Guide to Different Topics of the Book
Biological systems and processes
- Metabolism (2, 3, 4, 11.1, 11.4, 12.1)
- Gene regulatory network (7, 8.2, 9)
- Gene expression regulation (2, 9)
- Signaling systems (8.2, 12.2)
- Cell cycle (12.3)
- Development (7.3)
- Aging (12.4)
Concepts for biological function
- Qualitative behavior (3, 7.1)
- Parameter sensitivity and robustness (4.2, 10.2)
- Modularity and functional subsystems (6.4, 8.3)
- Robustness against failure (10.2)
- Information (10.3, 15.6)
- Population heterogeneity (10.3)
- Optimality (3.2, 11.1, 11.2)
- Evolution (11.3)
- Population dynamics and game theory (11.4)
Model types with different levels of abstraction
- Statistical particle models (15.6)
- Stochastic biochemical models (5.1.2, 7.2, 9.4, 15.4)
- Kinetic models (4, 5.1.1, 11, 12, 16.7)
- Constraint-based models (3.2)
- Discrete models (7.1)
- Spatial models (7.3)
Mathematical frameworks to describe cell states
- Topological (network structures) (3.1, 8)
- Structural stoichiometric models (3)
- Dynamical systems (4, 12, 15.2)
- Deterministic linear models (6.3)
- Deterministic kinetic models (4, 9.1, 12)
- Uncertain parameters (10.1)
- Optimization and control theory (4.2, 11.1,11.2,15.5)
Experimental Techniques
- Experimental techniques (14)
Modeling skills
- Model building (2, 3, 4, 5.1, 7)
- Model annotation (5.4)
- Parameter estimation (6.1)
- Model testing and selection (6.2)
- Local sensitivity analysis/control theory (4.2, 10.1, 10.2)
- Global sensitivity/uncertainty analysis (10.1)
- Model reduction (6.3)
- Model combination (5.4, 6.4)
- Network theory (8)
- Statistics (15.3, 15.7)
- Optimization of model outputs and structure (11.1)
- Optimal temporal control (11.2, 15.5)
Practical issues in modeling
- Use of databases (5.3, 16)
- Data formats (5.2, 5.4)
- Data sources (5.3, 16)
- Modeling software (5.1, 17)
- Simulation techniques and tools (5.1)
- Model visualization (5.1)
- Data visualization (8.3)