- Ability beliefs, 83
- Academy at Palumbo, 56–57
- Ackerman, Arlene, 58–59
- Activism, cyberspace, 82–83
- Adair, Bill, 45
- AI Now Institute, 194–195
- AirBnB, 168
- Albrecht, Steve, 159
- Alda, Alan, 70
- Alexa, 38–39, 72
- Alexander, Michelle, 159
- Algorithmic accountability reporting, 7, 43–44, 65–66
- Algorithms
- bias in, 44, 150, 155–157, 195
- defined, 7, 94
- elevator, 157
- function of, 43–44
- risk, 44, 155–156
- tic-tac-toe, 34
- Alphabet, 96
- AlphaGo, 33–37
- Amazon, 115, 158
- Analytical engine, 76
- Anarcho-capitalism, 83
- Anderson, C. W., 46–47
- Angwin, Julia, 154–156
- App hackathons, 165–174
- Apple Watch, 157
- Artificial intelligence (AI)
- beginnings, 69–73
- expert systems, 52–53, 179
- fantasy of, 132
- in film, 31, 32, 198
- foundations of, 9
- future of, 194–196
- games and, 33–37
- general, 10–11, 32
- narrow, 10–11, 32–33, 97
- popularity of, 90
- real vs. imagined, 31–32
- research, women in, 158
- sentience challenge in, 129
- Asimov, Isaac, 71
- Assembly language, 24
- Association for Computing Machinery (ACM), 145
- Astrolabe, 76
- Asymmetry, positive, 28
- Automation technology, 176–177
- Autopilot, 121
- Availability heuristic, 96
- Babbage, Charles, 76–77
- Bailiwick (Broussard), 182–185, 190–191, 193
- Barlow, John Perry, 82–83
- Bell Labs, 13
- Bench, Shane, 84
- Ben Franklin Racing Team (Little Ben), 122–127
- Berkman Klein Center (Harvard), 195
- Berners-Lee, Tim, 4–5, 47
- Bezos, Jeff, 73, 115
- Bias
- in algorithms, 44, 150, 155–157
- in algorithms, racial, 44, 155–156
- genius myth and, 83–84
- programmers and, 155–158
- in risk ratings, 44, 155–156
- in STEM fields, 83–84
- Bill & Melinda Gates Foundation, 60–61, 157
- Bipartisan Campaign Reform Act, 180
- Bitcoin, 159
- Bizannes, Elias, 165, 166, 171
- Blow, Charles, 95
- Boggs, David, 67–68
- Boole, George, 77
- Boolean algebra, 77
- Borden, Brisha, 154–155
- Borsook, Paulina, 82
- Bowhead Systems Management, 137
- boyd, danah, 195
- Bradley, Earl, 43
- Brains 19–20, 95, 128–129, 132, 144, 150
- Brand, Stewart, 5, 29, 70, 73, 81–82
- Brin, Sergei, 72, 151
- Brown, Joshua D., 140, 142
- Bump, Philip, 186
- Burroughs, William S., 77
- Burroughs, William Seward, 77
- Calculation vs. consciousness, 37
- Cali-Fame, 186
- California, drug use in, 158–159
- Cameron, James, 95
- Campaign finance, 177–186, 191
- Čapek, Karel, 129
- Caprio, Mike, 170–171
- Carnegie Mellon University, autonomous vehicle research
- ALVINN, 131
- University Racing Team (Boss), 124, 126–127, 130–131
- Cars
- deaths associated with, 136–138, 146
- distracted driving of, 146
- human-centered design for, 147
- Cars, self-driving
- 2005 Grand Challenge, 123–124
- 2007 Grand Challenge, 122–127
- algorithms in, 139
- artificial intelligence in, 129–131, 133
- deaths in, 140
- driver-assistance technology from, 135, 146
- economics of, 147
- experiences in, 121–123, 125–126, 128
- fantasy of, 138, 142, 146
- GPS hacking, 139
- LIDAR guidance system, 139
- machine ethics, 144–145, 147
- nausea in, 121–123
- NHTSA categories for, 134
- problems/limitations, 138–140, 142–146
- research funding, 133
- SAE standards for levels of automation, 134–135
- safety, 136–137, 140–142, 143, 146
- sentience in, 132
- Uber’s use of, 139
- Udacity open-source car competition, 135
- Waymo technology, 136
- CERN, 4–5
- Cerulo, Karen A., 28
- Chess, 33
- Children’s Online Privacy Protection Act (COPPA), 63–64
- Chinese Room argument, 38
- Choxi, Heteen, 122
- Christensen, Clayton, 163
- Chrome, 25, 26
- Citizens United, 177, 178, 180
- Clarke, Arthur C., 71–72
- Client-server model, 27
- Clinkenbeard, John, 172
- Cloud computing, 26, 52, 196
- Cohen, Brian, 56–57
- Collins, John, 117
- Common Core State Standards, 60–61
- Communes, 5, 10
- Computer ethics, 144–145
- Computer Go, 34–36
- Computers
- assumptions about vs. reality of, 8
- components, identifying, 21–22
- consciousness, 17
- early, 196–199
- human, 77–78, 198
- human brains vs., 19–20, 128–129, 132, 144, 150
- human communication vs., 169–170
- human mind vs., 38
- imagination, 128
- limitations, 6–7, 27–28, 37–39
- memory, 131
- modern-day, development of, 75–79
- operating systems, 24–25
- in schools, 63–65
- sentience, 17, 129
- Computer science
- bias in, 79
- ethical training, 145
- explaining the world through, 118
- women in, 5
- Consciousness vs. calculation, 37
- Constants in programming, 88
- Content-management system (CMS), 26
- Cooper, Donna, 58
- Copeland, Jack, 74–75
- Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), 44, 155–156
- Cortana, 72
- Counterculture, 5, 81–82
- Cox, Amanda, 41–42
- Crawford, Kate, 194
- Crime reporting, 154–155
- CTB/McGraw-Hill, 53
- Cumberbatch, Benedict, 74
- Cyberspace activism, 82–83
- DarkMarket, 159
- Dark web, 82
- Data
- on campaign finance, 178–179
- computer-generated, 18–19
- defined, 18
- dirty, 104
- generating, 18
- people and, 57
- social construction of, 18
- unreasonable effectiveness of, 118–119, 121, 129
- Data & Society, 195
- DataCamp, 96
- Data density theory, 169
- Data journalism, 6, 43–47, 196
- Data Journalism Awards, 196
- Data journalism stories
- cost-benefit of, 47
- on inflation, 41–42
- Parliament members’ expenses, 46
- on police speeding, 43
- on police stops of people of color, 43
- price discrimination, 46
- on sexual abuse by doctors, 42–43
- Data Privacy Lab (Harvard), 195
- Data Recognition Corporation (DRC), 53
- Datasets in machine learning, 94–95
- Data visualizations, 41–42
- Deaths
- distracted driving accidents, 146
- from poisoning, 137
- from road accidents, 136–138
- in self-driving cars, 140
- Decision making
- computational, 12, 43, 150
- data-driven, 119
- machine learning and, 115–116, 118–119
- subjective, 150
- Deep Blue (IBM), 33
- Deep learning, 33
- Defense Advanced Research Projects Agency (DARPA) Grand Challenge, 123, 131, 133, 164
- Desmond, Matthew, 115
- Detroit race riots story, 44
- Dhondt, Rebecca, 58
- Diakopoulos, Nicholas, 46
- Difference engine, 76
- Differential pricing and race, 116
- Digital age, 193
- Digital revolution, 193–194
- Dinakar, Karthik, 195
- Django, 45, 89
- DocumentCloud, 52, 196
- Domino’s, 170
- Drone technology, 67–68
- Drug marketplace, online, 159–160
- Drug use, 80–81, 158–160
- Duncan, Arne, 51
- Dunier, Mitchell, 115
- Edison, Thomas, 77
- Education
- change, implementing in, 62–63
- Common Core State Standards, 60–61
- competence bar in, 150
- computers in schools, 63–65
- equality in, 77–78
- funding, 60
- supplies, availability of, 58
- technochauvinist solutions for, 63
- textbook availability, 53–60
- unpredictability in, 62
- 18F, 178–179
- Electronic Frontier Foundation, 82
- Elevators, 156–157
- Eliza, 27–28
- Emancipation Proclamation, 78
- Engelbart, Doug, 25, 80–81
- Engineers, ethical training, 145
- ENIAC, 71, 194, 196–199
- Equality
- in education, 77–78
- techno hostility toward, 83
- technological, creating, 87
- technology vs., 115, 156
- for women, 5, 77–78, 83–85, 158
- Essa, Irfan, 46
- Ethics, 144–145, 147
- EveryBlock, 46
- Expertise, cognitive fallacies associated, 83
- Expert systems, 52–53, 179
- Facebook, 70, 83, 152, 158, 197
- Facial recognition, 157
- Fact checking, 45–46
- Fake news, 154
- Family Educational Rights and Privacy Act (FERPA), 63–64
- FEC, McCutcheon v., 180
- FEC, Speechnow.org v., 180
- FEC.gov, 178–179
- Film, AI in, 31, 32, 198
- FiveThirtyEight.com, 47
- Foote, Tully, 122–123, 125
- Ford Motor Company, 140
- Fowler, Susan, 74
- Fraud
- campaign finance, 180
- Internet advertising, 153–154
- Free press, role of, 44
- Free speech, 82
- Fuller, Buckminster, 74
- Futurists, 89–90
- Games, AI and, 33–37
- Gates, Bill, 61
- Gates, Melinda, 157–158
- Gawker, 83
- Gender equality, hostility toward, 83
- Gender gap, 5, 84–85, 115, 158
- Genius, cult of, 75
- Genius myth, 83–84
- Ghost-in-the-machine fallacy, 32, 39
- Giffords, Gabby, 19–20
- GitHub, 135
- Go, 33–37
- Good Old-Fashioned Artificial Intelligence (GOFAI), 10
- Good vs. popular, 149–152, 160
- Google, 72
- Google Docs, 25
- Google Maps API, 46
- Google Street View, 131
- Google X, 138, 151, 158
- Government
- campaign finance, 177–186, 191
- cyberspace activism, antigovernment ideology, 82–83
- tech hostility toward, 82–83
- Graphical user interface (GUI), 25, 72
- Greyball, 74
- Guardian, 45, 46
- Hackathons, 165–174
- Hackers, 69–70, 82, 153–154, 169, 173
- Halevy, Alon, 119
- Hamilton, James T., 47
- Harley, Mike, 140
- Harris, Melanie, 58–59
- Harvard, Andrew, 184
- Harvard University
- Berkman Klein Center, 195
- Data Privacy Lab, 195
- mathematics department, 84
- “Hello, world” program, 13–18
- Her, 31
- Hern, Alex, 159
- Hernandez, Daniel, Jr., 19
- Heuristics, 95–96
- Hillis, Danny, 73
- Hippies, 5, 82
- HitchBOT, 69
- Hite, William, 58
- Hoffman, Brian, 159
- Holovaty, Adrian, 45–46
- Home Depot, 46, 115, 155
- Hooke, Robert, 88
- Houghton Mifflin Harcourt (HMH)
- HP, 157
- Hugo, Christoph von, 145
- Human-centered design, 147, 177
- Human computers, 77–78, 198
- Human error, 136–137
- Human-in-the-loop systems, 177, 179, 187, 195
- Hurst, Alicia, 164
- Illinois quarter, 153–154
- Imagination, 89–90, 128
- Imitation Game, The (film), 74
- Information industry, annual pay, 153
- Injury mortality, 137
- Innovation
- computational, 25
- disruptive, 163, 171
- funding, 172–173
- hackathons and, 166
- Instacart, 171
- Intelligence in machine learning
- Interestingness threshold, 188
- International Foundation for Advanced Study, 81
- Internet
- advertising model, 151
- browsers, 25, 26
- careers, annual pay rates, 153
- core values, 150
- drug marketplace, 159–160
- early development of the, 5, 81
- fraud, 153–154
- online communities, technolibertarianism in culture of, 82–83
- rankings, 72, 150–152
- Internet Explorer, 25
- Internet pioneers, inspiration for, 5, 81–82
- Internet publishing industry, annual pay, 153
- Internet search, 72, 150–152
- Ito, Joi, 147, 195
- Jacquard, Joseph Marie, 76
- Java, 89
- JavaScript, 89
- Jobs, Steve, 25, 70, 72, 80, 81
- Jones, Paul Tudor, 187–188
- Journalism. See also Data journalism
- algorithmic accountability reporting, 7, 43–44, 65–66
- artificial intelligence for, 52–53
- computational, 7, 46–47, 190
- computer-assisted reporting, 44–45
- machine learning in, 52
- precision reporting, 44
- social science applied to, 44
- Kaggle, 96
- Kalanick, Travis, 74, 139
- Kamal, Fawzi, 139
- Karel the Robot, 129–130
- Karpathy, Andrej, 149
- Kay, Alan, 25, 72
- Ke Jie, 33
- Kernighan, Brian, 13
- Kesey, Ken, 81
- Kilgore, Barney, 152
- Kinect, 157
- Kleinberg, Jon, 155–156
- Krafcik, John, 136, 137
- Kroeger, Brooke, 78
- Kubrick, Stanley, 71
- Kunerth, Jeff, 43
- Kurzweil, Raymond, 73, 89, 90
- Kushleyev, Alex, 124–125
- Language
- computational communication problems, 87–89
- fluidity of, 91
- human vs. mathematical, 88
- naming problem in, 88–89
- Lanier, Jaron, 145–146
- Lazer, David, 115
- Leadership gender gap, 158
- Learning, 89
- LeCun, Yann, 90
- Lee, Dan, 123
- Leibniz, Gottfried, 75, 76, 77
- Lench, Heather, 84
- Leslie, S. J., 83
- Lessig, Lawrence, 194
- Levandowski, Anthony, 139–140
- Levy, Steven, 70
- Lexus, 123, 140
- Libertarianism, 82–83, 138, 159–160
- Libraries, 96–97
- Lightoller, Charles, 116
- Lincoln, Abraham, 78
- LinkedIn, 158
- Linux, 24–25
- Lipton, Zachary, 114
- Literacy, technological, 21
- Long, Milton, 117–118
- Long Now Foundation, 73
- Lord, Walter, 117–119
- Loughner, Jared Lee, 19
- Lovelace, Ada, 76
- LSD, 81
- Lucas, George, 70
- Machine intelligence, determining, 37–38
- Machine language, 24
- Machine learning
- algorithms in, 94
- defined, 11, 89, 91–92
- doing DataCamp Titanic tutorial, 96–119
- datasets in, 94–96
- intelligence in, 92–93
- in journalism, 52
- limitations, 119
- linguistic confusion, 89
- reinforcement, 93
- social decision making and, 115–116, 119
- supervised, 93
- training data in, 93–94
- unsupervised, 93
- Machines, intelligence in, 33
- Mahfouz, Christl, 186
- Mapping, digital, 131
- Masch, Michael, 57
- Mathematical lookup tables, 77
- Mathematics
- cult of genius, worship of, 75
- developing machines for, 75–79
- gender gap, 84–85
- gender stereotypes associated with, 84
- social culture of, 75
- women in, 77–78
- May, Patrick, 158
- McCarthy, John, 70, 71
- McCutcheon v. FEC, 180
- McIntyre, Tim, 170
- McNamee, Roger, 138
- Mercedes, 144
- Merideth, Willie, 68
- Meyer, Philip, 43
- Microsoft, 25, 157
- Minimum viable product (MVP), 189–190
- Minsky, Margaret, 79
- Minsky, Marvin, 69–75, 79–80, 81, 84, 89, 129, 132, 145, 193
- MIT Artificial Intelligence Lab, 70
- Mitchell, Tom M., 92
- MIT Media Lab, 70, 72, 195
- MIT Tech Model Railroad Club (TMRC), 69–70
- Models, mathematical, 94
- Monty Python, 89
- Moore School of Engineering, 196–198
- Morais, Betsy, 167
- Mortensen, Dennis, 132
- Motor vehicle traffic-related injury mortality, 137–138
- Mullainathan, Sendhil, 155–156
- Munro, Randall, 87
- Murdoch, William, 116
- Musk, Elon, 142, 143–144
- Naming problem, 88–89
- Natanson, Hannah, 84
- National Highway Traffic Safety Association (NHTSA), 133–134
- Natural resources homework, 51–52
- Navy, U.S., 137
- Neumann, John von, 71
- Neural networks, 33
- Neville-Neil, George V., 92–93
- New Communalism movement, 5
- Newman, Barry, 152
- Newspapers, 152
- New York Times, 152
- NeXt cube, 5
- NICAR conference, 196
- Nineteenth Amendment, 78
- Northpointe, 155–156
- Norvig, Peter, 93, 118
- Nutter, Michael, 53
- NVIDIA, 140–141
- Obama Administration, 147, 194
- Object, 97
- O’Neil, Cathy, 94
- One Laptop Per Child (OLPC) initiative, 65
- oN-Line System (NLS), 25
- OpenBazaar, 159
- Operating systems, 24–25
- Opioid crisis, 158–160
- O’Reilly, Tim, 81
- OSX, 25
- Otto, 142
- Overview Project, 52
- Page, Carl Victor, Sr., 72–73
- Page, Larry, 72–73, 131, 151
- PageRank, 72, 151–152
- Palantir, 83
- Panama Papers, 196
- Pandas library, 97
- Paperclip theory, 89–90
- Papert, Seymour, 72, 73
- Pasquale, Frank, 115
- Pattis, Richard, 129
- PayPal, 83, 159
- Pearson, 53–54
- Penn and Teller, 70
- Pennsylvania System of School Assessment (PSSA), 52, 53–54
- Pereira, Fernando, 118
- Personal computer revolution, 5, 24
- Philadelphia School District, 53–60, 65–66
- Physicians, sexual abuse by, 42–43
- PillyPod, 173
- Pinker, Stephen, 90
- Pinkerton, Emma, 164
- Pizzafy, 165, 168–174
- Policing
- quantitative methods to enhance, 155
- racial disparities found by Stanford Open Policing Project, 43
- speeding, 43
- PolitiFact, 45–46
- Popular vs. good, 149–152, 160
- Poverty and differential pricing, 116
- Prater, Vernon, 155
- Predictive analytics, 33
- Price discrimination, 46
- Price optimization, 114–115
- Privacy, right to, 68, 195
- Programmers
- accountability for, 154
- bias, 155–158
- competence, developing, 169–170, 174
- drug use, 158–159
- ethical training, 145
- income, 170–171
- safety, attitudes toward, 73–74
- social conventions, 74–75
- Programming. See also Software
- anticipating the unexpected in, 28
- artisanal small-batch model, 191
- assembly language, 24
- command line, 15
- “Hello World
- Karel the Robot exercise, 129–130
- modularity in, 17–18
- variables in, 88
- wealth, impact on, 158
- WHILE loops, 16
- ProPublica, 45
- Ptolemy, 77
- Public transportation, 138
- Pulitzer Prizes, 45
- Punch-card loom, 76
- Python, 14–17, 89, 92, 96
- Race and image recognition systems, 157
- Radiation safety, 73–74
- Radio broadcasting industry, annual pay, 153
- Raghavan, Manish, 155–156
- Rahwan, Iyad, 195
- Reddit, 82
- Reinhardt, Django, 89
- Repetti, Steve, 166, 171
- Reporting. See also Journalism
- computer-assisted, 44–45
- precision, 44
- robot, 9–10
- Richardson, Kathleen, 72
- Risk, drawing conclusions about, 95–96
- Risk algorithms, 44–45, 155–156
- Ritchie, Dennis, 13, 24
- Road accident statistics, 136–138
- Roberts, Jerry, 74–75
- Robinett, Ricky, 171
- Robot-car technology, 123. See also Cars, self-driving
- Robot reporting, 9–10
- Robots, 3–4, 87–88, 129
- Rogers, Edwin, 164–165, 167, 172, 173
- Roomba, 88
- Royal, Cindy, 47
- Rudisch, Gloria, 79
- Russell, Stuart, 93
- Safari, 25, 26
- Science fiction, 71–72
- Scikit-learn, 92, 96
- Screet, 172
- Sculley, John, 72
- Searle, John, 38
- Selfies, 149
- SendGrid, 168
- Seneca Falls Convention, 78
- Sentience
- computer, 17, 129
- in self-driving cars, 132
- Sexual abuse, 42–43, 45
- Sexual harassment, culture of, 74
- Shar.ed, 171–172
- Sharkey, Pat, 115
- Shaw, Jennifer, 164–165, 167, 170–171, 173
- Sheivachman, Andrew, 187
- Shell programming language, 15
- Siegelmann, Hava, 133
- Silicon Valley, 166
- Silk Road, 159
- Silver, Nate, 47
- Singh, Santokh, 137
- Singularity theory, 89–90
- Siri, 28, 29, 72
- Slavery, 78
- Slovic, Paul, 83
- Smart games format (SGF), 35
- Smith, Dre, 167, 172
- Smith, Edward John, 117
- Snowden documents, 196
- Social decision making, 115–116, 119
- Social media, 158
- Society, impact of algorithmic accountability reporting, 65–66
- Society-in-the-loop machine learning, 195
- Software. See also Programming
- autonomous systems, 187
- in the cloud, 25–26
- defined, 19, 22
- development process problems, 190
- human-in-the-loop systems, 177, 179, 187, 195
- lifespan, 193
- minimum viable product, 190
- naming, 182
- scope creep, 61
- technical debt, 193
- Somerville, Heather, 158
- Space elevator, 71–72
- SPACES, 172–173
- Speechnow.org v. FEC, 180
- Spence, Stephen, 58–59
- Standardized testing, 52–55
- Stanford Racing Team (Junior), 124, 130–131
- Stanford Racing Team (Stanley), 123–124, 127
- Staples, 46, 115
- Star Trek: The Next Generation, 31
- Startup Bus, 163–174
- Startup House, 166
- Steiger, Paul, 45
- STEM fields, 5, 83–85, 158
- Step reckoner, 76
- Stewart, Alex, 122, 125–126
- Story Discovery Engine (Broussard), 178–180, 187, 188–191
- Survivor (television), 164
- Sweeney, Latanya, 195
- Tacocopter, 29–30
- Taplin, Jonathan, 83
- Tay Twitter bot, 69
- Teachers, underground economy, 57
- TechCrunch Disrupt hackathon, 166–167
- Tech culture
- drug use in, 158–160
- misogyny in, 167
- money in, 171
- Tech Model Railroad Club (TMRC), 69–70
- Technochauvinism
- assumptions from, 156
- beliefs accompanying, 8
- blaming drivers, 136
- defined, 7–8
- disruptive innovation and, 163
- hallmarks of, 69
- magical thinking of, 122
- philosophical basis of, 75
- Technolibertarianism, 82–83
- Technology
- breakage, 63, 156–157, 193
- digital, uses for, 194
- equality, creating, 87
- gender gap, 158
- human-centered design, 177
- inclusive, need for, 154
- inequality and, 83, 115, 156
- libertarianism and, 82–83
- limitations, 6–7, 176–177
- mathematical, development of, 75–79
- promises of, questioning the, 6
- social consequences, negative, 67–69
- white male bias in, 72, 79
- Terminal, 14–15
- Tesla, 121, 136, 139, 140–144
- Textbooks, 53–60, 63–65
- Texting while driving, 146–147
- Thayer, Jack, 117–118
- Thiel, Peter, 83, 159
- Thirteenth Amendment, 78
- Thrun, Sebastian, 124, 131, 135, 138
- Tic-tac-toe, 33–34
- Tilden Middle School, 59–60
- Titanic (disaster), 95–119
- Titanic (movie), 95
- Torvalds, Linus, 24
- Toyota, 140
- Trolley problem, 144, 147
- Trump, Donald, 83, 184–187, 194
- Tufte, Edward, 169
- Turing, Alan, 33, 74–75, 82, 83, 193
- Turing test, 33, 37–38
- Turner, Fred, 5, 81
- Twitter, 69
- 2001: A Space Odyssey (film), 31, 71, 198
- Uber, 74, 121, 138, 139–140, 142, 168
- Udacity, 135, 138
- Ukpeaġvik Iñupiat Corporation, 137
- Ulbricht, Ross, 159
- Unix, 24
- Unmanned autonomous systems (UAS), 137
- Urmson, Chris, 135
- Usher, Nikki, 47
- Vaporware, 166
- Vehicles, SAE definitions for automated, 134–135. See also Cars, self-driving
- Venmo, 159
- Vernaza, Paul, 122, 126
- Vicemo.com, 159
- Video games, 25
- Voice assistants, 28–29, 72
- Voice interfaces, 38–39
- Voting rights for women, 78
- Waite, Matt, 45
- Wall Street Journal, 45, 46, 152
- Waydo, Jaime, 135–136
- Waymo, 135–136, 139–140, 141
- Web search portals industry, annual pay, 153
- Web servers, 26–27
- Whittaker, Meredith, 194
- Whole Earth Catalog, 5, 73, 81–82
- Whole Earth eLectronic Link (WELL), 82
- Wiesner, Jerry, 71
- Wigner, Eugene, 118
- Wilkinson, Jim, 75
- Willis, Derek, 179
- Wilson, Christo, 115
- Winograd, Terry, 73
- Wired, 29, 81
- Wolfe, Tom, 81
- Wolfram, Stephen, 79
- Women’s suffrage, 78
- Worley, Cole, 171
- Wright brothers, 3, 131–132
- Writing, automated, 52
- Zaneski, Eddie, 168–169
- Zimmerman, Henry, 71
- Zuckerberg, Mark, 31, 70