BOOK IV

1 · We have now treated, in regard to blooded animals, of the parts they have in common and of the parts peculiar to this genus or that, both the uniform and the [523b1] non-uniform parts, both the external and the internal. We now proceed to treat of animals devoid of blood. These animals are divided into several genera.

One genus consists of so-called molluscs: these are animals that, being devoid of blood, have flesh-like substance outside, and any hard structure they may happen to have, inside—in this respect resembling the red-blooded animals,—such as the genus of the cuttlefish.

[5] Another genus is that of the crustaceans. These are animals that have their hard structure outside, and their soft or flesh-like substance inside, and the hard substance belonging to them has to be crushed rather than shattered; and to this genus belongs the crayfish and the crab.

A third genus is that of the testaceans. These are animals that have their hard substance outside and their flesh-like substance within, and their hard substance [10] can be shattered but not crushed; and to this genus belong the snail and the oyster.

The fourth genus is that of insects; and this genus comprehends numerous and dissimilar species. Insects are creatures that, as the name implies, have nicks either on the belly or on the back, or on both belly and back, and have no one part [15] distinctly osseous and no one part distinctly fleshy, but are something intermediate between bone and flesh; that is to say, their body is hard all through, inside and outside. Some insects are wingless, such as the iulus and the centipede; some are winged, as the bee, the cockchafer, and the wasp; and the same genus is in some [20] cases both winged and wingless, as the ant and the glow-worm.

In molluscs the external parts are as follows: in the first place, the so-called feet; secondly, and attached to these, the head; thirdly, the sac, containing the internal parts, and incorrectly designated by some writers the head; and, fourthly, [25] fins round about the sac. In all molluscs the head is found to be between the feet and the belly. All molluscs are furnished with eight feet, and in all cases these feet are severally furnished with a double row of suckers, with the exception of one single species of octopus. The cuttlefish, the small calamary and the large calamary have [30] an exceptional organ in a pair of long tentacles, having at their extremities a portion rendered rough by the presence of two rows of suckers; and with these they apprehend their food and draw it into their mouths, and in stormy weather they cling by them to a rock like anchors and ride out the storm. They swim by the aid of [524a1] the fins1 that they have about the sac. In all cases their feet are furnished with suckers.

The octopus uses his feelers either as feet or hands; with the two which stand over his mouth he draws in food, and the last of his feelers he employs in the act of [5] copulation—it is extremely sharp, is exceptional as being of a whitish colour, and at its extremity is bifurcate (it is like that on the rachis, and by rachis is meant the smooth surface on the far side from the suckers).

In front of the sac and over the feelers they have a hollow tube, by means of [10] which they discharge any sea-water that they may have taken into the sac of the body in the act of receiving food by the mouth. They can shift the tube from side to side, and by means of it they discharge their ink.

Stretching out its feet, it swims obliquely in the direction of the so-called head, and by this mode of swimming it can see in front, for its eyes are at the top, and in [15] this attitude it has its mouth at the rear. The head, while the creature is alive, is hard, and looks as though it were inflated. It apprehends and retains objects by means of the under-surface of its arms, and the membrane in between its feet is kept at full tension; if the animal get on to the sand it can no longer retain its hold. [20]

There is a difference between the octopus and the molluscs above mentioned: the sac of the octopus is small, and his feet are long, whereas in the others the sac is large and the feet short; so short, in fact, that they cannot walk on them. Compared [25] with one another, the calamary is long-shaped and the cuttlefish flat-shaped; and of the calamaries the so-called teuthus is much bigger than the teuthis; for teuthi have been found as much as five ells long. Some cuttlefish attain a length of two ells, and the feelers of the octopus are sometimes as long, or even longer. The species teuthus [30] is not a numerous one; the teuthus differs from the teuthis in shape; that is, the sharp extremity of the teuthus is broader and, further, the encircling fin goes all round the sac, whereas it is in part lacking in the teuthis; both animals are sea-creatures.

In all cases the head comes after the feet, in the middle of the feet that are [524b1] called feelers. There is here situated a mouth, and two teeth in the mouth; and above these two large eyes, and between the eyes a small cartilage enclosing a small brain; and within the mouth it has a minute organ of a fleshy nature, and this it uses as a [5] tongue—for none of them has a tongue. Next after this, on the outside, is what looks like a sac; the flesh of which it is made is divisible, not in long straight strips, but in rings; and all molluscs have a cuticle around this flesh. Next after or at the back of [10] the mouth comes a long and narrow oesophagus, and close after that a crop, large and spherical, like that of a bird; then comes the stomach, like the fourth stomach in ruminants; and the shape of it resembles the spiral convolution in the trumpet-shell; from the stomach there goes back again, in the direction of the mouth, a thin gut, and the gut is thicker than the oesophagus.

[15] Molluscs have no viscera, but they have what is called a mytis, and on it the ink-sac; in the cuttlefish this vessel is the largest, and this juice is most abundant. All molluscs, when frightened, discharge such a juice, but the discharge is most copious in the cuttlefish. The mytis, then, is situated under the mouth, and the oesophagus runs through it; and down below at the point to which the gut extends is [20] the ink-sac which is enveloped in one and the same membrane as the gut; and it discharges both the ink and the excreta by the same orifice. The animals have also certain hair-like growths in their bodies.

In the cuttlefish, the teuthis, and the teuthus the hard parts are within, towards the back of the body; those parts are called in one the sepium, and in the other the [25] ‘sword’ They differ from one another; for the sepium is hard and flat, being a substance intermediate between bone and spine, with (in part) a crumbling, spongy texture, but in the teuthis the part is thin and somewhat gristly. These parts differ from one another in shape, as do also the sacs of the animals. The octopus has [30] nothing hard of this kind in its interior, but it has a gristly substance round the head, which, if the animal grows old, becomes hard.

The females differ from the males. The males have a duct in under the oesophagus, extending from the brain to the lower portion of the sac, and there is an organ to which it attaches, resembling a breast; in the female there are two of these [525a1] organs, situated higher up; with both sexes there are underneath these organs certain red formations. The egg of the octopus is single, uneven on its surface, and of large size; the fluid substance within is all uniform in colour, smooth, and in colour [5] white; the mass of the egg is so great as to fill a vessel larger than the creature’s head. The cuttlefish has two sacs, and inside them a number of eggs, like white hailstones. For the disposition of these parts I must refer to my anatomical diagrams.

The males of all these animals differ from the females and the difference is most marked in the cuttlefish; for the back of the sac, which is blacker than the [10] belly, is rougher in the male than in the female, and in the male the back is striped, and the rump is more sharply pointed.

There are several species of the octopus. One keeps close to the surface, and is the largest of them all, and near the shore the size is larger than in deep water; and [15] there are others, small, variegated in colour, which are not articles of food. There are two others, one called the heledone, which differs in the length of its legs and in having one row of suckers—all the rest of the molluscs having two,—and the other called the bolitaina or the ozolis.

There are two others found in shells. One of them is called by some the [20] nautilus or the pontilus (it is a sort of octopus);2 and the shell of this creature is something like a separate valve of a deep scallop-shell.3 This lives very often near to the shore, and is apt to be thrown up high and dry on the beach; and when its shell falls away it is caught or dies on the land. These polypods are small, and are shaped [25] like the bolitaina. There is another that is placed within a shell like a snail; it never comes out of the shell, but lives inside it like the snail, and from time to time protrudes its feelers.

So much for molluscs.

2 · With regard to the crustaceans, one species is that of the crayfish, and a [30] second, resembling the first, is that of the lobster; the lobster differing from the crayfish in having large claws, and in a few other respects as well. Another species is that of the carid, and another is that of the crab, and there are many kinds both of [525b1] carid and of crab.

Of carids there are the prawns, the squillae, and the little kind, (the little kind do not develop into a larger kind).

Of the crab, the varieties are indefinite and incalculable. The largest of all crabs is one called maia, a second variety is the pagurus and the crab of [5] Heracleotis, and a third variety is the fresh-water crab; the other varieties are smaller in size and have no special designations. In Phoenicia there are found on the beach certain crabs that are called ‘horses’ from their running with such speed that it is difficult to overtake them; these crabs, when opened, are found empty, because of insufficiency of nutriment. [There is another variety, small like the crab, but [10] resembling in shape the lobster.]4

All these animals, as has been stated, have their hard and shelly part outside, where the skin is in other animals, and the fleshy part inside; and the belly is more or less laminated, and the female here deposits her spawn.

The crayfishes have five feet on either side, including the claws at the end; and [15] in like manner the crabs have ten feet in all, including the claws. Of the carids, the prawns have five feet on either side, which are sharp-pointed—those towards the [20] head; and five others on either side in the region of the belly, with their extremities flat; they are devoid of flaps on the under side, but on the back they resemble the crayfish. It is very different with the squilla; it has four front legs which are flat on either side, then three thin ones close behind on either side, and the rest of the body [25] is for the most part devoid of feet. Of all these animals the feet bend out obliquely, as is the case with insects; and the claws, where claws are found, turn inwards. The crayfish has a tail, and five fins on it; and the prawn has a tail and four fins; the squilla also has fins at the tail on either side. In the case of both the middle part of [30] the tail is spinous: only that in the squilla the part is flattened and in the prawn it is sharp-pointed. Of all animals of this genus the crab is the only one devoid of a rump; and, while the body of the carid and the crayfish is elongated, that of the crab is rotund.

[526a1] In the crayfish the male differs from the female: in the female the first foot is bifurcate, in the male it is undivided; the belly-fins in the female are large and overlapping on the neck, while in the male they are smaller and do not overlap; and, [5] further, on the last feet of the male there are spur-like projections, large and sharp, which in the female are small and smooth. Both male and female have two antennae in front of the eyes, large and rough, and other antennae underneath, small and [10] smooth. The eyes of all these creatures are hard, and can move either to the inner or to the outer side. The eyes of most crabs can do the same, to an even greater degree.

The lobster is all over grey-coloured, with a mottling of black. Its under feet, up to the big feet, are eight in number; then come the big feet, far larger and flatter [15] at the tips than the same organs in the crayfish; and these are irregular: the right claw has the extreme flat surface long and thin, while the left claw has the corresponding surface thick and round. Each of the two claws, divided at the end like a pair of jaws, has both below and above a set of teeth: only that in the right [20] claw they are small and saw-shaped, while in the left claw those at the apex are saw-shaped and those within are molar-shaped, these latter being, in the under part, four teeth close together, and in the upper part three teeth, not close together. Both right and left claws have the upper part mobile, and bring it to bear against the [25] lower one, and both are curved, being thereby naturally adapted for apprehension and constriction. Above the two large claws come two others, covered with hair, a little underneath the mouth; and underneath these the gill-like formations in the region of the mouth, hairy and numerous. These organs the animal keeps in perpetual motion; and the two hairy feet it bends and draws in towards its mouth. [30] The feet near the mouth are furnished also with delicate appendages. Like the crayfish, the lobster has two teeth, and above these teeth are its antennae, long, but shorter and finer by far than those of the crayfish, and then four other antennae similar in shape, but shorter and finer than the others. Over these antennae come [526b1] the eyes, small and short, not large like the eyes of the crayfish. Over the eyes is a peaky rough projection like a forehead, larger than the same part in the crayfish; in fact, the frontal part is more pointed and the thorax is much broader in the lobster than in the crayfish, and the body in general is smoother and more full of flesh. Of [5] the eight feet, four are bifurcate at the extremities, and four are undivided. The region of the so-called neck is outwardly divided into five divisions, and sixthly comes the flattened portion at the end, and this portion has five flaps; and the inner parts, into which the female drops her spawn, are four in number and hairy, and on [10] each of the aforesaid parts is a spine turned outwards, short and straight. The body in general and the region of the thorax in particular are smooth, not rough as in the crayfish; but on the large claws the outer portion has larger spines. There is no apparent difference between the male and female; for they both have one claw, [15] whichever it may be, larger than the other, and neither male nor female is ever found with both claws of the same size.

All crustaceans take in water close by the mouth. The crab discharges it, closing up, as it does so, a small portion of the same, and the crayfish discharges it [20] by way of the gills; and the gill-shaped organs in the crayfish are very numerous.

The following properties are common to all crustaceans: they have in all cases two teeth (for the front teeth in the crayfish are two in number), and in all cases there is in the mouth a small fleshy structure serving for a tongue; and the stomach is close to the mouth (except that the crayfish has a little oesophagus in front of the [25] stomach),5 and there is a straight gut attached to it. This gut, in the crayfish and its congeners, and in the carids, extends in a straight line to the tail, and terminates where the animal discharges the residuum, and where the female deposits her eggs; in the crab it terminates where the flap is situated, and in the centre of the flap. And in all these animals the eggs are deposited outside.6 Further, the female has the [30] place for the eggs running along the gut. And, again, all these animals have an organ, larger or smaller, termed the mytis or poppy.

We must now proceed to review their several differentiae.

The crayfish then, as has been said, has two teeth, large and hollow, in which is [527a1] contained a juice resembling the mytis, and in between the teeth is a fleshy substance, shaped like a tongue. After the mouth comes a short oesophagus, and then a membranous stomach attached to the oesophagus, and at the orifice of the stomach are three teeth, two facing one another and a third standing by itself [5] underneath. Coming off obliquely from the stomach is a gut, simple and of equal thickness throughout the entire length of the body until it reaches the anal vent.

These are all common properties of the crayfish, the carid, and the crab; for the crab too has two teeth.7 [10]

Again, the crayfish has a duct attached all the way from the chest to the anal vent; and this duct serves as the ovary in the female, and as the seminal duct in the male. This passage is attached to the concave surface of the flesh in such a way that the flesh is in between; for the gut is related to the convexity and this duct to the [15] concavity, pretty much as is observed in quadrupeds. And the duct is identical in both the sexes; that is to say, the duct in both is thin and white, and charged with a sallow-coloured moisture, and is attached to the chest.

[20] These are the properties of the egg and of the convolutes in the carid as well.

The male differs from the female in regard to its flesh, in having in connexion with the chest two separate and distinct white substances, resembling in colour and conformation the tentacles of the cuttlefish, and they are convoluted like the ‘poppy’ [25] of the trumpet-shell. These organs have their starting-point in cotyledons which are situated under the hindmost feet; and hereabouts the flesh is red and blood-coloured, but is slippery to the touch and in so far unlike flesh. Off from the convolute8 organ at the chest branches another coil about as thick as twine; and [30] underneath there are two granular seminal bodies in juxtaposition with the gut. These are the organs of the male. The female has red-coloured eggs, which are adjacent to the stomach and to each side of the gut all along to the fleshy parts, being enveloped in a thin membrane.

Such are the parts, internal and external, of these animals.

[527b1] 3 · The inner parts of sanguineous animals happen to have specific designations; for these animals have in all cases the inner viscera, but this is not the case with the bloodless animals, but what they have in common with red-blooded animals is the stomach, the oesophagus, and the gut.9

[5] With regard to the crab, it has already been stated that it has claws and feet, and their position has been set forth; furthermore, for the most part they have the right claw bigger and stronger than the left. It has also been stated that in general the eyes of the crab look sideways. Further, the trunk of the crab’s body is single and [10] undivided, including its head10 and any other part it may possess. Some crabs have eyes placed sideways on the upper part, immediately under the back, and standing a long way apart, and some have their eyes in the centre and close together, like the crabs of Heracleotis and the maia. The mouth lies underneath the eyes, and inside it there are two teeth, as is the case with the crayfish, only that in the crab the teeth [15] are not rounded but long; and over the teeth are two lids, and in between them are structures such as the crayfish has beside its teeth. The crab takes in water by the mouth, using the lids as a strainer,11 and discharges the water by two passages above the mouth, closing by means of the lids the way by which it entered; and the two [20] passage-ways are just underneath the eyes. [When it has taken in water it closes its mouth by means of both lids, and ejects the water in the way above described.]12 Next after the teeth comes the oesophagus, very short, so short in fact that the stomach seems to come straightway after the mouth. Next after the oesophagus comes the stomach, which is bifurcated, to the centre of which is attached a simple [25] and delicate gut; and the gut terminates outwards, at the lid, as has been previously stated. [Between the lids the crab has parts like those near the teeth in the crayfish.]13 Inside the trunk is a sallow juice and some few little bodies, long and white, and others spotted red. The male differs from the female in size and breadth, [30] and in respect of the lid; for this is larger in the female and stands out further, and is more hairy, as is the case also with the female in the crayfish.

So much, then, for the organs of the Crustacea.

4 · With the testaceans such as the land-snails and the sea-snails, and all the shellfish and also with the sea-urchin genus, the fleshy part, in such as have flesh, is [528a1] similarly situated to the fleshy part in the crustaceans; in other words, it is inside the animal, and the shell is outside, and there is no hard substance in the interior. As compared with one another the testaceans present many diversities, both in regard to their shells and to the flesh within. Some of them have no flesh at all, as the [5] sea-urchin; others have flesh, but it is inside and wholly hidden, except for the head, as in the land-snails, and the so-called cocalia, and, among sea animals, in the purple murex, the trumpet-shell, the sea-snail, and the spiral-shaped testaceans in [10] general. Of the rest, some are bivalved and some univalved; and by bivalves I mean such as are enclosed within two shells, and by univalved such as are enclosed within a single shell, and in these last the fleshy part is exposed, as in the case of the limpet. Of the bivalves, some can open out, like the scallop and the mussel; for all such [15] shells are grown together on one side and are separate on the other, so as to open and shut. Other bivalves are closed on both sides alike, like the razor-fish. Some testaceans there are, that are entirely enveloped in shell and expose no portion of their flesh outside, as the ascidians.

Again, in regard to the shells themselves, the testaceans present differences [20] when compared with one another. Some are smooth-shelled, like the razor-fish, the mussel, and some clams, viz. those which some call milk-shells, while others are rough-shelled, such as the pool-oyster, the pinna, and certain species of clam, and the trumpet-shells; and of these some are ribbed, such as the scallop and a certain [25] kind of clam, and some are devoid of ribs, as the pinna and another species of clam. Testaceans also differ from one another in regard to the thickness or thinness of their shell, both as regards the shell in its entirety and as regards specific parts of the shell, for instance, the lips; for some have thin-lipped shells, like the mussel, and others have thick-lipped shells, like the pool-oyster. Some also are capable of [30] motion, like the scallop, and indeed some aver that scallops can actually fly, owing to the circumstance that they often jump right out of the apparatus by means of which they are caught; others are incapable of motion and are attached fast to some external object, as is the case with the pinna. All the spiral-shaped testaceans can move and creep, and even the limpet relaxes its hold to go in quest of food. Common [528b1] to these and to all hard-shelled creatures is the smoothness of the inside of the shell. In the case of the univalves and the bivalves, the fleshy substance adheres to the shell so tenaciously that it can only be removed by an effort; in the case of those that [5] are spiral-shaped, it is more loosely attached. And a peculiarity of all of these is the spiral twist of the shell in the part farthest away from the head; they are also furnished from birth with an operculum. And, further, all spiral-shaped testaceans have their shells on the right-hand side, and move not in the direction of the spire, [10] but the opposite way.14 Such are the diversities observed in the external parts of these animals.

The internal structure is almost the same in all these creatures, and in the spiral-shaped ones especially; for it is in size that these latter differ from one another, and in excess or defect of their characteristics. And there is not much [15] difference between most of the univalves and bivalves; but while they differ from one another but slightly, they differ considerably from such as are incapable of motion. And this will be illustrated more satisfactorily hereafter.

The spiral-shaped testaceans are all similarly constructed, but differ from one another, as has been said, in the way of excess or defect (for the larger species have [20] larger and more conspicuous parts, and the smaller have smaller and less conspicuous), and, furthermore, in relative hardness or softness, and in other such properties. All of them have the flesh that extrudes from the mouth of the shell, hard and stiff; some more, and some less. From the middle of this protrudes the head and two horns, and these horns are large in the large species, but exceedingly [25] minute in the smaller ones. The head protrudes from them all in the same way; and, if the animal be alarmed, the head draws in again. Some of these creatures have a mouth and teeth, as the snail; teeth sharp, and small, and delicate. They have also a proboscis just like that of the fly; and the proboscis is tongue-shaped. The [30] trumpet-shell and the purple murex have this organ firm and solid; and just as the horse-fly and the gadfly can pierce the skin of a quadruped, so is this proboscis proportionately stronger in these testaceans; for they bore right through the shells [529a1] of their prey. The stomach follows close upon the mouth, and this organ in the snail resembles a bird’s crop. Underneath come two white firm formations, like breasts; and similar formations are found in the cuttlefish also, only that they are of a firmer consistency in the cuttle-fish. After the stomach comes an oesophagus, simple and [5] long, extending to the poppy, which is in the innermost recess of the shell. These are clear in the case of the purple murex and the trumpet-shell, within the whorl of the shell. What comes next to the oesophagus is the gut; in fact, the gut is continuous with the oesophagus,15 and runs its whole length uncomplicated to the [10] outlet of the residuum. The gut has its point of origin in the region of the coil of the poppy, and is wider hereabouts [for the poppy is for the most part a sort of excretion in all testaceans];16 it then takes a bend and runs up again towards the fleshy part, and terminates by the side of the head, where the animal discharges its residuum; [15] and this holds good in the case of all spiral-shaped testaceans, whether terrestrial or marine. From the stomach there is drawn in a parallel direction with the oesophagus, in the larger snails, a long white duct enveloped in a membrane, resembling in colour the breast-like formations higher up; and in it are nicks, as in [20] the egg-mass of the crayfish, except that it is white in colour whereas the egg is red. This formation has no outlet nor duct, but is enveloped in a thin membrane with a narrow cavity in its interior. And from the gut downward extend black and rough formations, in close connexion, something like the formations in the tortoise, only not so black. Marine snails, also, have these formations, and the white ones, only that the formations are smaller in the smaller species. [25]

The univalves and bivalves are in some respects similar in construction, and in some respects dissimilar, to the spiral testaceans. They all have a head and horns, and a mouth, and the organ resembling a tongue; but these organs, in the smaller species, are indiscernible owing to the minuteness of these animals, and some are indiscernible even when the animals are dead or motionless. They all have the poppy, but not all in the same place, nor of equal size, nor similarly open to [30] observation; thus, the limpets have this organ deep down in the bottom of the shell, and the bivalves at the hinge connecting the two valves. They also have in all cases the hairy growths in a circular form, as in the scallops. And, with regard to the [529b1] so-called egg, in those that have it, when they have it, it is situated in one of the semi-circles of the periphery, as is the case with the white formation in the snail; for this white formation in the snail corresponds to the so-called egg. But all these parts, as has been stated, are clear in the larger species, while in the small ones they are [5] almost or altogether indiscernible. Hence they are most plainly visible in the large scallops; and these are the bivalves that have one valve flat-shaped, like the lid of a pot. The outlet of the excretion is in sea-creatures17 on one side; for there is a passage whereby the excretion passes out. [And the poppy, as has been stated, is an [10] excretion in all these animals—an excretion enveloped in a membrane.]18 The so-called egg has no outlet in any of these creatures, but is merely an excrescence in the fleshy mass; and it is not situated in the same region with the gut, but the egg is situated on the right-hand side, and the gut on the left. Such are the relations of the anal vent in most of these animals; but in the case of the wild limpet (called by some [15] the sea-ear), the residuum issues beneath the shell; for the shell is perforated. In this particular limpet the stomach is seen coming after the mouth, and the egg-shaped formations are discernible. But for the relative positions of these parts you are referred to the Anatomies.

The so-called hermit crab is in a way intermediate between the crustaceans [20] and the testaceans. In its nature it resembles the crayfish kind, and it is born simple of itself, but by its habit of introducing itself into a shell and living there it resembles the testaceans, and so appears to partake of the characters of both kinds. In shape, to put it simply, it resembles a spider, only that the part below the head and thorax [25] is larger in this creature than in the spider. It has two thin red horns, and underneath these horns two long eyes, not retreating inwards, nor turning sideways like the eyes of the crab, but protruding straight out; and underneath these eyes the mouth, and round about the mouth several hair-like growths, and next after these [30] two bifurcate legs, whereby it draws in objects towards itself, and two other legs on either side, and a third small pair. All below the thorax is soft, and when opened is found to be sallow-coloured within. From the mouth there runs a single passage [530a1] right on to the stomach, but the passage for the excretions is not discernible. The legs and the thorax are hard, but not so hard as those of the crab. It does not adhere [5] to its shell like the purple murex and the trumpet-shell, but can easily be loosened. It is longer when found in spiral shells than when found in the shell of the neritae.

The19 animal found in the shell of the neritae is a separate species, like the other in most respects; but of its bifurcate feet or claws, the right-hand one is small and the left-hand one is large, and it progresses chiefly by the aid of this latter one. [10] In the shells20 of these animals, and in certain others, there is found a parasite whose mode of attachment is similar. The particular one which we have just described is named the cyllarus.

The nerites has a smooth large round shell, and resembles the trumpet-shell in [15] shape, only the poppy is, in its case, not black but red. It clings with great force near the middle. In calm weather, then, they go free afield, but when the wind blows the hermit-crabs take shelter against the rocks: the neritae themselves cling fast like limpets; and the same is the case with the haemorrhoid and all others of the like [20] kind. And they cling to the rock, when they turn back their operculum; for this operculum seems like a lid; in fact this structure represents the one part, in those with spiral shells, of that which in the bivalves is a duplicate shell. The interior of the animal is fleshy, and the mouth is inside. And it is the same with the haemorrhoid, the purple murex, and all suchlike animals.

[25] Such of the crabs as have the left foot the bigger of the two are found in the neritae, but not in spiral shells. There are some snail-shells which have inside them creatures resembling those little lobsters that are also found in fresh water. These [30] creatures, however, differ in having the part inside the shell soft. But as to their characters, you are referred to the Anatomies.

5 · The urchins are devoid of flesh, and this is a character peculiar to them; and while they are in all cases empty and devoid of any flesh within,21 they are in all cases furnished with the black formations. There are several species of the urchin, [530b1] and one of these is that which is made use of for food; this is the kind in which are found the so-called eggs, large and edible, in the larger and smaller specimens alike; for even when as yet very small they are provided with them. There are two other [5] species, the spatangus, and the so-called bryssus; these are sea-creatures and scarce. Further, there are the ‘mother-urchins’, the largest in size of all the species. In addition to these there is another species, small in size, but furnished with large hard spines; it lives in the sea at a depth of several fathoms; and is used by some [10] people as a specific for cases of strangury. In the neighbourhood of Torone there are sea-urchins of a white colour, shells, spines, eggs and all, and that are longer than the ordinary sea-urchin. The spine in this species is not large nor strong, but rather limp; and the black formations in connexion with the mouth are more than usually numerous, and communicate with the external duct, but not with one another; in [15] point of fact, the animal is in a manner divided up by them. The edible urchin moves with greatest freedom and most often; and this is indicated by the fact that these urchins have always something or other on their spines.

All urchins are supplied with eggs, but in some of the species the eggs are exceedingly small and unfit for food. The urchin has what we may call its head and its mouth down below, and a place for the issue of the residuum up above; [and this [20] same property is common to all spiral-shells and to limpets].22 For the food on which the creature lives lies down below; consequently the mouth is near the food, and the excretion is above, near to the back of the shell. The urchin has five hollow teeth inside, and in the middle of these teeth a fleshy substance serving the office of a [25] tongue. Next to this comes the oesophagus, and then the stomach, divided into five parts, and filled with excretion, all the five parts uniting at the anal vent, where the shell is perforated. Underneath the stomach, in another membrane, are the so-called eggs, identical in number in all cases, and that number is always an odd [30] number, to wit five. Up above, the black formations are attached to the starting-point of the teeth, and they are bitter to the taste, and unfit for food. A similar or at least an analogous formation is found in many animals; as, for instance, in the tortoise, the toad, the frog, the spiral shells and in the molluscs; but the formation [531a1] varies here and there in colour, and in all cases is altogether uneatable, or more or less unpalatable. In reality the body23 of the urchin is continuous from one end to the other, but to outward appearance it is not so, but looks like a lantern with its surrounding skin missing. The urchin uses its spines as feet; for it rests its weight on [5] these, and then by moving them shifts from place to place.

6 · The so-called ascidian has of all these animals the most remarkable characteristics. It is the only mollusc that has its entire body concealed within its [10] shell, and the shell is a substance intermediate between hide and shell, so that it cuts like a piece of hard leather. It is attached to rocks by its shell, and is provided with two passages placed at a distance from one another, very minute and hard to see, whereby it admits and discharges the sea-water; for it has no visible excretion—just [15] as of shell fish in general some resemble the urchin in this matter of excretion, and others are provided with the so-called mecon. If the animal be opened, it is found to have, in the first place, a sinewy membrane running round inside the shell-like substance, and within this membrane is the flesh-like substance of the ascidian, not resembling that in other molluscs; but this flesh is the same in all ascidia. And this [20] substance is attached in two places to the membrane and the skin, obliquely; and at the point of attachment the space is narrowed at each side, where the fleshy substance stretches towards the passages that lead outwards through the shell; and here it discharges and admits food and liquid matter, just as it would if one of the passages were a mouth and the other an anal vent; and one of the passages is [25] somewhat wider than the other one. Inside it has a pair of cavities, one on either side, a small partition separating them; and one of these two cavities contains the liquid. The creature has no other part whether instrumental or sensory, nor, as was [30] said in the case of the others, is it furnished with any organ connected with excretion. The colour of the ascidian is in some cases sallow, and in other cases red.

There is, furthermore, the genus of the sea-anemones, peculiar in its way. The sea-anemone clings to rocks like certain of the testaceans, but at times relaxes its [531b1] hold. It has no shell, but its entire body is fleshy. It has the faculty of perception, and, if you put your hand to it, it will seize and cling to it, as the octopus would do with its feelers, and in such a way as to make the flesh of your hand swell up. Its mouth is in the centre of its body, and it lives adhering to the rock as an oyster to its [5] shell. Just as it clings to your hand, so it does to little fish and to anything edible that comes in its way; and it feeds upon sea-urchins and scallops. Another species of the sea-anemone roams freely abroad. The sea-anemone appears to be devoid altogether of excretion, and in this respect it resembles a plant. Of sea-anemones [10] there are two species, the lesser and more edible, and the large hard ones, such as are found in the neighbourhood of Chalcis. In winter time their flesh is firm, and accordingly they are sought after as articles of food, but in summer weather they go off, for they become thin and watery, and if you catch at them they break at once [15] into bits, and cannot be taken off the rocks entire; and being oppressed by the heat they tend to slip back into the crevices of the rocks.

So much for the external and the internal parts of molluscs, crustaceans, and testaceans.

7 · We now proceed to treat of insects in like manner. This genus comprises [20] many species, and, though several kinds are clearly related to one another, these are not classified under one common designation, as in the case of the bee, the hornet, the wasp, and all such insects, and again as in the case of those that have their wings in a sheath, like the cockchafer, the stag-beetle, the blister-beetle, and the like.

[25] Insects have three parts common to them all; the head, the trunk containing the stomach, and a third part in between these two, corresponding to what in other creatures embraces chest and back. In the majority of insects this intermediate part is single; but in the long and many-footed insects it has practically the same number of segments as of nicks.

[30] All insects when cut in two continue to live, excepting such as are extremely cold, or such as from their minute size chill rapidly; though wasps continue living after severance. In conjunction with the middle portion either the head or the [532a1] stomach can live, but the head cannot live by itself. Insects that are long in shape and many-footed can live for a long while after being cut in two, and the severed portions can move in either direction: they can move either in the direction of the section or in the direction of the tail, as is observed in the millipedes.

[5] All insects have eyes, but no other organ of sense discernible, except that some insects have a kind of a tongue corresponding to a similar organ common to all testaceans; and by this organ such insects taste and imbibe their food. In some insects this organ is soft; in other insects it is firm; as it is in the purple-fish. In the [10] horsefly and the gadfly this organ is hard, and indeed it is hard in most insects. In point of fact, such insects as have no sting in the rear use this organ as a weapon (and such insects as are provided with this organ are unprovided with teeth, with the exception of a few insects); the fly by a touch can draw blood with this organ, and the gnat can prick with it.

Certain insects are furnished with stings. Some insects have the sting inside, as [15] the bee and the wasp, others outside, as the scorpion; and this is the only insect furnished with a long tail. And, further, the scorpion is furnished with claws, as is also the creature resembling a scorpion found within the pages of books.

In addition to their other organs, flying insects are furnished with wings. Some insects are double-winged, as the fly; others are furnished with four wings, as the [20] bee; and no insect with only two wings has a sting in the rear. Again, some winged insects have a sheath for their wings, as the cockchafer; whereas in others the wings are unsheathed, as in the bee. But in the case of all alike, flight is in no way modified by the rump, and the wing is devoid of quill-structure or division of any kind. [25]

Again, some insects have antennae in front of their eyes, as the butterfly and the stag-beetle. Of those that have the power of jumping, some have the hinder legs the longer; and others have ‘paddles’ which bend backwards like the hind-legs of quadrupeds. All insects have the belly different from the back; as, in fact, is the case [30] with all animals. The flesh of an insect’s body is neither shell-like nor is it flesh-like in the way of the internal substance of shell-covered animals; but it is something intermediate in quality. That is why they have neither spine, nor bone, nor anything [532b1] like sepia-bone, nor enveloping shell; but their body by its hardness is its own protection and requires no extraneous support. However, insects have a skin; but the skin is exceedingly thin. These and such-like are the external parts of insects. [5]

Internally, next after the mouth, comes a gut, in the majority of cases straight and simple down to the outlet of the residuum; but in a few cases the gut is coiled. No insect is provided with any viscera, or is supplied with fat; and these statements apply to all animals devoid of blood. Some have a stomach also, and attached to this the rest of the gut, either simple or convoluted as in the case of the grasshopper. [10]

The cicada, alone of such creatures (and, in fact, alone of all creatures), is unprovided with a mouth, but it is provided with the tongue-like formation found in insects furnished with frontward stings; and this formation in the cicada is long, continuous, and devoid of any split; and by the aid of this the creature feeds on dew, and on dew only, and in its stomach no excretion is ever found. Of the cicada there [15] are several kinds, and they differ from one another in relative magnitude, and in this respect that the chirper is provided with a cleft under the hypozoma and has in it a membrane quite discernible, while the cicadelle does not.

Furthermore, there are some strange creatures to be found in the sea, which from their rarity we are unable to classify. Some experienced fishermen affirm that [20] they have at times seen in the sea animals like sticks, black, rounded, and of the same thickness throughout; and others resembling shields, red in colour, and furnished with fins packed close together; and others resembling the male organ in shape and size, with a pair of fins in the place of the testicles, and they aver that on [25] one occasion a creature of this description was brought up on the end of a nightline.

So much then for the parts, external and internal, exceptional and common, of all animals.

8 · We now proceed to treat of the senses; for there are diversities in animals [30] with regard to the senses, seeing that some animals have the use of all the senses, and others the use of a limited number of them. The total number of the senses (for we have no experience of any special sense not here included), is five: sight, hearing, smell, taste, and touch.

Man, then, and all vivipara that have feet, and, further, all red-blooded [533a1] ovipara, plainly have the use of all the five senses, except where some isolated species has been subjected to mutilation, as in the case of the mole. For this animal is deprived of sight; it has no eyes visible, but if the skin—a thick one—be stripped [5] off the head, about the place in the exterior where eyes usually are, the eyes are found inside in a stunted condition, furnished with all the parts found in ordinary eyes; that is to say, we find there the black part, the part inside it called the pupil, and the fatty part surrounding it; but all these parts are smaller than the same parts [10] in visible eyes. There is no external sign of the existence of these organs owing to the thickness of the skin, so that it would seem that its nature was stunted in the course of development; [for extending from the brain at its junction with the marrow are two strong sinewy ducts running past the sockets of the eyes, and terminating at the [15] upper eye teeth].24 All the other animals have a perception of colour and of sound, and the senses of smell and taste; the fifth sense, that, namely, of touch, is common to all animals whatsoever.

In some animals the organs of sense are plainly discernible; and this is [20] especially the case with the eyes. For animals have a special locality for the eyes, and also a special locality for hearing: that is to say, some animals have ears, while others have the passage for sound discernible. It is the same with the sense of smell; that is to say, some animals have nostrils, and others have the passages for smell, [25] such as birds. It is the same also with the organ of taste, the tongue. Of aquatic red-blooded animals, fishes possess the organ of taste, namely the tongue, but it is in an imperfect form, in other words it is osseous and undetached. In some fish the palate is fleshy, as in the fresh-water carp, so that by an inattentive observer it [30] might be mistaken for a tongue.

There is no doubt but that fishes have the sense of taste, for a great number of them delight in special flavours; and fishes freely take the hook if it be baited with a piece of flesh from a tunny or from any fat fish, obviously enjoying the taste and the [533b1] eating of bait of this kind. Fishes have no visible organs for hearing or for smell; for what might appear to indicate an organ for smell in the region of the nostril has no communication with the brain—in some cases these are blind alleys, and in other cases lead only to the gills; but for all this fishes undoubtedly hear and smell. For [5] they are observed to run away from any loud noise, such as would be made by the rowing of a galley, so as to become easy of capture in their holes; for though a sound be very slight in the open air, it has a loud and alarming resonance to creatures that hear under water. And this is shown in the capture of the dolphin; for when the [10] hunters have enclosed a shoal with their canoes, they set up from inside the canoes a loud splashing in the water, and by so doing induce the creatures to run in a shoal high and dry up on the beach, and so capture them while stupefied with the noise. And yet, for all this, the dolphin has no organ of hearing discernible. Furthermore, when engaged in their craft, fishermen are particularly careful to make no noise [15] with oar or net; and after they have spied a shoal, they let down their nets at a spot so far off that they count upon no noise being likely to reach the shoal, occasioned either by oar or by the surging of their boats through the water; and the crews are [20] strictly enjoined to preserve silence until the shoal has been surrounded. And, at times, when they want the fish to crowd together, they adopt the stratagem of the dolphin-hunter; in other words they clatter stones together, that the fish may, in their fright, gather close into one spot, and so they envelop them within their nets. [Before surrounding them, then, they preserve silence, as was said; but, after [25] hemming the shoal in, they call on every man to shout aloud and make any kind of noise; for on hearing the noise and hubbub the fish are sure to tumble into the nets from sheer fright.]25 Further, when fishermen see a shoal of fish feeding at a distance, disporting themselves in calm bright weather on the surface of the water, [30] if they are anxious to descry the size of the fish and to learn what kind of a fish it is, they may succeed in coming upon the shoal whilst yet basking at the surface if they sail up without the slightest noise, but if any man make a noise previously, the shoal will be seen to scurry away in alarm. Again, there is a small river-fish called the [534a1] cottus; this creature burrows under a rock, and fishers hunt it by clattering stones against the rock, and the fish bewildered at the noise, darts out of its hiding-place. From these facts it is quite obvious that fishes can hear; and indeed some people, [5] from living near the sea and frequently witnessing such phenomena, affirm that of all living creatures the fish is the quickest of hearing. And of all fishes the quickest of hearing are the mullet, the basse, the salpe, the chromis and such like. Other fishes are less quick of hearing, and thus are more apt to be found living at the [10] bottom of the sea.

The case is similar in regard to the sense of smell. Thus, as a rule, fishes will not touch a bait that is not fresh, neither are they all caught by one and the same bait, but by special ones which they distinguish by their sense of smell; for some fishes are attracted by malodorous baits, as the saupe, for instance, is attracted by [15] excrement. Again, a number of fishes live in caves; and accordingly fishermen, when they want to entice them out, smear the mouth of a cave with strong-smelling pickles, and the fish are soon attracted to the smell. And the eel is caught in a [20] similar way; for the fisherman lays down an earthen pot that has held pickles, after inserting a strainer in its neck. As a general rule, fishes are more quickly attracted by savoury smells. For this reason, fishermen roast the fleshy parts of the cuttlefish and use it as bait on account of its smell; for fish are peculiarly attracted by it; they [25] also bake the octopus and bait their weels with it, entirely, as they say, on account of its smell. Furthermore, gregarious fishes, if fish-washings or bilge-water be thrown overboard, are observed to scud off to a distance, from apparent dislike of the smell. [534b1] And it is asserted that they can at once detect by smell the presence of their own blood; and this faculty is manifested by their hurrying off to a great distance whenever fish-blood is spilt in the sea. And, as a general rule, if you bait your weel with a stinking bait, the fish refuse to enter the weel or even to draw near; but if you [5] bait the weel with a fresh and savoury bait, they come at once from long distances and swim into it. [And all this is particularly manifest in the dolphin; for, as was stated, it has no visible organ of hearing, and yet it is captured when stupefied with noise; and so, while it has no visible organ for smell, it has the sense of smell [10] remarkably keen.]26 It is manifest, then, that the animals above mentioned are in possession of all the five senses.

All other animals may, with very few exceptions, be comprehended within four [15] genera: to wit, molluscs, crustaceans, testaceans, and insects. Of these, the mollusc, the crustacean, and the insect have all the senses; for they have both27 smell and taste. As for insects, both winged and wingless, they can detect the presence of scented objects afar off, as for instance bees and cnipes detect the presence of honey [20] at a distance; and they do so recognizing it by smell. Many insects are killed by the smell of brimstone; ants leave their ant-hills if powdered origanum and brimstone is scattered round them; and most insects may be banished with burnt hart’s horn, or [25] better still by the burning of the gum styrax. The cuttle-fish, the octopus, and the crayfish may be caught by bait. The octopus, in fact, clings so tightly to the rocks that it cannot be pulled off, but remains attached even when being cut; and yet, if you apply fleabane to the creature, it drops off at the very smell of it. The facts are [535a1] similar in regard to taste. For the food that insects go in quest of is of diverse kinds, and they do not all delight in the same flavours; for instance, the bee never settles on anything rotten, but on things sweet; and the gnat settles only on acid substances [5] and not on sweet. The sense of touch, as has been remarked, is common to all animals. Testaceans have the senses of smell and taste—as is plain from the use of baits, e.g. in the case of the purple-fish; for this creature is enticed by putrefying baits, which it perceives and is attracted to from a great distance. The proof that it [10] possesses a sense of taste is the same; for whenever an animal is attracted to a thing by perceiving its smell, it is sure to like the taste of it. Further, all animals furnished with a mouth derive pleasure or pain from the touch of sapid juices.

With regard to sight and hearing, we cannot make statements with thorough [15] confidence or on clear evidence. However, the razor-fish, if you make a noise, appears to burrow in the sand, and to hide himself deeper when he hears the approach of the iron rod (for the animal juts a little out of its hole, while the greater part of the body remains within),—and scallops, if you present your finger near their open valves, close them tight again as though they could see what you were [20] doing. Furthermore, when fishermen are laying bait for neritae, they always get to leeward of them, and never speak a word while so engaged, believing that the animal can smell and hear; and they assure us that, if any one speaks aloud, the creature makes efforts to escape. With regard to testaceans, of the walking species the urchin appears to have the least developed sense of smell; and, of the stationary species, the ascidian and the barnacle. [25]

So much for the organs of sense in the general run of animals. We now proceed to treat of voice.

9 · Voice and sound are different from one another; and language differs from voice and sound. The fact is that no animal can give utterance to voice except [30] by the action of the pharynx, and consequently such animals as are devoid of lung have no voice; and language is the articulation of voice by the tongue. Thus, the voice and larynx can emit vowel sounds; consonantal sounds are made by the tongue and the lips; and out of these language is composed. Consequently, animals that [535a1] have no tongue at all or that have a tongue not freely detached, have no language; although they may be enabled to make sounds by other organs than the tongue.

Insects, for instance, have no voice and no language, but they can emit sound by internal air, though not by the emission of air; for no insects are capable of respiration. But some of them make a humming noise, like the bee and the other [5] winged insects; and others are said to sing, as the cicada. And all these latter insects make their sounds by means of the membrane that is underneath the hypozoma—those insects, that is to say, whose body is thus divided; as for instance, one species of cicada, which makes the sound by means of the friction of the air. Flies and bees, and the like, produce their special noise by opening and shutting their wings in the act of flying; for the noise made is by the friction of the internal air. The noise made [10] by grasshoppers is produced by rubbing with their ‘paddles’.

No mollusc or crustacean can produce any natural voice or sound. Fishes can produce no voice, for they have no lungs, nor windpipe and pharynx; but they emit [15] certain sounds and squeaks, which is what is called their ‘voice’, as the gurnard, and the sciaena (for these fishes make a grunting kind of noise) and the caprus in the river Achelous, and the chalcis and the cuckoo-fish; for the chalcis makes a sort of piping sound, and the cuckoo-fish makes a sound greatly like the cry of the cuckoo, and is named from the circumstance. The apparent voice in all these fishes is a [20] sound caused in some cases by a rubbing motion of their gills, which are prickly, or in other cases by internal parts about their bellies; for they all have air inside them, by rubbing and moving which they produce the sounds. Some of the selachia seem to squeak.

But in these cases the term ‘voice’ is inappropriate; the more correct expression [25] would be ‘sound’. For the scallop, when it goes along supporting itself on the water, which is called ‘flying’, makes a whizzing sound; and so does the sea-swallow; for this fish flies in the air, clean out of the water, being furnished with fins broad and long. Just then as in the flight of birds the sound made by their wings is not voice, so [30] is it in the case of all these other creatures.

The dolphin, when taken out of the water, gives a squeak and moans in the air, [536a1] but these noises do not resemble those above mentioned. For this creature has a voice, for it is furnished with a lung and a windpipe; but its tongue is not loose, nor has it lips, so as to give utterance to an articulate sound.

[5] Of animals which are furnished with tongue and lung, the oviparous quadrupeds28 produce a voice, but a feeble one; in some cases, a shrill piping sound, like the serpent; in others, a thin faint cry;29 in others, a low hiss, like the tortoise. The formation of the tongue in the frog is exceptional. The front part of the tongue, which in other animals is detached, is tightly fixed in the frog as it is in all fishes; but [10] the part towards the pharynx is freely detached and folded and it is with this that it makes its peculiar croak. The croaking that goes on in the water is the call of the males to the females at rutting time; for all animals have a special cry for mating [15] and copulation as is observed in the case of goats, swine, and sheep. [The frog makes its croaking noise by putting its under jaw on a level with the surface of the water and extending its upper jaw. The tension is so great that the upper jaw becomes transparent, and the animal’s eyes shine through the jaw like lamps; for the commerce of the sexes takes place usually in the night time.]30

[20] Birds can utter voiced sounds; and such of them can articulate best as have the tongue flat, and also such as have thin delicate tongues. In some cases, the male and the female utter the same note; in other cases, different notes. The smaller birds are more vocal and given to chirping than the larger ones; but in the pairing season [25] every species of bird becomes particularly vocal. Some of them call when fighting, as the quail, others cry when challenging to combat, as the partridge, or when victorious, as the cock. In some cases males and females sing alike, as is observed in [30] the nightingale, only that the female stops singing when brooding or rearing her young; in other birds, the males sing alone; in fact, with fowls and quails, the female does not sing.

[536b1] Viviparous quadrupeds utter voiced sounds of different kinds, but they have no language. In fact, this is peculiar to man. For while whatever has language has voice, not everything that has voice has language. Men that are born deaf are in all [5] cases also dumb; that is, they can make vocal sounds, but they cannot speak. Children, just as they have no control over other parts, so have no control, at first, over the tongue; but it is so far imperfect, and only detaches itself by degrees, so that in the interval children for the most part lisp and stutter.

Vocal sounds and modes of language differ according to locality. Vocal sounds [10] are characterized chiefly by their pitch, whether high or low, and the kinds of sound do not differ within the same genus; but articulate sound, that one might reasonably designate language, differs both in various animals, and also in the same species according to diversity of locality; as for instance, some partridges cackle, and some [15] make a shrill twittering noise. Of little birds, some sing a different note from the parent birds, if they have been removed from the nest and have heard other birds singing; and a mother-nightingale has been observed to give lessons in singing to a young bird, thus suggesting that language is not natural in the same way as voice [20] but can be artificially trained. Men have the same voice, but they differ from one another in language.

The elephant makes a vocal sound of a wind-like sort by the mouth alone, unaided by the trunk, just like the sound of a man panting or sighing; but, if it employ the trunk as well, the sound produced is like that of a hoarse trumpet.

10 · With regard to the sleeping and waking of animals, all creatures that [25] are red-blooded and provided with legs give sensible proof that they go to sleep and that they waken up from sleep; for all animals that are furnished with eyelids shut them up when they go to sleep. Furthermore, it would appear that not only do men dream, but horses also, and dogs, and oxen, and sheep, and goats, and all [30] viviparous quadrupeds; and dogs show their dreaming by barking in their sleep. With regard to oviparous animals we cannot be sure that they dream, but most undoubtedly they sleep. And the same may be said of water animals, such as fishes, molluscs, crustaceans, to wit crayfish and the like. These animals sleep without [537a1] doubt, although their sleep is of very short duration. The proof of their sleeping cannot be got from the condition of their eyes—for none of these creatures are furnished with eyelids—but can be obtained only from their motionless repose.

[Apart from the irritation caused by lice and what are called fleas, fish are met [5] with in a state so motionless that one might easily catch them by hand; and, as a matter of fact, these little creatures, if the fish remain long in one position, will attack them in myriads and devour them. For they are found in the depths of the sea, and are so numerous that they devour any bait made of fish’s flesh if it be left [10] long on the ground at the bottom; and fishermen often draw up a sort of ball of them, all clinging on to the bait.]31

But it is from the following facts that we may more reasonably infer that fishes sleep. Very often it is possible to take a fish off its guard so far as to catch hold of it or to give it a blow unawares; and all the while the fish is quite still but for a slight [15] motion of the tail. And it is quite obvious that the animal is sleeping, from its movements if any disturbance be made during its repose; for it moves just as you would expect in a creature suddenly awakened. Further, owing to their being asleep, fish may be captured by torchlight. The watchmen in the tunny-fishery often take [20] advantage of the fish being asleep to envelop them in a circle of nets; and it is quite obvious that they were thus sleeping by their lying still and allowing the glistening under-parts of their bodies to become visible, while the capture is taking place. They sleep in the night-time more than during the day; and so soundly at night that you may cast the net without making them stir. Fish, as a general rule, sleep close to the ground, or to the sand or to a stone at the bottom, or after concealing themselves [25] under a rock or the ground. Flat fish go to sleep in the sand; and they can be distinguished by the outlines of their shapes in the sand, and are caught in this position by being speared with pronged instruments. The basse, the gilthead, the mullet, and fish of the like sort are often caught in the daytime by the prong owing to their having been surprised when sleeping; for it is scarcely probable that such [30] fish could be pronged while awake. The selachia sleep at times so soundly that they may be caught by hand. The dolphin and the whale, and all such as are furnished [537b1] with a blow-hole, sleep with the blow-hole over the surface of the water, and breathe through the blow-hole while they keep up a quiet flapping of their fins; indeed, some have actually heard the dolphin snoring.

[5] Molluscs sleep like fishes, and crustaceans also. It is plain also that insects sleep; for there can be no mistaking their condition of motionless repose. In the bee the fact of its being asleep is very obvious; for at night-time bees are at rest and cease to hum. But the fact that insects sleep may be very well seen in the case of [10] common everyday creatures; for not only do they rest at night-time from dimness of vision (for all hard-eyed creatures see but indistinctly), but even if a lighted candle be presented they continue sleeping quite as soundly.

[15] Of all animals man is most given to dreaming. Children and infants do not dream, but in most cases dreaming comes on at the age of four or five years. Instances have been known of men and women that have never dreamed at all; in cases of this kind, it has been observed that when a dream occurs in advanced life it [20] is followed by bodily change leading to death for some and to debility for others.

So much then for sensation and for the phenomena of sleeping and awakening.

11 · Some animals are divided into male and female, but others are not so [25] divided, but can only be said in a comparative way to bring forth young and to be pregnant. In animals that live confined to one spot there is no duality of sex; nor is there such, in fact, in any testaceans. In molluscs and in crustaceans we find male and female: and, indeed, in all animals furnished with feet and blood, whether biped [30] or quadruped; in short, in all such as by copulation engender either live young or egg or grub. In the several genera, with however certain exceptions, there either absolutely is or absolutely is not a duality of sex. Thus, in quadrupeds the duality is universal, while the absence of such duality is universal in testaceans, and of these [538a1] creatures, as with plants, some individuals are fruitful and some are not.

But among insects and fishes, some cases are found wholly devoid of this duality of sex. For instance, the eel is neither male nor female, and can engender nothing. In fact, those who assert that eels are at times found with hair-like or [5] worm-like or seaweed-like objects within them, make only random assertions from not having carefully noticed the locality of such attachments. For no animal of this kind is ever viviparous unless previously oviparous; and none was ever yet seen with an egg. And animals that are viviparous have their young in the womb and closely attached, and not in the belly; for, if the embryo were kept in the belly, it would be [10] subjected to the process of digestion like ordinary food. When people rest duality of sex in the eel on the assertion that the head of the male is bigger and longer, and the head of the female smaller and more snubbed, they are taking diversity of species for diversity of sex.

There are certain fish that are named capon-fish, and fish of this description [15] are found in fresh water, as the carp and the balagrus. This sort of fish never has either roe or milt; but they are hard and fat all over, and are furnished with a small gut; and these fish are regarded as of excellent quality.

Again, just as in testaceans and in plants there is what bears and engenders, but not what impregnates, so is it, among fishes, with the psetta, the erythrinus, and [20] the channe; for these fish are in all cases found furnished with eggs.

As a general rule, in red-blooded animals furnished with feet and not oviparous, the male is larger and longer-lived than the female (except with the mule, where the female is longer-lived and bigger than the male); whereas in [25] oviparous and vermiparous creatures, as in fishes and in insects, the female is larger than the male; as for instance, with the serpent, the venom-spider, the gecko, and the frog. The same difference in size of the sexes is found in fishes, as, for instance, in the smaller selachia, in the greater part of the gregarious species, and in all that live in and about rocks. The fact that the female is longer-lived than the male is [538b1] clear from the fact that female fishes are caught older than males. Furthermore, in all animals the upper and front parts are better, stronger, and more thoroughly equipped in the male than in the female, whereas the hinder and underparts are [5] more delicate than those of the females. And this statement is applicable to man and to all vivipara that have feet. Again, the female is less muscular and less compactly jointed, and more thin and delicate in the hair—that is, where hair is found; and, where there is no hair, less strongly furnished in some analogous substance. And the female is more flaccid in texture of flesh, and more knock- kneed, [10] and the shin-bones are thinner; and the feet are more delicate in such animals as are furnished with feet. And with regard to voice, the female in all animals that are vocal has a thinner and sharper voice than the male; except with cattle, for the lowing of the cow has a deeper note than that of the bull. With regard [15] to organs of defence and offence, such as teeth, tusks, horns, spurs, and the like, these in some species the male possesses and the female does not; as, for instance, the hind has no horns, and where the cock-bird has a spur the hen is entirely destitute of the organ; and in like manner the sow is devoid of tusks. In other species [20] such organs are found in both sexes, but are more perfectly developed in the male; as, for instance, the horn of the bull is more powerful than the horn of the cow.

BOOK V

1 · As to the parts internal and external that all animals are furnished with, [25] and further as to the senses, to voice, and sleep, and the duality of sex, all these topics have now been touched upon. It now remains for us to discuss, duly and in order, their several modes of propagation. [539a1]

These modes are many and diverse, and in some respects are like, and in other respects are unlike to one another. As the genera have already been divided, we must attempt to follow the same divisions in our present argument; only that [5] whereas in the former case we started with a consideration of the parts of man, in the present case it behoves us to treat of man last of all because he involves most discussion. We shall commence, then, with testaceans, and then proceed to [10] crustaceans, and then to the other genera in due order; and these other genera are molluscs, and insects, then fishes viviparous and fishes oviparous, and next birds; and afterwards we shall treat of animals provided with feet, both such as are oviparous and such as are viviparous; and we may observe that some quadrupeds are [15] viviparous, but that the only viviparous biped is man.

Now there is one property that animals are found to have in common with plants. For some plants are generated from the seed of plants, whilst other plants are self-generated through the formation of some principle similar to a seed; and of [20] these some derive their nutriment from the ground, whilst others grow inside other plants, as is mentioned in my treatise on Plants. So with animals some spring from parent animals according to their kind, whilst others grow spontaneously and not from kindred stock; and of these some come from putrefying earth or vegetable matter, as is the case with a number of insects, while others are spontaneously [25] generated in the inside of animals out of the secretions of their several organs.

In animals where generation takes place from animals of the same kind, wherever there is duality of sex generation is due to copulation. In the group of fishes, however, there are some that are neither male nor female, and these, while they are identical generically with other fish, differ from them specifically; but [30] there are others that stand altogether isolated and apart by themselves. Other fishes there are that are always female and never male, and from them are produced eggs like the wind-eggs in birds. Such eggs in birds are all unfruitful; but it is their nature to be independently capable of generation up to the egg-stage, unless indeed there [539b1] be some other mode than the one familiar to us of intercourse with the male; but concerning these topics we shall treat more precisely later on. In the case of certain fishes, however, after they have spontaneously generated eggs, these eggs develop into living animals; only that in certain of these cases development is spontaneous, [5] and in others is not independent of the male; and the method of proceeding in regard to these matters will be set forth by and by, for the method is somewhat like to the method followed in the case of birds. But whenever creatures are spontaneously generated, either in other animals, in the soil, or on plants, or in the parts of these, and when such are generated male and female, then from the copulation of such spontaneously generated males and females there is generated a something—a [10] something never identical in shape with the parents, but a something imperfect. For instance, the issue of copulation in lice is nits; in flies, grubs; in fleas, grubs egg-like in shape; and from these issues the parent-species is never reproduced, nor is any animal produced at all, but the like things only.

First, then, we must proceed to treat of copulation in regard to such animals as [15] copulate; and then after this to treat in due order of other matters, both the exceptional and those of general occurrence.

2 · Those animals, then, copulate in which there is a duality of sex, and the modes of covering in such animals are not in all cases similar nor analogous. For the red-blooded animals that are viviparous and furnished with feet have in all cases organs adapted for procreation, but the sexes do not in all cases come together in [20] like manner. Thus, retromingent animals copulate with a rearward presentment, as is the case with the lion, the hare, and the lynx; though in the case of the hare, the female often first mounts the male.

The case is similar in most other such animals; that is to say, the majority of quadrupeds copulate as best they can, the male mounting the female; and this is the [25] only method of copulating adopted by birds, though there are certain diversities of method observed even in birds. For in some cases the female squats on the ground and the male mounts on top of her, as is the case with the bustard, and the domestic [30] fowl; in other cases, the male mounts without the female squatting, as with the crane; for, with these birds, the male mounts on to the back of the female and covers her, and like the cock-sparrow consumes but very little time in the operation. Of quadrupeds, bears perform the operation lying prone on one another, in the same [540a1] way as other quadrupeds do while standing up; that is to say, with the belly of the male pressed to the back of the female. Hedgehogs copulate erect, belly to belly.

With regard to large-sized vivipara, the hind only very rarely allows the stag to complete the act and the same is the case with the cow as regards the bull, owing to [5] the rigidity of the penis of the bull. In point of fact, the females elicit the sperm in the act of withdrawing from underneath him; and this phenomenon has been observed in the case of the hind, domesticated, of course. Covering with the wolf is the same as with the dog. Cats do not copulate with a rearward presentment, but the male stands erect and the female puts herself underneath him; and the female cat is [10] naturally lecherous, and wheedles the male on to sexual commerce, and caterwauls during the operation. Camels copulate with the female in a sitting posture, and the male straddles over and covers her, not with the hinder presentment but like the [15] other quadrupeds, and they pass the whole day long in the operation; when thus engaged they retire to lonely spots, and none but their keeper dare approach them. And the penis of the camel is so sinewy that bow-strings are manufactured out of it. Elephants, also, copulate in lonely places, and especially by river-sides in their usual [20] haunts; the female squats down, and straddles with her legs, and the male mounts and covers her. The seal covers like all retromingent animals, and in this species the copulation extends over a lengthened time, as is the case with the dog and bitch; and [25] the penis in the male seal is exceptionally large.

3 · Oviparous quadrupeds cover one another in the same way. That is to say, in some cases the male mounts the female precisely as in the viviparous animals, as is observed in both the land and the sea tortoise. . . .1 And these creatures have an [30] organ in which the ducts converge, and with which they perform the act of copulation, as is also observed in the toad,2 the frog, and all other animals of the same group.3

[540b1] 4 · Long animals devoid of feet, like serpents and muraenae, intertwine in coition, belly to belly. And, in fact, serpents coil round one another so tightly as to present the appearance of a single serpent with a pair of heads. The same mode is followed by the saurians; that is to say, they coil round one another in the act of [5] coition.

5 · All fishes, with the exception of the flat selachians, lie side by side, and copulate belly to belly. Fishes, however, that are flat and furnished with tails—as the ray, the sting-ray and the like—copulate not only in this way, but also, where [10] the tail from its thickness is no impediment, by mounting of the male upon the female, belly to back. But the angel-fish, and other like fishes where the tail is large, copulate only by rubbing against one another sideways, belly to belly. Some men assure us that they have seen some of the selachia copulating hindways, like dog and [15] bitch. In all the selachian species the female is larger than the male; and the same is the case with other fishes for the most part. And among selachia are included, besides those already named, the ox-fish, the lamia, the aetos, the torpedo, the fishing-frog, and all the dogfish. Selachia, then, of all kinds, have in many instances [20] been observed copulating in the way above mentioned; for in all viviparous animals the process of copulation is of longer duration than in the ovipara.

It is the same with the dolphin and with all cetaceans; that is to say, they come side by side, male and female, and copulate, and the act extends over a time which is neither short nor very long.

[25] Again, in selachian fishes the male, in some species, differs from the female in the fact that he is furnished with two appendages hanging down from about the exit of the residuum, and that the female is not so furnished—this is observed in e.g. the dog-fish.

Now neither fishes nor any animals devoid of feet are furnished with testicles, [30] but male serpents and male fishes have a pair of ducts which fill with milt at the rutting season, and discharge, in all cases, a milk-like juice. These ducts unite, as in [541a1] birds; for birds have their testicles in their interior, and so have all ovipara that are furnished with feet. And this union of the ducts is so far continued4 and of such extension as to enter the receptive organ in the female.

In viviparous animals furnished with feet there is outwardly one and the same [5] duct for the sperm and the liquid residuum; but there are separate ducts internally, as has been observed before in the differentiation of the organs. And with such animals as are not viviparous the same passage serves externally for the discharge also of the solid residuum; although, internally, there are two passages near to one another. And these remarks apply to both male and female; for these animals are [10] unprovided with a bladder except in the case of the tortoise; and the she-tortoise, though furnished with a bladder, has only one passage; and tortoises belong to the ovipara.

In the case of oviparous fishes the process of coition is less open to observation. That is why most people suppose that the female becomes impregnated by swallowing the milt of the male. And there can be no doubt that this proceeding is [15] often witnessed; for at the rutting season the females follow the males and perform this operation, and strike the males with their mouths under the belly, and the males are thereby induced to part with the sperm sooner and more plentifully. And, further, at the spawning season the males go in pursuit of the females, and, as the female spawns, the males swallow the eggs; and the species is continued in existence by the spawn that survives this process. On the coast of Phoenicia they catch them [20] by means of one another: that is to say, by using the male of the grey mullet as a decoy they collect and net the female, and by using the female, the male.

The repeated observation of this phenomenon has led to the notion that the process was equivalent to coition, but the fact is that a similar phenomenon is observable in quadrupeds. For at the rutting seasons both the males and the females [25] spray, and the two sexes take to smelling each other’s genitals.

[With partridges, if the female gets to leeward of the male, she becomes thereby impregnated. And often when they happen to be in heat she is affected in this way by the voice of the male, or by his breathing down on her as he flies [30] overhead; and both the male and the female partridge keep the mouth wide open and protrude the tongue in the process of coition.]5

The actual process of copulation on the part of oviparous fishes is seldom accurately observed, owing to the fact that, having come alongside, they very soon part. But, for all that, the process has been observed in these cases too to take place in the manner above described.

6 · Cephalopods, such as the octopus, the cuttlefish, and the calamary, have [541b1] sexual intercourse all in the same way; that is to say, they unite at the mouth, by an interlacing of their tentacles. When, then, the octopus rests its so-called head against the ground and spreads abroad its tentacles, the other fits into the [5] outspreading of these tentacles, and the two then bring their suckers into mutual connexion.

Some assert that the male has a kind of penis in one of his tentacles, the one in which are the two largest suckers; and they further assert that the organ is sinewy in [10] character, growing attached right up to the middle of the tentacle, which is admitted into the nostril of the female.

Now cuttlefish and calamaries swim about closely intertwined, with mouths and tentacles facing one another and fitting closely together; and they fit their so-called nostrils into one another, and the one sex swims backwards and the other [15] frontwards during the operation. And the female lays its spawn by the so-called ‘blow-hole’; and some declare that it is at this organ that the coition really takes place.

7 · Crustaceans copulate, as the crayfish, the lobster, the carid6 and the like, just like the retromingent quadrupeds, when the one animal turns up its tail and the [20] other puts his tail on the other’s tail. Copulation takes place in the early spring, near to the shore; and, in fact, the process has often been observed in the case of all these animals. Sometimes it takes place about the time when the figs begin to ripen. [25] Lobsters and carids copulate in like manner.

Crabs copulate at the front parts of one another, throwing their overlapping opercula to meet one another: first the smaller crab mounts the larger at the rear; after he has mounted, the larger one turns on one side. Now, the female differs in no [30] respect from the male except in the circumstance that its operculum is larger, more elevated, and more hairy, and into this operculum it spawns its eggs and in the same neighbourhood is the outlet of the residuum. In the copulative process of these animals there is no protrusion of a member from one animal into the other.

[542a1] 8 · Insects copulate at the hinder end, and the smaller individuals mount the larger; and the smaller individual is the male. The female pushes from underneath her sexual organ into the body of the male above, not the male into the female, as in other creatures; and this organ in the case of some insects appears to be [5] disproportionately large when compared to the size of the body, and that too in very minute creatures; in some insects the disproportion is not so striking. This phenomenon may be witnessed if any one will pull asunder flies that are copulating—but they are hard to separate; for the intercourse of the sexes in their case is of long duration, as may be observed with common everyday insects, such as the fly [10] and the cantharis. They all copulate in the manner above described, the fly, the cantharis, the sphondyle, [the phalangium spider],7 and any others of the kind that copulate at all. The phalangia—that is to say, such of the species as spin webs—perform the operation in the following way: the female takes hold of the suspended web at the middle and gives a pull, and the male gives a counter pull; this [15] operation they repeat until they are drawn in together and interlaced at the hinder ends; for this mode of copulation suits them in consequence of the rotundity of their stomachs.

So much for the mode of sexual intercourse in all animals; but, for each kind of animal, there are definite seasons and ages for copulation.

[20] Animals in general seem naturally disposed to this intercourse at about the same period of the year, and that is when winter is changing into summer. And this is the season of spring, in which almost all things that fly or walk or swim take to [25] pairing. Some animals pair and breed in autumn also and in winter, as is the case with certain aquatic animals and certain birds. Man pairs and breeds at all seasons, as is the case also with domesticated animals, owing to the shelter and good feeding they enjoy: that is to say, with those whose period of gestation is also comparatively brief, as the sow and the bitch, and with those birds that breed frequently. Many [30] animals time the season of intercourse with a view to the right nurture subsequently of their young. In the human species, the male is more under sexual excitement in [542b1] winter, and the female in summer.

With birds the far greater part, as has been said, pair and breed during the spring and early summer, with the exception of the halcyon.

The halcyon breeds at the season of the winter solstice. Accordingly, when this season is marked with calm weather, the name of ‘halcyon days’ is given to the seven [5] days preceding, as to as many following, the solstice; as Simonides the poet says:—

God lulls for fourteen days the winds to sleep

In winter; and this temperate interlude

Men call the Holy Season, when the deep [10]

Cradles the mother Halcyon and her brood.

And these days are calm, when southerly winds prevail at the solstice, northerly ones having been the accompaniment of the Pleiads. The halcyon is said to take seven days for building her nest, and the other seven for laying and hatching her eggs. In our country there are not always halcyon days about the time of the solstice, [15] but in the Sicilian seas this season of calm is pretty regular. The bird lays about five eggs.

9 · The shearwater and the gull lay their eggs on rocks bordering on the sea, [20] two or three at a time; but the gull lays in the summer, and the shearwater at the beginning of spring, just after the solstice, and it broods over its eggs as birds do in general. And neither of these birds resorts to a hiding-place.

The halcyon is the most rarely seen of all birds. It is seen only about the time of the setting of the Pleiads and the solstice. When ships are lying at anchor, it will [25] hover about a vessel and then disappear in a moment, and Stesichorus alludes to this peculiarity. The nightingale also breeds at the beginning of summer, and lays five or six eggs; from autumn until spring it retires to a hiding-place. [30]

Insects copulate and breed in winter also, when the weather is fine and south winds prevail; such, I mean, as do not hibernate, as the fly and the ant. The greater part of wild animals bring forth once and once only in the year, except in the case of animals like the hare, where the female can become superfoetally impregnated.

In like manner the great majority of fishes breed only once a year, like the shoal-fishes (or, in other words, such as are caught in nets), the tunny, the pelamys, [543a1] the grey mullet, the chalcis, the mackerel, the sciaena, the psetta and the like, with the exception of the basse; for this fish (alone amongst those mentioned) breeds twice a year, and the second brood is the weaker of the two. The trichias and the rock-fishes breed twice a year; the red mullet alone breeds thrice—this is inferred [5] from the spawn; for the spawn of the fish may be seen in certain places at three different times of the year. The scorpaena breeds twice a year. The sargue breeds twice, in the spring and in the autumn. The saupe breeds once a year only, in the autumn. The female tunny breeds only once a year, but owing to the fact that the fish in some cases spawn early and in others late, it looks as though the fish bred [10] twice over. The first spawning takes place in Posideon before the solstice, and the latter spawning in the spring. The male tunny differs from the female in being unprovided with the fin beneath the belly which is called aphareus.

10 · Of selachia, the angel-fish is the only one that breeds twice; for it breeds [15] at the beginning of autumn, and at the setting of the Pleiads; and it is in better condition in the autumn. It engenders at a birth seven or eight young. Certain of the dog-fishes, for example the spotted dog, seem to breed twice a month, and this results from the circumstance that the eggs do not all reach maturity at the same time.

[20] Some fishes breed at all seasons, as the muraena. This animal lays a great number of eggs at a time; and the young when hatched are very small but grow with great rapidity, like the young of the hippurus; for these fishes from being diminutive at the outset grow with exceptional rapidity to an exceptional size. But whereas the muraena breeds at all seasons, the hippurus breeds only in the spring. The smyrus [25] differs from the muraena; for the muraena is mottled and weakly, whereas the smyrus is strong and of one uniform colour, and the colour resembles that of the pine-tree, and the animal has teeth inside and out. They say that in this case, as in other similar ones, the one is the male, and the other the female. They come out on to the land, and are frequently caught.

[30] Fishes, then, as a general rule, attain their full growth with great rapidity, but this is especially the case, among small fishes, with the crow-fish: it spawns near the [543b1] shore, in weedy and tangled spots. The sea-perch, too, is small at first, and rapidly attains a great size. The pelamys and the tunny breed in the Euxine, and nowhere else. The mullet, the gilt-head, and the basse, breed best where rivers run into the [5] sea. The orcys, the mackerel, and many other species spawn in the open sea.

11 · Fish for the most part breed during the three months of Munichion, Thargelion and Scirrophorion. Some few breed in autumn: as, for instance, the saupe and the sargus, and such others of this sort as breed shortly before the autumn equinox; likewise the electric ray and the angel-fish. Other fishes breed even in [10] winter and in summer, as was previously observed: as, for instance, in winter-time the basse, the grey mullet, and the pipe-fish; and in summer time, in the month of Hecatombaion, the female tunny, about the time of the summer solstice; and the tunny lays a sac-like enclosure in which are contained a number of small eggs. The shoal-fishes breed in summer.

[15] Of the grey mullets, the chelon begins to be in roe in Posideon; as also the sargue, and the myxon, and the cephalus; and their period of gestation is thirty days. And some of the grey mullet species are not produced from copulation, but grow from mud and sand.

As a general rule, then, fishes are in roe in the springtime; while some, as has [20] been said, are so in summer, in autumn, or in winter. But it does not occur in the same way for all—neither in general nor among members of the same genus—as it does for most of those that breed in the spring; and, further, conception in these variant seasons is not so prolific. And, indeed, we must bear this in mind, that just as [25] with plants and quadrupeds diversity of locality has much to do not only with general physical health but also with the comparative frequency of sexual intercourse and generation, so also with regard to fishes locality of itself has much to do not only in regard to the size and vigour of the creature, but also in regard to its parturition and its copulations, causing the same species to breed oftener in one [30] place and seldomer in another.

12 · The cephalopods also breed in spring. Of the marine cephalopods one of [544a1] the first to breed is the cuttlefish. It spawns at all times of the day and its period of gestation is fifteen days. After the female has laid her eggs, the male comes and discharges the milt over the eggs, and the eggs thereupon harden. And they go about in pairs; and the male is more mottled and more black on the back than the [5] female.

The octopus pairs in winter and breeds in spring, lying hidden for about two months. Its spawn is shaped like a vine-tendril, and resembles the fruit of the white poplar; the creature is extraordinarily prolific, for the number of individuals that come from the spawn is something incalculable. The male differs from the female in [10] the fact that its head is longer, and that the organ called by the fishermen its penis, in the tentacle, is white. The female, after laying her eggs, broods over them, and in consequence gets out of condition, by reason of not going in quest of food during the hatching period.

The purple murex breeds about spring-time, and the trumpet-shell at the close [15] of the winter. And, as a general rule, the testaceans are found to be furnished with their so-called eggs in springtime and in autumn, with the exception of the edible urchin; for this animal has the so-called eggs in most abundance in these seasons, but at no season is unfurnished with them; and it is furnished with them in especial abundance in warm weather or when a full moon is in the sky—except for the [20] sea-urchin found in the Pyrrhaean Straits, for this urchin is at its best in the winter; and these urchins are small but full of eggs.

Snails are found by observation to become in all cases impregnated about the same season.

13 · Of birds the wild species, as has been stated, as a general rule pair and [25] breed only once a year. The swallow, however, and the blackbird breed twice. With regard to the blackbird, however, its first brood is killed by inclemency of weather (for it is the earliest of all birds to breed), but the second brood it usually succeeds in rearing.

Birds that are domesticated or that are capable of domestication breed frequently, just as the common pigeon breeds all through the summer, and as is seen [30] in the fowl; for the cock and hen have intercourse, and the hen breeds, at all seasons except during the days about the winter solstice.

[Of the pigeon family there are many kinds; for the common pigeon is not [544b1] identical with the rock-pigeon: the rock-pigeon is smaller than the common pigeon, and is less easily domesticated; it is also black, and small, red-footed and rough-footed; and in consequence of these peculiarities it is neglected by the [5] pigeon-fancier. The largest of all the pigeon species is the ring-dove; and the next in size is the stock-dove; and the stock-dove is a little larger than the common pigeon. The smallest of all the species is the turtle-dove. Pigeons breed and hatch at all seasons, if they are furnished with a sunny place and all requisites; unless they are [10] so furnished, they breed only in the summer. The spring brood is the best, or the autumn brood. The summer brood and those produced in hot periods are the worst.]8

14 · Further, animals differ from one another in regard to the time of life that is best adapted for sexual intercourse.

[15] To begin with, in most animals the secretion of the seminal fluid and its generative capacity are not phenomena simultaneously manifested, but manifested successively. Thus, in all animals, the earliest secretion of sperm is unfruitful, or if it be fruitful the issue is comparatively poor and small. And this phenomenon is especially observable in man, in viviparous quadrupeds, and in birds; for in the case [20] of man and the quadruped the offspring is smaller, and in the case of the bird, the egg.

For animals that copulate, of one and the same species, the age for maturity is in most species tolerably uniform, unless it occurs prematurely by reason of abnormality, or is postponed by physical injury.

In man, then, maturity is indicated by a change of the tone of voice, by an [25] increase in size and an alteration in appearance of the sexual organs, as also of the breasts; and above all, in the hair-growth at the pubes. Man begins to possess seminal fluid about the age of fourteen, and becomes generatively capable at about the age of twenty-one years.

In other animals there is no hair-growth at the pubes (for some animals have [30] no hair at all, and others have none on the belly, or less on the belly than on the back), but still, in some animals the change of voice is quite obvious; and in some animals other organs give indication of the commencing secretion of the sperm and the onset of generative capacity. As a general rule the female is sharper-toned in [545a1] voice than the male, and the young animal than the elder; for the stag has a much deeper-toned bay than the hind. Moreover, the male cries chiefly at rutting time, and the female under terror and alarm; and the cry of the female is short, and that [5] of the male prolonged. With dogs also, as they grow old, the tone of the bark gets deeper.

There is a difference observable also in the neighings of horses. That is to say, the female foal has a thin small neigh, and the male foal a small neigh, yet bigger and deeper-toned than that of the female, and a louder one as time goes on. And [10] when they are two years old and take to breeding, the neighing of the stallion becomes loud and deep, and that of the mare louder and shriller than heretofore; and this change usually goes on until they reach the age of twenty years; and after this time the neighing in both sexes becomes weaker.

[15] As a rule, then, as was stated, the voice of the male differs from the voice of the female, in animals where the voice admits of a prolonged sound, in the fact that the note in the male voice is deeper; not, however, in all animals, for the contrary holds good in the case of some, as for instance in cattle; for here the cow has a deeper note than the bull, and the calves a deeper note than the adults. And that is why gelded animals change their voice in the opposite direction; for male animals that [20] undergo this process assume the characters of the female.

The following are the ages at which various animals become capacitated for sexual commerce. The ewe and the she-goat are sexually mature when one year old, and the she-goat more definitely so; the ram and the he-goat are sexually mature at [25] the same age. The progeny of very young individuals among these animals differs from that of others; for the males improve in the course of the second year, when they become fully mature.9 The boar and the sow are capable of intercourse when eight months old, and the female brings forth when one year old, the difference corresponding to her period of gestation. The boar is capable of generation when [30] eight months old, but, with a sire under a year in age, the litter is apt to be a poor one. The ages, however, are not invariable; now and then the boar and the sow are capable of intercourse when four months old, and are capable of producing a litter [545b1] which can be reared when six months old; but at times the boar begins to be capable of intercourse when ten months. He continues sexually mature until he is three years old. The dog and the bitch are, as a rule, sexually capable and sexually receptive when a year old, and sometimes when eight months old; but this is more [5] common with the dog than with the bitch. The period of gestation with the bitch is sixty days, or sixty-one, or sixty-two, or sixty-three at the utmost; the period is never under sixty days, or, if it is, the litter comes to no good. The bitch, after delivering a litter, submits to the male in six months, but not before. The horse and the mare are, [10] at the earliest, sexually capable and sexually mature when two years old; the issue, however, of parents of this age is small and poor. As a general rule these animals are sexually capable when three years old, and they grow better for breeding purposes until they reach twenty years. The stallion is sexually capable up to the age of [15] thirty-three years, and the mare up to forty, so that, in point of fact, the animals are sexually capable all their lives long; for the stallion, as a rule, lives for about thirty-five years, and the mare for over forty; although a horse has been known to live to the age of seventy-five. The ass and the she-ass are sexually capable when [20] thirty months old; but, as a rule, they are not generatively mature until they are three years old, or three years and a half. An instance has been known of a she-ass bearing and bringing forth a foal when only a year old. A cow has been known to calve when only a year old, and the calf grew as big as might be expected, but no more. So much for the dates at which these animals attain to generative capacity. [25] In the human species, the male is generative, at the longest, up to seventy years, and the female up to fifty; but such extended periods are rare, for few produce children at those ages. As a rule, the male is generative up to the age of sixty-five, and to the age of forty-five the female is capable of conception. [30]

The ewe bears up to eight years, and, if she be carefully tended, up to eleven years; in fact, the ram and the ewe are sexually capable pretty well all their lives [546a1] long. He-goats, if they be fat, are less serviceable for breeding; and this is the reason why they say of a vine when it stops bearing that it is ‘running the goat’. However, if an over-fat he-goat be thinned down, he becomes sexually capable and generative.

[5] Rams single out the oldest ewes for copulation, and show no regard for the young ones. And, as has been stated, the issue of the younger ewes is poorer than that of the older ones.

The boar is good for breeding purposes until he is three years of age; but after that age his issue deteriorates, for after that age his vigour is on the decline. The [10] boar normally mates after a good feed, and with the first sow it mounts; otherwise the copulation is slightly longer, and the litter is comparatively poor. The first litter of the sow is the fewest in number; at the second litter she is at her prime. The animal, as it grows old, continues to breed, but mates more slowly. When they reach [15] fifteen years, they become unproductive, and are getting old. If a sow be highly fed, it is all the more eager for sexual commerce, whether old or young; but, if it be over-fattened in pregnancy, it gives the less milk after parturition. With regard to the age of the parents, the litter is the best when they are in their prime; but with regard to the seasons of the year, the litter is the best that comes at the beginning of winter; and the summer litter the poorest, consisting of animals small and thin and [20] flaccid. The boar, if it be well fed, is sexually capable at all hours, night and day; but otherwise is peculiarly salacious early in the morning. As it grows old the sexual passion dies away, as we have already remarked. Very often a boar, when more or less impotent from age or debility, finds itself unable to accomplish the sexual [25] commerce with due speed: then the sow, growing fatigued with the standing posture, will roll over on the ground, and the pair will conclude the operation side by side of one another. The sow is sure of conception if it drops its lugs in rutting time; if the ears do not thus drop, it may have to rut a second time before impregnation takes place.

Bitches do not submit to the male throughout their lives, but only until they reach a certain maturity of years. As a general rule, they are sexually receptive and [30] conceptive until they are twelve years old; although cases have been known where dogs and bitches have been respectively procreative and conceptive to the ages of eighteen and even of twenty years. But age diminishes the capability of generation and of conception with these animals as with all others.

[546b1] The female of the camel is retromingent, and submits to the male in the way above described; and the season for copulation in Arabia is about the month of Maemacterion. Its period of gestation is twelve months; and it is never delivered of [5] more than one foal at a time. The female becomes sexually receptive and the male sexually capable at the age of three years. After parturition, an interval of a year elapses before the female is again receptive to the male.

The female elephant becomes sexually receptive when ten years old at the youngest, and when fifteen at the oldest; and the male is sexually capable when five years old, or six. The season for intercourse is spring. The male allows an interval of [10] three years to elapse after commerce with a female; and, after it has once impregnated a female, it has no intercourse with her again. The period of gestation with the female is two years; and only one young animal is produced at a time, in other words it is uniparous. And the embryo is the size of a calf two or three months old.

15 · So much for the copulations of such animals as copulate. We now proceed to treat of generation both with respect to copulating and non-copulating [15] animals, and we shall commence with discussing the subject of generation in the case of the testaceans.

The testacean is almost the only genus that throughout all its species is non-copulative.

The purple murices gather together to some one place in the spring-time, and deposit the so-called ‘honey-comb’ This substance resembles the comb, only that it [20] is not so neat; and looks as though a number of husks of white chick-peas were all stuck together. But none of these structures has any open passage, and the murex does not grow out of them, but these and all other testaceans grow out of mud and decaying matter. The substance is a sort of excretion of the trumpet-shell and the [25] murex; for it is deposited by the trumpet-shell as well. Such, then, of the testaceans as deposit the honeycomb are generated like all other testaceans, but they certainly come in greater abundance in places where their congeners have been living previously. At the commencement of the process of depositing the honeycomb, they throw off a slippery mucus, and of this the husklike formations are composed. These [30] formations, then, all melt and deposit their contents on the ground, and at this spot there are found on the ground a number of minute murices, and murices are caught at times with these animalculae upon them, some of which are too small to be differentiated in form. If the murices are caught before producing this honey-comb, [547a1] they sometimes go through the process in fishing-creels, not here and there in the baskets, but gathering to some one spot all together, just as they do in the sea; and owing to the narrowness of their new quarters they cluster together like a bunch of grapes.

There are many species of the purple murex; and some are large, as those found off Sigeum and Lectum; others are small, as those found in the Euripus, and [5] on the coast of Caria. And those that are found in bays are large and rough; in most of them the bloom is dark, in others it is reddish and small in size; some of the large ones weigh upwards of a mina apiece. But the specimens that are found along the coast and on the beaches are small-sized, and the bloom in their case is of a reddish [10] hue. Further, as a general rule, in northern waters the bloom is blackish, and in southern waters of a reddish hue. The murex is caught in the spring-time when engaged in the construction of the honeycomb; but it is not caught at any time about the rising of the dog-star, for at that period it does not feed, but conceals itself and burrows. [The bloom of the animal is situated between the ‘poppy’ and the neck, [15] and the co-attachment of these is an intimate one. In colour it looks like a white membrane, and this is what people extract; and if it be squeezed it stains your hand with the colour of the bloom. There is a kind of vein that runs through it, and this would appear to be in itself the bloom. And the rest of its substance is somewhat [20] astringent.10] It is after the murex has constructed the honey-comb that the bloom is at its worst. Small specimens they break in pieces, shells and all, for it is no easy matter to extract the organ; but in dealing with the larger ones they first strip off the shell and then abstract the bloom. For this purpose the neck and poppy are [25] separated, for the bloom lies in between them, above the so-called stomach; hence the necessity of separating them in abstracting the bloom. Fishermen are anxious always to break the animal in pieces while it is yet alive, for, if it die before the process is completed, it vomits out the bloom; and for this reason the fishermen keep the animals in creels, until they have collected a sufficient number and can attend to them at their leisure. Fishermen in past times used not to lower creels or attach [30] them to the bait, so that very often the animal got dropped off in the pulling up; at present, however, they always attach a basket, so that if the animal fall off it is not lost. The animal is more inclined to slip off the bait if it be full inside; if it be empty [547b1] it is actually difficult to shake it off. Such are the phenomena peculiar to the murex.

The trumpet-shell comes into existence in the same way and at the same season as the murex. Both animals also have opercula, as do all the stromboids, and this is [5] congenital with them all; and they feed by protruding the so-called tongue underneath the operculum. The tongue of the murex is bigger than one’s finger, and by means of it, it feeds, and perforates conchylia and the shells of its own kind. Both the murex and the trumpet-shell are long-lived. The murex lives for about six years; [10] and the yearly increase is indicated by a distinct interval in the spiral convolution of the shell.

The mussel also constructs a honey-comb.11

With regard to the lagoon oysters, wherever you have slimy mud there you are sure to find them beginning to grow. Cockles and clams and razor-fishes and [15] scallops grow in sandy places. The pinna grows straight up from the bottom in sandy and slimy places; [these creatures have inside them a pinna-guard, in some cases a small carid and in other cases a little crab; if the pinna be deprived of this pinna-guard it soon dies.]12

As a general rule, then, all testaceans grow by spontaneous generation in mud, differing from one another according to the differences of the material; oysters [20] growing in slime, and cockles and the other testaceans above mentioned on sandy bottoms; and in the hollows of the rocks the ascidian and the barnacle, and common sorts, such as the limpet and the nerites. All these animals grow with great rapidity, especially the murex and the scallop; for the murex and the scallop attain their full [25] growth in a year. In some of the testaceans white crabs are found, very diminutive in size; they are most numerous in the trough-shaped mussel. In the pinna also is found the so-called pinna-guard. They are found also in the scallop and in the lagoon [30] oyster; they never appear to grow in size. Fishermen declare that they come into being at the same time as their hosts. Scallops burrow for a time in the sand, like the murex.

Shell-fish, then, grow in the way above mentioned; and some of them grow in shallow water, some on the seashore, some in muddy places, some on hard and stony [548a1] ground, and some in sandy places. Some shift about from place to place, others do not. Of those that keep to one spot the pinnae are rooted to the ground; the [5] razor-fish and the clam keep to the same locality, but are not so rooted; but still, if forcibly removed they die.

[The star-fish is naturally so warm that whatever it lays hold of is found, when suddenly taken away from the animal, to be scorched. Fishermen say that the star-fish is a great pest in the Strait of Pyrrha. In shape it resembles a star as seen in [10] a drawing. The so-called sea-lungs are generated spontaneously. The shells that painters use are a good deal thicker, and the bloom is outside the shell on the surface. These creatures are mostly found on the coast of Caria.]13

The hermit-crab grows out of soil and slime, and finds its way into untenanted [15] shells. As it grows it shifts to a larger shell, as for instance into the shell of the nerites, or of the strombus or the like, and very often into that of the small trumpet-shell. After entering a new shell, it carries it about, and begins to feed [again; and, by and by, as it grows, it shifts again into another larger one].14 [20]

16 · Moreover, the animals that are unfurnished with shells grow like the testaceans, as, for instance, the sea-anemones and the sponges in rocky caves.

Of the sea-anemone there are two species; and of these one species lives in hollows and never loosens its hold upon the rocks, and the other lives on smooth flat [25] reefs, free and detached, and shifts its position from time to time. [Limpets also detach themselves, and shift from place to place.]15

In the chambered cavities of sponges pinna-guards are found. And over the chambers there is a kind of spider’s web, by the opening and closing of which they catch minute fishes; that is to say, they open the web to let the fish get in, and close [30] it again to entrap them.

Of sponges there are three species; the first is of porous texture, the second is close-textured, the third, which is nicknamed ‘the sponge of Achilles’, is exceptionally [548b1] fine and close-textured and strong. This sponge is used as a lining to helmets and greaves, for the purpose of deadening the sound of the blow; and this is a very scarce species. Of the close-textured sponges such as are particularly hard and rough are nicknamed ‘goats’.

Sponges grow either attached to a rock or on sea-beaches, and they get their [5] nutriment in slime: a proof of this statement is the fact that when they are first secured they are found to be full of slime. This is characteristic of all living creatures that get their nutriment by close local attachment. And the close-textured sponges are weaker than the more porous ones because their attachment extends [10] over a smaller area.

It is said that the sponge is sensitive; and as a proof of this statement they say that if the sponge is made aware of an attempt being made to pluck it from its place of attachment it draws itself together, and it becomes a difficult task to detach it. It makes a similar movement in windy and boisterous weather with the object of tightening its hold. Some persons express doubts as to the truth of this assertion; as, [15] for instance, the people of Torone.

The sponge breeds animals in itself—worms and other creatures—on which, if they be detached, the rock-fishes prey, as they prey also on the remaining stumps of the sponge; but, if the sponge be broken off, it grows again from the remaining stump and the place is soon as well covered as before.

The largest of all sponges are the loose-textured ones, and these are peculiarly [20] abundant on the coast of Lycia. The softest are the close-textured sponges; for the so-called sponges of Achilles are harder than these. As a general rule, sponges that are found in deep calm waters are the softest; for windy and stormy weather has a tendency to harden them (as it has to harden all similar growing things), and to arrest their growth. And this accounts for the fact that the sponges found in the Hellespont are rough and close-textured; and, as a general rule, sponges found [25] beyond or inside Cape Malea are, respectively, comparatively soft or comparatively hard. But the habitat of the sponge should not be too warm, for it has a tendency to decay, like all growing things. And this accounts for the fact that the sponge is at its best when found in deep water close to shore; for owing to the depth of the water they are well protected against both conditions.

Whilst they are still alive and before they are washed, they are blackish in [30] colour. Their attachment is not made at one particular spot, nor is it made all over their bodies; for vacant pore-spaces intervene. There is a kind of membrane stretched over the under parts; [and the points of attachment are the more [549a1] numerous.]16 On the top most of the pores are closed, but four or five are visible; and we are told by some that it is through these pores that the animal takes its food.

There is a particular species that is named the ‘unwashable’, from the [5] circumstance that it cannot be cleaned. This species has the large pores, but all the rest of the body is close-textured; and, if it be dissected, it is found to be closer and more glutinous than the ordinary sponge, and the whole thing is something lung-like in consistency. And, on all hands, it is allowed that this species is sensitive and long-lived. They are distinguished in the sea from ordinary sponges from the [10] circumstance that the ordinary sponges are white while the slime is in them,17 but that these sponges are under any circumstances black.

And so much with regard to sponges and to generation in the testaceans.

[15] 17 · Of crustaceans, the female crayfish after copulation conceives and retains its eggs for about three months, during Scirrophorion, Hecatombaion, and Metageitnion; they then lay the eggs into the folds underneath the belly, and their eggs grow like grubs. This same phenomenon is observable in cephalopods also, and in such fishes as are oviparous; for in all these cases the egg continues to grow.

The egg of the crayfish is of a loose consistency, and is divided into eight parts; [20] for corresponding to each of the flaps on the side there is a gristly formation to which the spawn is attached, and the entire structure resembles a cluster of grapes; for each gristly formation is split into several parts. This is obvious enough if you draw the parts asunder; but at first sight the whole appears to be one and indivisible. [25] And the largest are not those nearest to the outlet but those in the middle, and the farthest off are the smallest. The size of the small eggs is that of a fig-seed; and they are not quite close to the outlet, but placed middleways; for at both ends, tailwards [30] and trunkwards, there are two intervals; for it is thus that the flaps also grow. The side flaps, then, cannot close, but by placing the end flap on them the animal can close up all, and this end-flap serves them for a lid. And in the act of laying its eggs it seems to bring them towards the gristly formations by curving the flap of its tail, [549b1] and then, squeezing the eggs forwards and maintaining a bent posture, it performs the act of laying. The gristly formations at these seasons increase in size and become receptive of the eggs; for the animal lays its eggs into these formations, just as the [5] cuttlefish lays its eggs among twigs and driftwood.

It lays its eggs, then, in this manner, and after maturing them for about twenty days it rids itself of them all in one solid lump, as is quite plain from outside. And out of these eggs crayfish form in about fifteen days, and these are often caught less [10] then a finger’s breadth in length. The animal, then, lays its eggs before the middle of September, and after the middle of that month throws off its eggs in a lump. With the prawns the time for gestation is four months or thereabouts.

Crayfish are found in rough and rocky places, lobsters in smooth places, and neither are found in muddy ones; and this accounts for the fact that lobsters are found in the Hellespont and on the coast of Thasos, and crayfish in the [15] neighbourhood of Sigeum and Mount Athos. Fishermen, accordingly, when they want to catch these various creatures out at sea, take bearings on the beach and elsewhere that tell them where the ground at the bottom is stony and where soft with slime. In winter and spring these animals keep in near to land, in summer they [20] keep in deep water; thus at various times seeking respectively for warmth or coolness.

The so-called bear-crab lays its eggs at about the same time as the crayfish; and consequently in winter and in the spring-time, before laying their eggs, they are at their best, and after laying at their worst.

They cast their shell in the spring-time (just as serpents shed their slough), [25] both directly after birth and in later life; this is true both of crabs and crayfish. And all crayfish are longlived.

18 · Cephalopods, after pairing and copulation, lay a white egg; and this spawn, as in the case of the testacean, gets granular in time. The octopus discharges [30] into its hole, or into a potsherd or into any similar cavity, a structure resembling the tendrils of a young vine or the fruit of the white poplar, as has been previously observed. The eggs, when the female has laid them, are clustered round the sides of [550a1] the hole. They are so numerous that, if they be removed, they suffice to fill a vessel much larger than the animal’s body in which they were contained. Some fifty days [5] later, the eggs burst and the little octopuses creep out, like little spiders, in great numbers; the characteristic form of their limbs is not yet to be discerned in detail, but their general outline is clear enough. And they are so small and helpless that the greater number perish; it is a fact that they have been seen so extremely minute as to be absolutely without organization, but nevertheless when touched they moved. [10] The eggs of the cuttlefish look like big black myrtle-berries, and they are linked all together like a bunch of grapes, clustered round a centre, and are not easily sundered from one another; for the male exudes over them some moist mucus which [15] constitutes the sticky gum. These eggs increase in size; and they are white at the outset, but black and larger after the sprinkling of the male seminal fluid.

When it has come into being the young cuttlefish is first distinctly formed inside out of the white substance, and when the egg bursts18 it comes out. The inner part is formed as soon as the female lays the egg, something like a hail-stone; and out of this substance the young cuttlefish grows by a head-attachment, just as [20] young birds grow by a belly-attachment. What is the exact nature of the navel-attachment has not yet been observed, except that as the young cuttlefish grows the white substance grows less and less in size, and at length, as happens with the yolk in the case of birds, the white substance in the case of the young cuttlefish disappears. In the case of the young cuttlefish, as in the case of other animals, the [25] eyes at first seem very large. To illustrate this by way of a figure, let A represent the egg, B and C the eyes, and D the young cuttlefish.

The female cuttlefish gets pregnant in the spring-time, and lays its eggs after fifteen days of gestation; after the eggs are laid there comes in another fifteen days something like a bunch of grapes, and at the bursting of these the young cuttlefish issue forth. But if, when the young ones are fully formed, you sever the outer [30] covering a moment too soon, the young creatures eject excrement, and their colour changes from white to red in their alarm.

[550b1] Crustaceans, then, hatch their eggs by brooding over them underneath their bodies; but the octopus, the cuttlefish, and the like hatch their eggs wherever they may have laid them, and this statement is particularly applicable to the cuttlefish; in fact, its sac is often seen exposed to view close in to shore. The female octopus at [5] times sits brooding over her eggs, and at other times squats in front of her hole, stretching out her tentacles.

The cuttlefish lays her spawn near to land in the neighbourhood of sea-weed or reeds or anything of the sort that has been cast up, such as brushwood, twigs, or stones; and fishermen place heaps of twigs here and there on purpose, and on to such [10] heaps the female deposits a long continuous roe in shape like a curl of hair. It lays or spirts out the spawn with an effort, as though there were difficulty in the process. The female calamary spawns at sea; and it emits the spawn, as does the cuttlefish, in the mass.

The calamary and the cuttlefish are short-lived, as, with few exceptions, they never see the year out; and the same statement is applicable to the octopus. [15]

From one single egg comes one single cuttlefish; and this is likewise true of the young calamary.

The male calamary differs from the female; for if its gill-region be dilated and examined there are found two red formations resembling breasts, with which the male is unprovided. In the cuttlefish, apart from this distinction in the sexes, the [20] male, as has been stated, is more mottled than the female.19

19 · With regard to insects, that the male is less than the female and that he mounts upon her back, and how he performs the act of copulation and the circumstance that he gives over reluctantly, all this has already been set forth; in most cases of insect copulation this process is speedily followed up by parturition. [25]

All insects that copulate engender grubs, with the exception of a species of butterfly; and the female of this species lays a hard egg, resembling the seed of the safflower, with a juice inside it. But from the grub, the young animal does not grow out of a mere portion of it, as a young animal grows from a portion only of an egg, but the grub entire grows and the animal becomes differentiated out of it. [30]

And of insects some are derived from congeners, as the venom-spider and the common-spider from the venom-spider and the common-spider, and so with the locust, the grasshopper, and the cicada. Other insects are not derived from living parentage, but are generated spontaneously: some out of dew falling on leaves, by [551a1] nature in spring-time, but not seldom in winter too when there has been a stretch of fair weather and southerly winds; others grow in decaying mud or dung; others in timber, green or dry; some in the hair of animals; some in the flesh of animals; some [5] in excrements: and some from excrement after it has been voided, and some from excrement yet within the living animal, like the intestinal worms. And of these worms there are three species: one named the flat-worm, another the round worm, and the third the ascarid. These intestinal worms do not in any case propagate their [10] kind. The flat-worm, however, in an exceptional way, clings fast to the gut, and lays a thing like a melon-seed, by observing which indication the physician concludes that his patient is troubled with the worm.

The butterfly is generated from caterpillars which grow on green leaves, chiefly leaves of the raphanus, which some call cabbage. At first it is less than a [15] grain of millet; it then grows into a small grub; and in three days it is a tiny caterpillar. After this it grows on and on, and becomes quiescent and changes its shape, and is now called a chrysalis. The outer shell is hard, and the chrysalis moves if you touch it. It attaches itself by cobweb-like filaments, and is unfurnished with [20] mouth or any other apparent organ. After a little while the outer covering bursts asunder, and out flies the winged creature that we call the butterfly. At first, when [25] it is a caterpillar, it feeds and ejects excrement; but when it turns into the chrysalis it neither feeds nor ejects excrement.

The same remarks are applicable to all such insects as are developed out of the grub, both such grubs as are derived from the copulation of living animals and such as are generated without copulation. For the grub of the bee, the hornet, and the [551b1] wasp, whilst it is young, takes food and is seen to produce excrement; but when it has passed from the grub shape to its defined form and become what is termed a pupa, it ceases to take food and to void excrement, and remains tightly wrapped up and motionless until it has reached its full size, when it breaks the formation with [5] which the cell is closed, and issues forth. The insects named the hypera and the penia are derived from similar caterpillars, which move in an undulatory way, progressing with one part and then pulling up the hinder parts by a bend of the body. The developed insect in each case takes its peculiar colour from the caterpillar.

[10] From one particular large grub, which has as it were horns, and in other respects differs from grubs in general, there comes, by a metamorphosis of the grub, first a caterpillar, then the cocoon, then the necydalus; and the creature passes through all these transformations within six months. A class of women unwind and [15] reel off the cocoons of these creatures,20 and afterwards weave a fabric; a Coan woman of the name of Pamphila, daughter of Plateus, being credited with the first invention of the fabric. After the same fashion the stag-beetle comes from grubs that live in dry wood: at first the grub is motionless, but after a while the shell bursts and the stag-beetle issues forth.

[20] From grubs on the beet comes the leekbane;21 this creature is also winged. From the flat animalcule that skims over the surface of rivers comes the gadfly; and this accounts for the fact that gadflies most abound in the neighbourhood of waters on whose surface these animalcules are observed. From a certain small, black and [25] hairy caterpillar comes first a wingless glow-worm; and this creature again suffers a metamorphosis, and transforms into a winged insect named the ‘curl.’

Gnats grow from ascarids; and ascarids are engendered in the slime of wells, or in places where water containing an earthy deposit collects. This slime decays, and [552a1] first turns white, then black, and finally blood-red; and at this stage there originate in it, as it were, little tiny bits of red weed, which at first wriggle about all clinging together, and finally break loose and swim in the water, and are hereupon known as [5] ascarids. After a few days they stand straight up on the water motionless and hard, and by and by the husk breaks off and the gnats are seen sitting upon it, until the sun’s heat or a puff of wind sets them in motion, when they fly away.

With all grubs and all animals that break out from the grub state, movement is [10] due primarily to the heat of the sun or to wind.

Ascarids are more likely to be found, and grow with unusual rapidity, in places where there is a deposit of a mixed and heterogeneous kind, as in kitchens and in ploughed fields; for the contents of such places are disposed to rapid putrefaction. In autumn, also, owing to the drying up of moisture, they grow in unusual numbers.

The tick is generated from couch-grass. The cockchafer comes from a grub [15] that is generated in the dung of the cow or the ass. The dung-beetle rolls a piece of dung into a ball, lies hidden within it during the winter, and gives birth therein to small grubs, from which grubs come new dung-beetles. Certain winged insects also come from the grubs that are found in pulse, in the same fashion as in the cases [20] described.

Flies grow from grubs in the dung that farmers have gathered up into heaps; for those who are engaged in this work assiduously gather the remainder which has been mixed together, and this they term ‘working-up’ the manure. The grub is exceedingly minute to begin with; first—even at this stage—it assumes a reddish [25] colour, and then from a quiescent state it takes on the power of motion, as though born to it; it then becomes a small motionless grub; it then moves again, and again relapses into immobility; it then comes out a perfect fly, and moves away under the influence of the sun’s heat or of a puff of air. The horse-fly is engendered in timber. [30] The budbane comes from a transformed grub; and this grub is engendered in cabbage-stalks. The cantharis comes from the caterpillars that are found on fig-trees or pear-trees or fir-trees—for on all these grubs are engendered—and also [552b1] from caterpillars found on the dog-rose; and the cantharis takes eagerly to ill-scented substances, from the fact of its having been engendered in ill-scented woods. The conops comes from a grub that is engendered in the slime of vinegar. [5]

And living animals are produced in substances that are usually supposed to be incapable of putrefaction; for instance, grubs are found in long-lying snow; and snow of this description gets reddish in colour, and hence the grub that is engendered in it is red and hairy. The grubs found in the snows of Media are large and white; and all such grubs are little disposed to motion. In Cyprus, in places where copper-ore is smelted, with heaps of the ore piled on day after day, an animal [10] is engendered in the fire, somewhat larger than a large fly, furnished with wings, which can hop or crawl through the fire. And the grubs and these latter animals perish when you keep the one away from the fire and the other from the snow. Now the salamander is a clear case in point, to show us that animals do actually exist that fire cannot destroy; for this creature, so the story goes, not only walks through the [15] fire but puts it out in doing so.

On the river Hypanis in the Cimmerian Bosphorus, about the time of the summer solstice, there are brought down towards the sea by the stream what look like little sacks rather bigger than grapes, out of which at their bursting issues a [20] winged quadruped. The insect lives and flies about until the evening, but as the sun goes down it pines away, and dies at sunset having lived just one day, from which circumstance it is called the ephemeron.

As a rule, insects that come from caterpillars and grubs are held at first by cobwebs.22

Such is the mode of generation of the insects above enumerated. [25]

20 · The wasps called ichneumons, less in size than the ordinary wasp, kill spiders and carry off the dead bodies to a wall or some such place with a hole in it; this hole they smear over with mud and lay their grubs inside it, and from the grubs come the hunter-wasps. Some of the coleoptera and of the small and nameless [553a1] insects make small holes of mud on a wall or on a grave-stone, and there deposit their grubs.

With insects, as a general rule, the time of generation from its commencement to its completion comprises three or four weeks. With grubs and grub-like creatures [5] the time is usually three weeks, and in the oviparous insects as a rule four. But, in the case of oviparous insects, the egg-formation comes at the close of seven days from copulation, and during the remaining three weeks the parent broods over and hatches its young; i.e. where this is the result of copulation, as in the case of the spider and its congeners. As a rule, the transformations take place in intervals of [10] three or four days, corresponding to the lengths of interval at which the crises recur in fevers.

So much for the generation of insects. Their death is due to the shrivelling of their organs, just as the larger animals die of old age. Winged insects die in autumn [15] from the shrinking of their wings. The horse-fly dies from dropsy in the eyes.23

21 · With regard to the generation of bees different hypotheses are in vogue. Some affirm that bees neither copulate nor give birth to young, but that they fetch their young. And some say that they fetch their young from the flower of the [20] callyntrum; others assert that they bring them from the flower of the reed, others, from the flower of the olive. And it is stated as a proof that, when the olive harvest is most abundant, the swarms are most numerous. Others declare that they fetch the brood of the drones from one of the stuffs above mentioned, but that the working [25] bees are engendered by the rulers of the hive.

Now of these rulers there are two kinds: the better kind is red in colour, the other is black and variegated; the ruler is double the size of the working bee. These rulers have the part below the waist half as large again, and they are called by some [30] the ‘mothers’, from an idea that they generate the bees; and, as a proof they declare that the brood of the drones appears even when there is no ruler-bee in the hive, but that the bees do not appear in their absence. Others, again, assert that these insects [553b1] copulate, and that the drones are male and the bees female.

The ordinary bee is generated in the cells of the comb, but the ruler-bees in cells down below attached to the comb, suspended from it, apart from the rest, six or seven in number, and growing in a way quite different from the mode of growth of the ordinary brood.

[5] Bees are provided with a sting, but the drones are not so provided. The rulers are provided with stings, but they never use them; and this latter circumstance will account for the belief of some people that they have no stings at all.

22 · Of bees there are various species. The best kind is a little round mottled insect; another is long, and resembles the hornet; a third is black and flat-bellied, [10] and is nicknamed the ‘robber’; a fourth kind is the drone, the largest of all, but stingless and inactive. And that is why some bee-masters place a net-work in front of the hives to keep the big drones out while it lets the bees go in.

Of the rulers there are, as has been stated, two kinds. In every hive there are more rulers than one; and a hive goes to ruin if there be too few rulers, not because [15] of anarchy thereby ensuing, but, as we are told, because these creatures contribute in some way to the generation of the bees. A hive will go also to ruin if there be too large a number of rulers in it; for they divide into factions.

Whenever the spring-time is late coming, and when there is drought and [20] mildew, then the progeny of the hive is small in number. But when the weather is dry they attend to the honey, and in rainy weather their attention is concentrated on the brood; and this will account for the coincidence of rich olive-harvests and abundant swarms.

The bees first work at the honeycomb, and then put the pupae in it: by the mouth, say those who hold the theory of their bringing them from elsewhere.24 After [25] putting in the pupae they put in the honey for subsistence, and this they do in the summer and autumn; and the autumn honey is the better of the two.

The honeycomb is made from flowers, and the materials for the wax they gather from the resinous gum of trees, while honey is what falls from the air, and is deposited chiefly at the risings of the constellations or when a rainbow is in the sky; [30] and as a general rule there is no honey before the rising of the Pleiads. [The bee, then, makes the wax from flowers. The honey, however, it does not make, but merely gathers what is deposited out of the atmosphere; and as a proof of this statement we have the known fact that bee-keepers find the hives filled with honey [554a1] within the space of one or two days. Furthermore, in autumn flowers are found, but honey, if it be withdrawn, is not replaced; now, after the withdrawal of the original honey, when no food or very little is in the hives, there would be a fresh stock of honey, if the bees made it from flowers.]25 Honey, if allowed to mature, gathers [5] consistency; for at first it is like water and remains liquid for several days. If it be drawn off during these days it has no consistency; but it attains consistency in about twenty days. The taste of thyme-honey is discernible at once, from its peculiar [10] sweetness and consistency.

The bee gathers from every flower that is furnished with a calyx, and from all other flowers that are sweet-tasted, without doing injury to any fruit; and the juices of the flowers it takes up with the organ that resembles a tongue and carries off to the hive.

Honey is taken from the hives on the appearance of the wild fig. They produce [15] the best larvae at the time the honey is making. The bee carries wax and bees’ bread round its legs, but vomits the honey into the cell. After depositing its young, it broods over it like a bird. The grub when it is small lies slantwise in the comb, but by [20] and by rises up straight by an effort of its own and takes food, and holds on so tightly to the honeycomb as actually to be squeezed against it.

The young of bees and of drones is white, and from the young come the grubs; and the grubs grow into bees and drones. The egg of the ruler is reddish in colour, [25] and its substance is about as consistent as thick honey; and from the first it is about as big as the bee that is produced from it. From the young of the ruler there is no intermediate stage, it is said, of the grub, but the bee comes at once.

Whenever the bee lays an egg in the comb there is always a drop of honey set against it. The larva of the bee gets feet and wings as soon as the cell has been stopped up with wax, and when it arrives at its completed form it breaks its [554b1] membrane and flies away. It ejects excrement in the grub state, but not afterwards; that is, not until it has got out of the encasing membrane, as we have already described. If you remove the heads from off the larvae before the coming of the wings, the bees will eat them up; and if you nip off the wings from a drone and let it [5] go, the bees will bite off the wings from all the remaining drones.

The bee lives for six years as a rule, as an exception for seven years. If a swarm lasts for nine years, or ten, it is considered to have done well.

In Pontus are found bees exceedingly white in colour, and these bees produce their honey twice a month. (The bees in Themiscyra, on the banks of the river [10] Thermodon, build honeycombs in the ground and in hives, and these honeycombs are furnished with very little wax but with honey of great consistency; and the honeycomb is smooth and level.) But this is not always the case with these bees, but only in the winter season; for in Pontus the ivy is abundant, and it flowers at this time of the year, and it is from the ivy-flower that they derive their honey. A white [15] and very consistent honey is brought down to Amisus, which is deposited by bees on trees without the employment of honeycombs; and this kind of honey is produced in other districts in Pontus.

There are bees also that construct triple honeycombs in the ground; and these honeycombs supply honey but never contain grubs. But the honeycombs in these [20] places are not all of this sort, nor do all the bees construct them.

23 · Anthrenae and wasps construct combs for their young. When they have no ruler, but are wandering about in search of one, the anthrene constructs its comb on some high place, and the wasp inside a hole. When the anthrene and the wasp [25] have a ruler, they construct their combs underground. Their combs are in all cases hexagonal like the comb of the bee. They are composed, however, not of wax, but of a bark-like webbed fibre, and the comb of the anthrene is much neater than the comb of the wasp. Like the bee, they put their young just like a drop of liquid on to [555a1] the side of the cell, and the egg clings to the wall of the cell. But eggs are not deposited in all the cells simultaneously; on the contrary, in some cells are creatures big enough to fly, in others are nymphae, and in others are mere grubs. As in the [5] case of bees, excrement is observed only in the cells where the grubs are found. As long as the creatures are in the nymph condition they are motionless, and the cell is cemented over. In the comb of the anthrene there is found in the cell of the young a drop of honey in front of it. The larvae of the anthrene and the wasp make their appearance not in the spring but in the autumn; and their growth is especially discernible in times of full moon. And the eggs and the grubs never rest at the [10] bottom of the cells, but always cling on to the side wall.

24 · There is a kind of humble-bee that builds a pointed nest of clay against a stone or in some similar situation, besmearing the clay with something like spittle. And this is exceedingly thick and hard; in point of fact, one can hardly break it open [15] with a spike. Here the insects lay their eggs, and white grubs are produced wrapped in a black membrane. Apart from the membrane there is found some wax in the honeycomb; and this wax is much yellower than that of the bee.

25 · Ants copulate and engender grubs; and these grubs do not attach [20] themselves to anything, but grow on and on from small and rounded shapes until they become elongated and defined in shape: and they are engendered in springtime.

26 · The land-scorpion also lays a number of egg-shaped grubs, and broods over them. When the hatching is completed, the parent animal, as happens with the parent spider, is ejected and put to death by the young ones; for very often the young [25] ones are about eleven in number.

27 · Spiders in all cases copulate in the way above mentioned, and generate at first small grubs. And these grubs metamorphose in their entirety, and not partially, into spiders; for the grubs are round-shaped at the outset. And the spider, when it lays its eggs, broods over them, and in three days they take definite shape. [555b1]

All spiders lay their eggs in a web; but some spiders lay in a small and fine web, and others in a thick one; and some, as a rule, lay in a round-shaped case, and some are only partially enveloped in the web. The young grubs are not all developed at one and the same time into young spiders; but the moment the development takes place, the young spider makes a leap and begins to spin his web. The juice of the [5] grub, if you squeeze it, is the same as the juice found in the spider when young; that is to say, it is thick and white.

The meadow spider lays its eggs at first into a web, one half of which is attached to itself and the other half is free; and on this the parent broods until the eggs are hatched. The phalangia lay their eggs in a sort of strong basket which they [10] have woven, and brood over it until the eggs are hatched. The smooth spider is much less prolific than the phalangium. These phalangia, when they grow to full size, very often surround the mother and eject and kill her; and not seldom they kill the male as well, if they catch him; for he has the habit of co-operating with the mother in the hatching. The brood of a single phalangium is sometimes three hundred in number. [15] The spider attains its full growth in about four weeks.

28 · Grasshoppers copulate in the same way as other insects; that is to say, [20] with the lesser covering the larger, for the male is smaller than the female. The females first insert the hollow tube, which they have at their tails, in the ground, and then lay their eggs (the male is not furnished with this tube). The females lay their eggs all in a lump together, and in one spot, so that the entire lump of eggs resembles a honeycomb. After they have laid their eggs, the eggs assume the shape of oval grubs and are enveloped by a sort of thin clay, like a membrane; in this [25] membrane-like formation they grow on to maturity. The larva is so soft that it collapses at a touch. The larva is not placed on the surface of the ground, but a little beneath the surface; and, when it reaches maturity, it comes out of its clayey investiture in the shape of a little black grasshopper; by and by, the skin integument strips off, and at once it grows larger and larger.

[556a1] The grasshopper lays its eggs at the close of summer, and dies after laying them. The fact is that, at the time of laying the eggs, grubs are engendered in the region of the mother grasshopper’s neck; and the male grasshoppers die about the same time. [In spring-time they come out of the ground; and no grasshoppers are [5] found in mountainous land or in poor land, but only in flat and loamy land, for the fact is they lay their eggs in cracks of the soil.]26 During the winter their eggs remain in the ground; and with the coming of summer the last year’s larva develops into the grasshopper.

[10] 29 · The locusts lay their eggs and die in like manner after laying them. Their eggs are subject to destruction by the autumn rains, when the rains are unusually heavy; but in seasons of drought the locusts are exceedingly numerous, from the absence of any destructive cause, since their destruction seems then to be a matter of accident and to depend on luck.

[15] 30 · Of the cicada there are two kinds; one, small in size, the first to come and the last to disappear; the other, large, that comes last and first disappears. Both in the small and the large species some are divided at the waist, to wit, the singing ones, and some are undivided; and these latter have no song. The large and singing [20] cicada is by some designated the ‘chirper’, and the small cicada the cicadelle. And such of the latter as are divided at the waist can sing just a little.

The cicada is not found where there are no trees; and this accounts for the fact that in the district surrounding the city of Cyrene it is not found at all in the plain country, but is found in great numbers in the neighbourhood of the city, and especially where olive-trees are growing; for an olive grove is not thickly shaded. For [25] the cicada is not found in cold places, and consequently is not found in any grove that keeps out the sunlight.

The large and the small cicada copulate alike, belly to belly. The male discharges sperm into the female, not the female into the male as is the case with insects in general; and the female cicada has a cleft generative organ into which the male discharges the sperm.27

They lay their eggs in fallow lands, boring a hole with the pointed organ they [30] carry in the rear, as do the locusts likewise; for the locust lays its eggs in untilled lands, and this fact accounts for their numbers in the territory adjacent to the city of Cyrene. The cicadae also lay their eggs in the canes which prop up vines, [556b1] perforating the canes; and also in the stalks of the squill. This brood runs into the ground. And they are most numerous in rainy weather. The grub, on attaining full size in the ground, becomes a nymph, and the creature is sweetest to the taste at this [5] stage before the husk is broken. When the summer solstice comes, the creature issues from the husk at night-time, and in a moment, as the husk breaks, the larva becomes the perfect cicada. The creature, also, at once turns black in colour and [10] harder and larger, and takes to singing. In both species, the larger and the smaller, it is the male that sings, and the female that is unvocal. At first, the males are the sweeter eating; but, after copulation, the females, as they are full then of white eggs.

If you make a sudden noise as they are flying overhead they let drop something [15] like water. Farmers, in regard to this, say that they are voiding urine, i.e. that they have an excrement, and that they feed upon dew.

If you present your finger to a cicada and bend back the tip of it and then extend it again, it will endure the presentation more quietly than if you were to keep your finger outstretched altogether; and it will set to climbing your finger; for the creature is so weak-sighted that it will take to climbing your finger as though that [20] were a moving leaf.

31 · Of insects that are not carnivorous but that live on the juices of living flesh, such as lice and fleas and bugs, all generate what are called ‘nits’, and these nits generate nothing.

Of these insects the flea is generated out of the slightest amount of putrefying [25] matter; for wherever there is any dry excrement, a flea is sure to be found. Bugs are generated from the moisture of living animals, as it dries up outside their bodies. Lice are generated out of the flesh of animals.

When lice are coming there is a kind of small eruption visible, unaccompanied by any discharge of purulent matter; and if you prick these the lice jump out. In some men the appearance of lice is a disease, in cases where the body is surcharged [557a1] with moisture; and, indeed, men have been known to succumb to this louse-disease, as Aleman the poet and the Syrian Pherecydes are said to have done. Moreover, in certain diseases lice appear in great abundance.

There is also a species of louse called the ‘wild louse’, and this is harder than [5] the ordinary louse, and there is exceptional difficulty in getting the skin rid of it. Boys’ heads are apt to be lousy, but men’s in less degree; and women are more subject to lice than men. But, whenever people are troubled with lousy heads, they [10] are less than ordinarily troubled with headache. And lice are generated in other animals than man. For birds are infested with them; and pheasants, unless they clean themselves in the dust, are actually destroyed by them. All other winged animals that are furnished with feathers are similarly infested, and all hair-coated [15] creatures also, with the single exception of the ass, which is infested neither with lice nor with ticks.

Cattle suffer both from lice and from ticks. Sheep and goats breed ticks, but do not breed lice. Pigs breed lice large and hard. In dogs are found the Cynoroestes. In [20] all animals that are subject to lice, the latter originate from the animals themselves. Moreover, in those bathing animals that have lice, lice are more than usually abundant when they change the water in which they bathe.

In the sea, lice are found on fishes, but they are generated not out of the fish [25] but out of slime; and they resemble multipedal wood-lice, only that their tail is flat. There is only one kind of sea-louse; they are found everywhere, and are particularly numerous on the fins. And all these insects28 are multipedal and devoid of blood.

The parasite that feeds on the tunny is found in the region of the fins; it [30] resembles a scorpion, and is about the size of a spider. In the seas between Cyrene and Egypt there is a fish that attends on the dolphin, which is called the louse. This fish gets exceedingly fat from enjoying an abundance of food while the dolphin is out in pursuit of its prey.

[557b1] 32 · Other animalcules besides these are generated, as we have already remarked, some in wool or in articles made of wool, as the clothes-moth. And these animalcules come in greater numbers if the woollen substances are dusty; and they come in especially large numbers if a spider be shut up with them; for the creature drinks up any moisture that may be there, and dries up the woollen substance. This [5] grub is found also in men’s clothes.

A creature is also found in cheese29 long laid by, just as in wood, and it is the smallest of animalcules and is white in colour, and is designated the mite. In books also other animalcules are found, some resembling the grubs found in garments, [10] and some resembling tailless scorpions, but very small. As a general rule we may state that such animalcules are found in practically anything, both in dry things that are becoming moist and in moist things that are drying, provided they contain the conditions of life.

There is a grub entitled the ‘faggot-bearer’, as strange a creature as is known. [15] Its head projects outside its shell, mottled in colour, and its feet are near the end, as is the case with grubs in general; but the rest of its body is cased in a tunic as it were of spider’s web, and there are little dry twigs about it, that look as-though they had stuck by accident to the creature as it went walking about. But these twig-like formations are naturally connected with the tunic, for just as the shell is with the body of the snail so is the whole superstructure with our grub; and they do not drop [20] off, but can only be torn off, as though they were all of a piece with him, and the removal of the tunic is as fatal to this grub as the removal of the shell would be to the snail. In course of time this grub becomes a chrysalis, as is the case with the caterpillar, and lives in a motionless condition. But as yet it is not known into what winged condition it is transformed. [25]

The fruit of the wild fig contains the fig-wasp. This creature is a grub at first; but in due time the husk peels off and the wasp leaves the husk behind it and flies away, and enters into the fruit of the fig-tree through its orifice,30 and causes the fruit not to drop off; and with a view to this phenomenon, farmers are in the habit of [30] tying wild figs on to fig-trees, and of planting wild fig-trees near domesticated ones.

33 · In the case of animals that are quadrupeds and red-blooded and [558a1] oviparous, generation takes place in the spring, but copulation does not take place in an uniform season. In some cases it takes place in the spring, in others in summer time, and in others in the autumn, according as the subsequent season may be favourable for the young.

The tortoise lays eggs with a hard shell and of two colours, like birds’ eggs, and [5] after laying them buries them in the ground and treads the ground hard over them; having done that, it comes back from time to time and broods over the eggs on the surface of the ground, and hatches the eggs the next year. The freshwater tortoise leaves the water and lays its eggs. It digs a hole of a cask-like shape, and deposits therein the eggs; after rather less than thirty days it digs the eggs up again and hatches them with great rapidity, and leads its young at once off to the water. The [10] sea-turtle lays on the ground eggs just like the eggs of domesticated birds, buries the eggs in the ground, and broods over them in the night-time. It lays a very great number of eggs, amounting at times to one hundred.

Lizards and crocodiles, terrestrial and fluvial, lay eggs on land. The eggs of [15] lizards hatch spontaneously on land, for the lizard does not live on into the next year; in fact, the life of the animal is said not to exceed six months. The river-crocodile lays a number of eggs, sixty at the most, white in colour, and broods over them for sixty days; for the creature is very long-lived. And the disproportion is [20] more marked in this animal than in any other between the smallness of the original egg and the huge size of the full-grown animal. For the egg is not larger than that of the goose, and the young crocodile is small, answering to the egg in size, but the full-grown animal attains the length of twenty-six feet; and some say that the animal goes on growing to the end of its days.

34 · With regard to serpents, the viper is externally viviparous, having been [25] previously oviparous internally. The egg, as with the egg of fishes, is uniform in colour and soft-skinned. The young serpent grows on the surface of the egg, and, like the young of fishes, has no shell-like envelopment. The young of the viper is born inside a membrane that bursts from off the young creature in three days; and [30] at times the young viper eats its way out from the inside of the egg. The mother viper brings forth all its young all at once in one day, more than twenty in number. [558b1] The other serpents are externally oviparous, and their eggs are strung on to one another like a woman’s necklace; after the mother has laid her eggs in the ground she broods over them, and hatches the eggs in the following year.