The Birth of an Island

Many a green isle needs must be
In the deep, wide sea …

SHELLEY

MILLIONS OF YEARS AGO, a volcano built a mountain on the floor of the Atlantic. In eruption after eruption, it pushed up a great pile of volcanic rock, until it had accumulated a mass a hundred miles across at its base, reaching upward toward the surface of the sea. Finally its cone emerged as an island with an area of about 200 square miles. Thousands of years passed, and thousands of thousands. Eventually the waves of the Atlantic cut down the cone and reduced it to a shoal—all of it, that is, but a small fragment which remained above water. This fragment we know as Bermuda.

With variations, the life story of Bermuda has been repeated by almost every one of the islands that interrupt the watery expanses of the oceans far from land. For these isolated islands in the sea are fundamentally different from the continents. The major land masses and the ocean basins are today much as they have been throughout the greater part of geologic time. But islands are ephemeral, created today, destroyed tomorrow. With few exceptions, they are the result of the violent, explosive, earth-shaking eruptions of submarine volcanoes, working perhaps for millions of years to achieve their end. It is one of the paradoxes in the ways of earth and sea that a process seemingly so destructive, so catastrophic in nature, can result in an act of creation.

Islands have always fascinated the human mind. Perhaps it is the instinctive response of man, the land animal, welcoming a brief intrusion of earth in the vast, overwhelming expanse of sea. Here in a great ocean basin, a thousand miles from the nearest continent, with miles of water under our vessel, we come upon an island. Our imaginations can follow its slopes down through darkening waters to where it rests on the sea floor. We wonder why and how it arose here in the midst of the ocean.

The birth of a volcanic island is an event marked by prolonged and violent travail: the forces of the earth striving to create, and all the forces of the sea opposing. The sea floors where an island begins, is probably nowhere more than about fifty miles thick—a thin covering over the vast bulk of the earth. In it are deep cracks and fissures, the results of unequal cooling and shrinkage in past ages. Along such lines of weakness the molten lava from the earth’s interior presses up and finally bursts forth into the sea. But a submarine volcano is different from a terrestrial eruption, where the lava, molten rocks, gases, and other ejecta are hurled into the air through an open crater. Here on the bottom of the ocean the volcano has resisting it all the weight of the ocean water above it. Despite the immense pressure of, it may be, two or three miles of sea water, the new volcanic cone builds upward toward the surface, in flow after flow of lava. Once within reach of the waves, its soft ash and tuff are violently attacked, and for a long period the potential island may remain a shoal, unable to emerge. But, eventually, in new eruptions, the cone is pushed up into the air and a rampart against the attacks of the waves is built of hardened lava.

Navigators’ charts are marked with numerous, recently discovered submarine mountains. Many of these are the submerged remnants of the islands of a geologic yesterday. The same charts show islands that emerged from the sea at least fifty million years ago, and others that arose within our own memory. Among the undersea mountains marked on the charts may be the islands of tomorrow, which at this moment are forming, unseen, on the floor of the ocean and are growing upward toward its surface.

For the sea is by no means done with submarine eruptions; they occur fairly commonly, sometimes detected only by instruments, sometimes obvious to the most casual observer. Ships in volcanic zones may suddenly find themselves in violently disturbed water. There are heavy discharges of steam. The sea appears to bubble or boil in a furious turbulence. Fountains spring from its surface. Floating up from the deep, hidden places of the actual eruption come the bodies of fishes and other deep-sea creatures, and quantities of volcanic ash and pumice.

One of the youngest of the large volcanic islands of the world is Ascension in the South Atlantic. During the Second World War the American airmen sang

If we don’t find Ascension
Our wives will get a pension

this island being the only piece of dry land between the hump of Brazil and the bulge of Africa. It is a forbidding mass of cinders, in which the vents of no less than forty extinct volcanoes can be counted. It has not always been so barren, for its slopes have yielded the fossil remains of trees. What happened to the forests no one knows; the first men to explore the island, about the year 1500, found it treeless, and today it has no natural greenness except on its highest peak, known as Green Mountain.

In modern times we have never seen the birth of an island as large as Ascension. But now and then there is a report of a small island appearing where none was before. Perhaps a month, a year, five years later, the island has disappeared into the sea again. These are the little, stillborn islands, doomed to only a brief emergence above the sea.

About 1830 such an island suddenly appeared in the Mediterranean between Sicily and the coast of Africa, rising from 100-fathom depths after there had been signs of volcanic activity in the area. It was little more than a black cinder pile, perhaps 200 feet high. Waves, wind, and rain attacked it. Its soft and porous materials were easily eroded; its substance was rapidly eaten away and it sank beneath the sea. Now it is a shoal, marked on the charts as Graham’s Reef.

Falcon Island, the tip of a volcano projecting above the Pacific nearly two thousand miles east of Australia, suddenly disappeared in 1913. Thirteen years later, after violent eruptions in the vicinity, it as suddenly rose again above the surface and remained as a physical bit of the British Empire until 1949. Then it was reported by the Colonial Under Secretary to be missing again.

Almost from the moment of its creation, a volcanic island is foredoomed to destruction. It has in itself the seeds of its own dissolution, for new explosions, or landslides of the soft soil, may violently accelerate its disintegration. Whether the destruction of an island comes quickly or only after long ages of geologic time may also depend on external forces: the rains that wear away the loftiest of land mountains, the sea, and even man himself.

South Trinidad, or in the Portuguese spelling, ‘Ilha Trinidade,’ is an example of an island that has been sculptured into bizarre forms through centuries of weathering—an island in which the signs of dissolution are clearly apparent. This group of volcanic peaks lies in the open Atlantic, about a thousand miles northeast of Rio de Janeiro. E. F. Knight wrote in 1907 that Trinidad ‘is rotten throughout, its substance has been disintegrated by volcanic fires and by the action of water, so that it is everywhere tumbling to pieces.’ During an interval of nine years between Knight’s visits, a whole mountainside had collapsed in a great landslide of broken rocks and volcanic debris.

Sometimes the disintegration takes abrupt and violent form. The greatest explosion of historic time and the literal evisceration of the island of Krakatoa. In 1680 there had been a premonitory eruption of this small island in Sunda Strait, between Java and Sumatra in the Netherlands Indies. Two hundred years later there had been a series of earthquakes. In the spring of 1883, smoke and steam began to ascend from fissures in the volcanic cone. The ground became noticeably warm, and warning rumblings and hissings came from the volcano. Then, on 27 August, Krakatoa literally exploded. In an appalling series of eruptions, that lasted two days, the whole northern half of the cone was carried away. The sudden inrush of ocean water added the fury of superheated stream to the cauldron. When the inferno of white-hot lava, molten rock, steam, and smoke had finally subsided, the island that had stood 1400 feet above the sea had become a cavity a thousand feet below sea level. Only along one edge of the former crater did a remnant of the island remain.

Krakatoa, in its destruction, became known to the entire world. The eruption gave rise to a hundred-foot wave that wiped out villages along the Strait and killed people by tens of thousands. The wave was felt on the shores of the Indian Ocean and at Cape Horn; rounding the Cape into the Atlantic, it sped northward and retained its identity even as far as the English Channel. The sound of the explosions was heard in the Philippine Islands, in Australia, and on the Island of Madagascar, nearly 3000 miles away. And clouds of volcanic dust, the pulverized rock that had been torn from the heart of Krakatoa, ascended into the stratosphere and were carried around the globe to give rise to a series of spectacular sunsets in every country of the world for nearly a year.

Although Krakatoa’s dramatic passing was the most violent eruption that modern man has witnessed, Krakatoa itself seems to have been the product of an even greater one. There is evidence that an immense volcano once stood where the waters of Sunda Strait now lie. In some remote period a titanic explosion blew it away, leaving only its base represented by a broken ring of islands. The largest of these was Krakatoa, which, in its own demise, carried away what was left of the original crater ring. But in 1929 a new volcanic island arose in this place—Anak Krakatoa, Child of Krakatoa.

Subterranean fires and deep unrest disturb the whole area occupied by the Aleutians. The islands themselves are the peaks of a thousand-mile chain of undersea mountains, of which volcanic action was the chief architect. The geologic structure of the ridge is little known, but it rises abruptly from oceanic depths of about a mile on one side and two miles on the other. Apparently this long narrow ridge indicates a deep fracture of the earth’s crust. On many of the islands volcanoes are now active, or only temporarily quiescent. In the short history of modern navigation in this region, it has often happened that a new island has been reported but perhaps only the following year could not be found.

The small island of Bogoslof, since it was first observed in 1796, has altered its shape and position several times and has even disappeared completely, only to emerge again. The original island was a mass of black rock, sculptured into fantastic, tower-like shapes. Explorers and sealers coming upon it in the fog were reminded of a castle and named it Castle Rock. At the present time there remain only one or two pinnacles of the castle, a long spit of black rocks where sea lions haul out, and a cluster of higher rocks resounding with the cries of thousands of sea birds. Each time the parent volcano erupts, as it has done at least half a dozen times since men have been observing it, new masses of steaming rocks emerge from the heated waters, some to reach heights of several hundred feet before they are destroyed in fresh explosions. Each new cone that appears is, as described by the volcanologist Jaggar, ‘the live crest, equivalent to a crater, of a great submarine heap of lava six thousand feet high, piled above the floor of Bering Sea where the Aleutian mountains fall off to the deep sea.’

One of the few exceptions to the almost universal rule that oceanic islands have a volcanic origin seems to be the remarkable and fascinating group of islets known as the Rocks of St. Paul. Lying in the open Atlantic between Brazil and Africa, St. Paul’s Rocks are an obstruction thrust up from the floor of the ocean into the midst of the racing Equatorial Current, a mass against which the seas, which have rolled a thousand miles unhindered, break in sudden violence. The entire cluster of rocks covers not more than a quarter of a mile, running in a curved line like a horseshoe. The highest rock is no more than sixty feet above the sea; spray wets it to the summit. Abruptly the rocks dip under water and slope steeply down into great depths. Geologists since the time of Darwin have puzzled over the origin of these black, wave-washed islets. Most of them agree that they are composed of material like that of the sea floor itself. In some remote period, inconceivable stresses in the earth’s crust must have pushed a solid rock mass upward more than two miles.

So bare and desolate that not even a lichen grows on them, St. Paul’s Rocks would seem one of the most unpromising places in the world to look for a spider, spinning its web in arachnidan hope of snaring passing insects. Yet Darwin found spiders when he visited the Rocks in 1833, and forty years later the naturalists of H.M.S. Challenger also reported them, busy at their web-spinning. A few insects are there, too, some as parasites on the sea birds, three species of which nest on the Rocks. One of the insects is a small brown moth that lives on feathers. This very nearly completes the inventory of the inhabitants of St. Paul’s Rocks, except for the grotesque crabs that swarm over the islets, living chiefly on the flying fish brought by the birds to their young.

St. Paul’s Rocks are not alone in having an extraordinary assortment of inhabitants, for the faunas and floras of oceanic islands are amazingly different from those of the continents. The pattern of island life is peculiar and significant. Aside from forms recently introduced by man, islands remote from the continents are never inhabited by any land mammals, except sometimes the one mammal that has learned to fly—the bat. There are never any frogs, salamanders, or other amphibians. Of reptiles, there may be a few snakes, lizards, and turtles, but the more remote the island from a major land mass, the fewer reptiles there are, and the really isolated islands have none. There are usually a few species of land birds, some insects, and some spiders. So remote an island as Tristan da Cunha in the South Atlantic, 1500 miles from the nearest continent, has no land animals but these: three species of land birds, a few insects, and several small snails.

With so selective a list, it is hard to see how, as some biologists believe, the islands could have been colonized by migration across land bridges, even if there were good evidence for the existence of the bridges. The very animals missing from the islands are the ones that would have had to come dry-shod, over the hypothetical bridges. The plants and animals that we find on oceanic islands, on the other hand, are the ones that could have come by wind or water. As an alternative, then, we must suppose that the stocking of the islands has been accomplished by the strangest migration in earth’s history—a migration that began long before man appeared on earth and is still continuing, a migration that seems more like a series of cosmic accidents than an orderly process of nature.

We can only guess how long after its emergence from the sea an oceanic island may lie uninhabited. Certainly in its original state it is a land bare, harsh, and repelling beyond human experience. No living thing moves over the slopes of its volcanic hills; no plants cover its naked lava fields. But little by little, riding on the winds, drifting on the currents, or rafting in on logs, floating brush, or trees, the plants and animals that are to colonize it arrive from the distant continents.

So deliberate, so unhurried, so inexorable are the ways of nature that the stocking of an island may require thousands or millions of years. It may be that no more than half a dozen times in all these eons does a particular form, such as a tortoise, make a successful landing upon its shores. To wonder impatiently why man is not a constant witness of such arrivals is to fail to understand the majestic pace of the process.

Yet we have occasional glimpses of the method. Natural rafts of uprooted trees and matted vegetation have frequently been seen adrift at sea, more than a thousand miles off the mouths of such great tropical rivers as the Congo, the Ganges, the Amazon, and the Orinoco. Such rafts could easily carry an assortment of insect, reptile, or mollusk passengers. Some of the involuntary passengers might be able to withstand long weeks at sea; others would die during the first stages of the journey. Probably the one best adapted for travel by raft are the wood-boring insects, which, of all the insect tribe, are most commonly found on oceanic islands. The poorest raft travelers must be the mammals. But even a mammal might cover short interisland distances. A few days after the explosion of Krakatoa, a small monkey was rescued from some drifting timber in Sunda Strait. She had been terribly burned, but survived the experience.

No less than the water, the winds and the air currents play their part in bringing inhabitants to the islands. The upper atmosphere, even during the ages before man entered it in his machines, was a place of congested traffic. Thousands of feet above the earth, the air is crowded with living creatures, drifting, flying, gliding, ballooning, or involuntarily swirling along on the high winds. Discovery of this rich aerial plankton had to wait until man himself had found means to make physical invasion of these regions. With special nets and traps, scientists have now collected from the upper atmosphere many of the forms that inhabit oceanic islands. Spiders, whose almost invariable presence on these islands is a fascinating problem, have been captured nearly three miles above the earth’s surface. Airmen have passed through great numbers of the white, silken filaments of spiders’ ‘parachutes’ at heights of two to three miles. At altitudes of 6000 to 16,000 feet, and with wind velocities reaching 45 miles an hour, many living insects have been taken. At such heights and on such strong winds, they might well have been carried hundreds of miles. Seeds have been collected at altitudes up to 5000 feet. Among those commonly taken are members of the Composite family, especially the so-called ‘thistle-down’ typical of oceanic islands.

An interesting point about transport of living plants and animals by wind is the fact that in the upper layers of the earth’s atmosphere the winds do not necessarily blow in the same direction as at the earth’s surface. The trade winds are notably shallow, so that a man standing on the cliffs of St. Helena, a thousand feet above the sea, is above the wind, which blows with great force below him. Once drawn into the upper air, insects, seeds, and the like can easily be carried in a direction contrary to that of the winds prevailing at island level.

The wide-ranging birds that visit islands of the ocean in migration may also have a good deal to do with the distribution of plants, and perhaps even of some insects and minute land shells. From a ball of mud taken from a bird’s plumage, Charles Darwin raised eighty-two separate plants, belonging to five distinct species! Many plant seeds have hooks or prickles, ideal for attachment to feathers. Such birds as the Pacific golden plover, which annually flies from the mainland of Alaska to the Hawaiian Islands and even beyond, probably figure in many riddles of plant distribution.

The catastrophe of Krakatoa gave naturalists a perfect opportunity to observe the colonization of an island. With most of the island itself destroyed, and the remnant covered with a deep layer of lava and ash that remained hot for weeks, Krakatoa after the explosive eruptions of 1883 was, from a biological standpoint, a new volcanic island. As soon as it was possible to visit, scientists searched for signs of life, although it was hard to imagine how any living thing could have survived. Not a single plant or animal could be found. It was not until nine months after the eruption that the naturalist Cotteau was able to report: ‘I only discovered one microscopic spider—only one. This strange pioneer of the renovation was busy spinning its web.’ Since there were no insects on the island, the web-spinning of the bold little spider was presumably in vain, and except for a few blades of grass, practically nothing lived on Krakatoa for a quarter of a century. Then the colonists began to arrive—a few mammals in 1908; a number of birds, lizards, and snakes; various mollusks, insects, and earthworms. Ninety percent of Krakatoa’s new inhabitants, Dutch scientists found, were forms that could have arrived by air.

Isolated from the great mass of life on the continents, with no opportunity for the crossbreeding that tends to preserve the average and to eliminate the new and unusual, island life has developed in a remarkable manner. On these remote bits of earth, nature has excelled in the creation of strange and wonderful forms. As though to prove her incredible versatility, almost every island has developed species that are endemic—that is, they are peculiar to it alone and are duplicated nowhere else on earth.

It was from the pages of earth’s history written on the lava fields of the Galapagos that young Charles Darwin got his first inkling of the great truths of the origin of species. Observing the strange plants and animals—giant tortoises, black, amazing lizards that hunted their food in the surf, sea lions, birds in extraordinary variety—Darwin was struck by their vague similarity to mainland species of South and Central America, yet was haunted by the differences, differences that distinguish them not only from the mainland species but from those on other islands of the archipelago. Years later he was to write in reminiscence: ‘Both in space and time, we seem to be brought somewhat near to that great fact—that mystery of mysteries—the first appearance of new beings on earth.’

Of the ‘new beings’ evolved on islands, some of the most striking examples have been birds. In some remote age before there were men, a small, pigeonlike bird found its way to the island of Mauritius, in the Indian Ocean. By processes of change at which we can only guess, this bird lost the power of flight, developed short, stout legs, and grew larger until it reached the size of a modern turkey. Such was the origin of the fabulous dodo, which did not long survive the advent of man on Mauritius. New Zealand was the sole home of the moas. One species of these ostrich-like birds stood twelve feet high. Moas had roamed New Zealand from the early part of the Tertiary; those that remained when the Maoris arrived soon died out.

Other island forms besides the dodo and the moas have tended to become large. Perhaps the Galapagos tortoise became a giant after its arrival on the islands, although fossil remains on the continents cast doubt on this. The loss of wing use and even of the wings themselves (the moas had none) are common results of insular life. Insects on small, wind-swept islands tend to lose the power of flight—those that retain it are in danger of being blown out to sea. The Galapagos Islands have a flightless cormorant. There have been at least fourteen species of flightless rails on the islands of the Pacific alone.

One of the most interesting and engaging characteristics of island species is their extraordinary tameness—a lack of sophistication in dealings with the human race, which even the bitter teachings of experience do not quickly alter. When Robert Cushman Murphy visited the island of South Trinidad in 1913 with a party from the brig Daisy, terns alighted on the heads of the men in the whaleboat and peered inquiringly into their faces. Albatrosses on Laysan, whose habits include wonderful ceremonial dances, allowed naturalists to walk among their colonies and responded with a grave bow to similar polite greetings from the visitors. When the British ornithologist David Lack visited the Galapagos Islands, a century after Darwin, he found that the hawks allowed themselves to be touched, and the flycatchers tried to remove hair from the heads of the men for nesting material. ‘It is a curious pleasure,’ he wrote, ‘to have the birds of the wilderness settling upon one’s shoulders, and the pleasure could be much less rare were man less destructive.’

But man, unhappily, has written one of his blackest records as a destroyer on the oceanic islands. He has seldom set foot on an island that he has not brought about disastrous changes. He has destroyed environments by cutting, clearing, and burning; he has brought with him as a chance associate the nefarious rat; and almost invariably he has turned loose upon the islands a whole Noah’s Ark of goats, hogs, cattle, dogs, cats, and other non-native animals as well as plants. Upon species after species of island life, the black night of extinction has fallen.

In all the world of living things, it is doubtful whether there is a more delicately balanced relationship than that of island life to its environment. This environment is a remarkably uniform one. In the midst of a great ocean, ruled by currents and winds that rarely shift their course, climate changes little. There are few natural enemies, perhaps none at all. The harsh struggle for existence that is the normal lot of continental life is softened on the islands. When this gentle pattern of life is abruptly changed, the island creatures have little ability to make the adjustments necessary for survival.

Ernst Mayr tells of a steamer wrecked off Lord Howe Island east of Australia in 1918. Its rats swam ashore. In two years they had so nearly exterminated the native birds that an islander wrote, ‘This paradise of birds has become a wilderness, and the quietness of death reigns where all was melody.’

On Tristan da Cunha almost all of the unique land birds that had evolved there in the course of the ages were exterminated by hogs and rats. The native fauna of the island of Tahiti is losing ground against the horde of alien species that man has introduced. The Hawaiian Islands, which have lost their native plants and animals faster than almost any other area in the world, are a classic example of the results of interfering with natural balances. Certain relations of animal to plant, and of plant to soil, had grown up through the centuries. When man came in and rudely disturbed this balance, he set off a whole series of chain reactions.

Vancouver brought cattle and goats to the Hawaiian Islands, and the resulting damage to forests and other vegetation was enormous. Many plant introductions were as bad. A plant known as the pamakani was brought in many years ago, according to report, by a Captain Makee for his beautiful gardens on the island of Maui. The pamakani, which has light, wind-borne seeds, quickly escaped from the captain’s gardens, ruined the pasture lands on Maui, and proceeded to hop from island to island. The CCC boys were at one time put to work to clear it out of the Honouliuli Forest Reserve, but as fast as they destroyed it, the seeds of new plants arrived on the wind. Lantana was another plant brought in as an ornamental species. Now it covers thousands of acres with a thorny, scrambling growth—despite large sums of money spent to import parasitic insects to control it.

There was once a society in Hawaii for the special purpose of introducing exotic birds. Today when you go to the islands, you see, instead of the exquisite native birds that greeted Captain Cook, Mynas from India, cardinals from the United States or Brazil, doves from Asia, weavers from Australia, skylarks from Europe, and titmice from Japan. Most of the original bird life has been wiped out, and to find its fugitive remnants you would have to search assiduously in the most remote hills.

Some of the island species have, at best, the most tenuous hold on life. The Laysan teal is found nowhere in the world but on the one small island of Laysan. Even on this island it occurs only on one end, where there is a seepage of fresh water. Probably the total population of this species does not exceed fifty individuals. Destruction of the small swampy bit of land that is its home, or the introduction of a hostile or competing species, could easily snap the slender thread of life.

Most of man’s habitual tampering with nature’s balance by introducing exotic species has been done in ignorance of the fatal chain of events that would follow. But in modern times, at least, we might profit by history. About the year 1513, the Portuguese introduced goats onto the recently discovered island of St. Helena, which had developed a magnificent forest of gumwood, ebony, and brazilwood. By 1560 or thereabouts, the goats had so multiplied that they wandered over the island by the thousand, in flocks a mile long. They trampled the young trees and ate the seedlings. By this time the colonists had begun to cut and burn the forests, so that it is hard to say whether men or goats were the more responsible for the destruction. But of the result there was no doubt. By the early 1800’s the forests were gone, and the naturalist Alfred Wallace later described this once beautiful, forest-clad volcanic island as a ‘rocky desert,’ in which the remnants of the original flora persisted only in the most inaccessible peaks and crater ridges.

When the astronomer Halley visited the islands of the Atlantic about 1700, he put a few goats ashore on South Trinidad. This time, without the further aid of man, the work of deforestation proceeded so rapidly that it was nearly completed within the century. Today Trinidad’s slopes are the place of a ghost forest, strewn with the fallen and decaying trunks of long-dead trees; its soft volcanic soils, no longer held by the interlacing roots, are sliding away into the sea.

One of the most interesting of the Pacific islands was Laysan, a tiny scrap of soil which is a far outrider of the Hawaiian chain. It once supported a forest of sandalwood and fanleaf palms and had five land birds, all peculiar to Laysan alone. One of them was the Laysan rail, a charming, gnomelike creature no more than six inches high, with wings that seemed too small (and were never used as wings), and feet that seemed too large, and a voice like distant, tinkling bells. About 1887, the captain of a visiting ship moved some of the rails to Midway, about 300 miles to the west, establishing a second colony. It seemed a fortunate move, for soon thereafter rabbits were introduced on Laysan. Within a quarter of a century, the rabbits had killed off the vegetation of the tiny island, reduced it to a sandy desert, and all but exterminated themselves. As for the rails, the devastation of their island was fatal, and the last rail died about 1924.

Perhaps the Laysan colony could later have been restored from the Midway group had not tragedy struck there also. During the war in the Pacific, rats went ashore to island after island from ships and landing craft. They invaded Midway in 1943. The adult rails were slaughtered. The eggs were eaten, and the young birds killed. The world’s last Laysan rail was seen in 1944.

The tragedy of the oceanic islands lies in the uniqueness, the irreplaceability of the species they have developed by the slow processes of the ages. In a reasonable world men would have treated these islands as precious possessions, as natural museums filled with beautiful and curious works of creation, valuable beyond price because nowhere in the world are they duplicated. W. H. Hudson’s lament for the birds of the Argentine pampas might even more truly have been spoken of the islands: ‘The beautiful has vanished and returns not.’