 11: The Six Pillars to Calm Your Mind

1. Buettner D, Skemp S. Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine. 2016 Jul 7;10(5):318–21. https://doi.org/10.1177/1559827616637066.

2. Marston HR, Niles-Yokum K, Silva PA. A commentary on Blue Zones®: A critical review of age-friendly environments in the 21st century and beyond. International Journal of Environmental Research and Public Health. 2021 Jan 19;18(2):837. https://doi.org/10.3390/ijerph18020837.

3. Heath C, Lopez NV, Seeton V, Sutliffe JT. Blue Zones–based worksite nutrition intervention: Positive impact on employee wellbeing. Frontiers in Nutrition. 2022 Feb 11;9:795387. https://doi.org/10.3389/fnut.2022.795387.

4. Buettner D, Skemp S. Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine. 2016 Jul 7;10(5):318–21. https://doi.org/10.1177/1559827616637066.

Chapter 12: Building Your Antianxiety Eating Plan

1. Altomare R, Cacciabaudo F, Damiano G, et al. The Mediterranean diet: A history of health. Iranian Journal of Public Health. 2013 May 1;42(5):449–57.

2. Ventriglio A, Sancassiani F, Contu MP, et al. Mediterranean diet and its benefits on health and mental health: A literature review. Clinical Practice and Epidemiology in Mental Health. 2020 Jul 30;16(Suppl 1):156–64. https://doi.org/10.2174/1745017902016010156.

3. Merra G, Noce A, Marrone G, et al. Influence of Mediterranean diet on human gut microbiota. Nutrients. 2020;13(1):7. https://doi.org/10.3390/nu13010007.

4. Merra G, Noce A, Marrone G, et al. Influence of Mediterranean diet on human gut microbiota. Nutrients. 2020;13(1):7. https://doi.org/10.3390/nu13010007.

5. Yin W, Löf M, Chen R, Hultman CM, Fang F, Sandin S. Mediterranean diet and depression: A population-based cohort study. International Journal of Behavioral Nutrition and Physical Activity. 2021;18(1):153. https://doi.org/10.1186/s12966-021-01227-3.

6. Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: Calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxidative Medicine and Cellular Longevity. 2013;2013:707421. https://doi.org/10.1155/2013/707421.

7. Włodarczyk A, Cubała WJ, Wielewicka A. Ketogenic diet: A dietary modification as an anxiolytic approach? Nutrients. 2020 Dec 14;12(12):3822. https://doi.org/10.3390/nu12123822. PMID: 33327540; PMCID: PMC7765029.

8. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of Neurology. 2004;55(4):576–80. https://doi.org/10.1002/ana.20062.

9. Tillery EE, Ellis KD, Threatt TB, Reyes HA, Plummer CS, Barney LR. The use of the ketogenic diet in the treatment of psychiatric disorders. Mental Health Clinician. 2021;11(3):211–19. https://doi.org/10.9740/mhc.2021.05.211.

10. Tidman M. Effects of a ketogenic diet on symptoms, biomarkers, depression, and anxiety in Parkinson’s disease: A case study. Cureus. 2022 Mar 31;14(3):e23684. https://doi.org/10.7759/cureus.23684.

11. Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes. 2019;10(7):534. https://doi.org/10.3390/genes10070534.

12. Masood W, Annamaraju P, Uppaluri KR. Ketogenic Diet. StatPearls. June 11, 2022. https://www.ncbi.nlm.nih.gov/books/NBK499830/.

13. Schutz Y, Montani J, Dulloo AG. Low‐carbohydrate ketogenic diets in body weight control: A recurrent plaguing issue of fad diets? Obesity Reviews. 2021;22(S2). https://doi.org/10.1111/obr.13195.

14. Vasim I, Majeed CN, DeBoer MD. Intermittent fasting and metabolic health. Nutrients. 2022 Jan 31;14(3):631. https://doi.org/10.3390/nu14030631. PMID: 35276989; PMCID: PMC8839325.

15. Berthelot E, Etchecopar-Etchart D, Thellier D, Lancon C, Boyer L, Fond G. Fasting interventions for stress, anxiety and depressive symptoms: A systematic review and meta-analysis. Nutrients. 2021 Nov 5;13(11):3947. https://doi.org/10.3390/nu13113947.

16. Gudden J, Arias Vasquez A, Bloemendaal M. The effects of intermittent fasting on brain and cognitive function. Nutrients. 2021 Sep 10;13(9):3166. https://doi.org/10.3390/nu13093166.

17. Bjornsson AS, Didie ER, Phillips KA. Body dysmorphic disorder. Dialogues in Clinical Neuroscience. 2010;12(2):221–32. https://doi.org/10.31887/DCNS.2010.12.2/abjornsson.

18. Scarff JR. Orthorexia nervosa: An obsession with healthy eating. Federal Practitioner. 2017 Jun;34(6):36–39. PMID: 30766283; PMCID: PMC6370446.

19. Smith AR, Zuromski KL, Dodd DR. Eating disorders and suicidality: What we know, what we don’t know, and suggestions for future research. Current Opinion in Psychology. 2018;22:63–67. https://doi.org/10.1016/j.copsyc.2017.08.023.

20. Yılmaz MN, Dundar C. The relationship between orthorexia nervosa, anxiety, and self-esteem: A cross-sectional study in Turkish faculty members. BMC Psychology. 2022;10(1):82. https://doi.org/10.1186/s40359-022-00796-7.

21. Lee SD, Kellow NJ, Choi TST, Huggins CE. Assessment of dietary acculturation in East Asian populations: A scoping review. Advances in Nutrition. 2020;12(3):865–86. https://doi.org/10.1093/advances/nmaa127.

22. Neumark-Sztainer D, Wall M, Guo J, Story M, Haines J, Eisenberg M. Obesity, disordered eating, and eating disorders in a longitudinal study of adolescents: How do dieters fare 5 years later? Journal of the American Dietetic Association. 2006;106(4):559–68. https://doi.org/10.1016/j.jada.2006.01.003.

23. Stice E, Burger K, Yokum S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. Neuroimage. 2013;67:322–30. https://doi.org/10.1016/j.neuroimage.2012.11.028.

24. Hussenoeder FS, Conrad I, Engel C, et al. Analyzing the link between anxiety and eating behavior as a potential pathway to eating-related health outcomes. Scientific Reports. 2021;11:14717. https://doi.org/10.1038/s41598-021-94279-1; Lloyd EC, Haase AM, Verplanken B. Anxiety and the development and maintenance of anorexia nervosa: Protocol for a systematic review. Systematic Reviews. 2018;7:14. https://doi.org/10.1186/s13643-018-0685-x.

25. Mestre ZL, Melhorn SJ, Askren MK, et al. Effects of anxiety on caloric intake and satiety-related brain activation in women and men. Psychosomatic Medicine. 2016;78(4):454–64. https://doi.org/10.1097/PSY.0000000000000299.