TENS OF THOUSANDS of people are walking toward me. It is 6 p.m. on Thursday, August 14, 2003—three months, almost to the day, after my tranquil afternoon in Rome’s Forum. I’m standing on Yonge Street, Toronto’s central artery, looking down a slight grade to the skyscrapers at the city’s center. For several kilometers, as far as I can see down the road, the sidewalks are choked with people trudging north.
Two hours earlier, the power failed across an immense wedge of eastern North America extending from New York to Detroit to Toronto. It’s the biggest blackout ever on the continent. Subway trains shuddered to a halt, traffic lights went dead, and all surface transport was snarled in gridlock. Unable to get home the usual way, people are leaving the urban centre on foot.
I talk to a few of them. Some are frustrated and annoyed, but none seems angry. Some find the whole thing a novelty—a fun interruption of a hot summer afternoon’s routine. Others generously pitch in to direct traffic or guide pedestrians across chaotic streets.
But everyone seems puzzled and at least a little disconcerted. What happened? Was it terrorism? How long will it last? And how will we get home?
The view down Yonge Street reminds me of something I’d already seen, but at first I’m not sure what. Then I realize that it resembles a grim day only two years before, when the world had gaped in horror as people fled on foot from southern Manhattan, the smoke of the collapsed Twin Towers billowing into the sky behind them. Unlike 9/11, the great 2003 blackout didn’t claim thousands of lives or trigger a war. But it echoed that earlier catastrophe. Both events were complete surprises that materialized suddenly out of a complex world we only remotely understand. Both had effects that were greatly amplified by the intricate networks that tightly connect us together and that move people, money, information, materials, and energy. And both starkly reminded us how vulnerable we’ve become to the abrupt failure of critical technological, economic, and social systems.
When the power went off in August 2003, all air conditioners, elevators, subways, and traffic signals failed—but that wasn’t surprising. What did surprise many people, though, was the simultaneous failure of portable phones, automatic tellers, debit card machines, electronic hotel-room doors, electric garage doors, and almost all clocks. Most disconcerting of all was the loss of the constant flow of information that’s become a drug in our lives, as people were cut off from television, e-mail, and—worst of all—the Web. No one could tell what was going on. It was as if darkness had fallen in mid-afternoon. People clustered around cars that boomed out reports from radio stations running on backup power. In the sudden gridlock downtown, cars weren’t much good for getting around, but at least they had batteries, so their radios worked.
Most of us in cities are now so specialized in our skills and so utterly dependent on complex technologies that we’re quickly in desperate straits when things really go wrong.1 When we can’t drive, catch a cab, or take the subway, we have to fall back on such age-old methods as walking to meet our immediate needs.
When, next, will we see people walking out of our cities—in the darkness of a mid-afternoon?
Maybe not long from now, because the possibility of abrupt breakdown in our vital social and technological systems is rising, and perhaps rising fast. Breakdown is often like an earthquake: it’s caused by the slow accumulation of deep and largely unseen pressures beneath the surface of our day-to-day affairs. At some point these pressures release their accumulated energy with catastrophic effect, creating shock waves that pulverize our habitual and often rigid ways of doing things. Events like last century’s Great Depression and two World Wars were good examples of this kind of buildup and sudden release of pressure.
Five tectonic stresses are accumulating deep underneath the surface of our societies, as I’ll show in the next chapters. They are
population stress arising from differences in the population growth rates between rich and poor societies, and from the spiraling growth of megacities in poor countries;
energy stress—above all from the increasing scarcity of conventional oil;
environmental stress from worsening damage to our land, water, forests, and fisheries;
climate stress from changes in the makeup of our atmosphere;
and, finally, economic stress resulting from instabilities in the global economic system and ever-widening income gaps between rich and poor people.2
Of the five, energy stress plays a particularly central role. I discovered in investigating the story of ancient Rome that energy is society’s critical master resource: when it’s scarce and costly, everything we try to do, including growing our food, obtaining other resources like fresh water, transmitting and processing information, and defending ourselves, becomes far harder.
Most of the five stresses spring from our troubled relationship with nature. Indeed, one of my most important points in this book is that we can’t ignore nature any longer, because it affects every aspect of our well-being and even determines our survival.3 Yet today, despite a growing intuitive public awareness of this fact, most politicians, corporate leaders, social scientists, and commentators in Western societies give nature little attention. They push it to the sidelines of public discussion, focusing instead on the headline issues that regularly hijack social, economic, and political debate. And they tend to dismiss people who concern themselves with nature as, at best, softheaded do-gooders or, at worst, eco-freak fanatics.
Most such opinion leaders imply we don’t need to worry because we human beings are biologically exceptional, unlike any other species on Earth, with brains that endow us with immense ingenuity to solve our problems. And they imply that modern Western societies are historically exceptional, because no other societies in the past had our science, markets, and democracy. Today, our science gives us the knowledge, our markets give us the incentives, and our democracy gives us the social resources to solve any demographic, health, energy, or environmental crisis that might come our way.4
Yes, we do have exceptional brains, and Western societies are certainly among the most creative and adaptive in human history. But there are times when our problems are too hard for our brains, or when science, markets, and democracy can’t generate solutions when and where they’re needed.5 And such opinion leaders conveniently overlook the fact that every great civilization believes itself to be exceptional— right up to the time it collapses.6 Instead, unrealistically optimistic, they promote their Panglossian view almost as if it were a religion—an absolutist creed that leaves no room for uncertainty and that we’re supposed to accept as a matter of faith.
Sure enough, this creed now permeates our common language and thought, and many of us truly believe we can free ourselves of the physical constraints that have otherwise governed human beings throughout history. Our recent experience has also encouraged this complacency. For a few remarkable decades—decades when energy seemed in endless supply, when our antibiotics seemed to have conquered infectious disease, when we traveled to the moon, and when the productivity of capitalist economies appeared to know no bounds—we could fool ourselves that the physical facts of life no longer applied.
But now Earth’s glaciers and icecaps are disappearing, while mammoth hurricanes pound the United States, Australia, and Japan—signs that nature is reasserting its authority. The twenty-first century will, in fact, be the Age of Nature. We’ll learn, probably the hard way, that nature matters: we’re not separate from it, we’re dependent on it, and when there’s trouble in nature, there’s trouble in society.
These stresses are of concern enough. But two other factors are likely to give them extra force. I call these multipliers, because they combine with the five stresses to make breakdown more likely, widespread, and severe. The first multiplier is the rising speed and global connectivity of our activities, technologies, and societies. The second is the escalating power of small groups to destroy things and people.
Humankind has been crisscrossing the globe for millennia, and we’ve been trading large quantities of raw materials and manufactured goods around the world for many centuries. But only in the past hundred years or so, while our population has quadrupled, have we created tightly interlinked economic, technological, and social systems—from industrial agriculture to financial markets—that penetrate virtually every corner of the planet. The kiwifruit on your breakfast plate comes from New Zealand, the plate itself comes from Malaysia, while the tantalum metal in the cell phone beside your plate comes from the jungles of eastern Congo. The globe, says the eminent historian Eric Hobsbawm, is now “a single operational unit.”7 And only in the past few decades has our impact on the natural environment become truly planetary: we’re now a physical force on the scale of nature itself, disrupting the deepest processes of natural systems like Earth’s climate, and massively changing global cycles of carbon, nitrogen, phosphorus, and sulfur.
This is the real face of globalization—a phenomenon that many people talk about but few really understand. It’s not just a process of growing economic interdependence among countries. That’s something that’s been underway for hundreds of years.8 Globalization is really a much broader and, in many ways, more recent phenomenon: an almost vertical rise in the scope, connectedness, and speed of all humankind’s activities and impacts. It’s as much about the spread of new diseases like AIDS and avian flu from one continent to another, the infestation of the Great Lakes by foreign mollusks, and the arrival of shiploads of poor migrants on our shores as it is about trade negotiations, farm subsidies, and currency convertibility.
The change has brought huge benefits. More trade in goods and services often boosts wealth for all involved: better movement of capital can aid investment and development, and mobilized global opinion brings attention to distant human-rights and environmental problems. Greater connectivity between people and a higher speed of interaction—caused mainly by lightning-fast information technology—let people far and wide combine their ideas, talents, and resources in ways that may expand everyone’s prosperity.
But globalization has also created huge challenges. Greater connectivity and speed, for instance, allow what would once have been merely local shocks and disruptions to cascade outward as never before, sometimes affecting the whole planet. Just as the 2003 blackout ramified across eastern North America from its starting point in Ohio, so, earlier that year, did severe acute respiratory syndrome (SARS) emerge in southern China and explode into dozens of countries from Vietnam to Canada.
Greater connectivity and speed are especially worrisome in light of the spread of “lethal technologies” that have sharply raised the destructive power of angry and violent people. In a globalized world, an attack in one place can have instant repercussions everywhere. Lethal technologies don’t have to be exotic or rare, like biochemical, nuclear, or radiological weapons. Technologies that provide impressive killing power to fanatics, insurgents, and criminal gangs are already widely available: conventional assault rifles, rocket-propelled grenades, and plastic explosives—staggeringly abundant and traded in vast quantities legally and illegally around the planet—are contributing to havoc from Chechnya to Congo and Iraq. Violent groups have also been learning how to convert civilian technologies into appalling weapons—as the Al Qaeda terrorists did so horrifically when they used passenger airliners as guided missiles.
(Each dot above represents one hundred kilograms of HEU; the large rectangle of dots represents the amount of HEU in the world.)
But it’s the exotic technologies—the weapons of mass destruction— that keep experts awake at night. If terrorists obtained barely one hundred kilograms of highly enriched uranium—less than one ten-thousandth of the world’s stockpile, much of which is stored in insecure facilities in the former Soviet Union—they could easily build an atomic bomb that could flatten the core of any of our great cities.9 London or New York, Paris or Washington, Moscow or Delhi, Tel Aviv or Riyadh—these metropolises are all in countries whose policies evoke hatred from fanatically violent groups, and any could be obliterated in an instant. Never before has it been possible for small groups to destroy entire cities, and this one fact by itself will ensure that our future is entirely different from our past.
The stresses and multipliers are a lethal mixture that sharply boosts the risk of collapse of the political, social, and economic order in individual countries and globally—an outcome I call synchronous failure. This would be destructive—not creative—catastrophe. It would affect large regions and even sweep around the globe, in the process deeply damaging the human prospect. Recovery and renewal would be slow, perhaps even impossible.
It’s the convergence of stresses that’s especially treacherous and makes synchronous failure a possibility as never before.10 In coming years, our societies won’t face one or two major challenges at once, as usually happened in the past. Instead, they’ll face an alarming variety of problems—likely including oil shortages, climate change, economic instability, and mega-terrorism—all at the same time.11
Scholars have found that bloody social revolutions occur only when many pressures simultaneously batter a society that has weak political, economic, and civic institutions.12 These were the conditions in France in the late eighteenth century, Russia in the early twentieth century, and Iran in the late 1970s. And in many ways the same conditions are developing today for societies around the world and even for global order as a whole.
We don’t usually think in terms of convergence, because we tend to “silo” our problems. We look at our challenges in isolation, so we don’t see the whole picture. But when several stresses come together at the same time, they can produce an impact far greater than their individual impacts. When sparks combined with fuel immediately after the great 1906 earthquake, San Francisco exploded in flames. Today, around the world, we see similar explosive combinations of factors. For instance, just as shrinking global oil supplies are becoming ever more concentrated in some of the planet’s most dangerous and politically unstable regions, more countries desperately need cheap energy to maintain their consumption-driven growth—a situation that raises the likelihood of wars over oil in places like the Persian Gulf. And just as gaps between rich and poor people are widening fast within and among our societies, new technology has put staggeringly destructive power in the hands of people who could be enraged by those gaps.
Convergence is treacherous, too, because it could lead directly to synchronous failure, if several stresses were to climax together in a way that overloads our societies’ ability to cope. What happens, for example, if together or in quick succession the world has to deal with a sudden shift in climate that sharply cuts food production in Europe and Asia, a severe oil price increase that sends economies tumbling around the world, and a string of major terrorist attacks on several Western capital cities? Such a convergence would be a body blow to global order, and might even send reeling the world’s richest and most powerful societies. Global financial institutions and political stability could begin to break down.
We can’t estimate the exact likelihood of any one of these events, but we can say with reasonable confidence that their individual probabilities are rising. The probability that they’ll happen together is, of course, much lower, but it’s surely rising too.13 And I’ve described only one scenario of converging stresses. If some form of synchronous failure does occur, it’s likely to be in a way that we’ve never anticipated, because the range of permutations is almost infinite. We shouldn’t be surprised by surprise.
Skeptics dismiss this kind of argument as alarmist, as a shopworn revelation of a coming apocalypse.14 At most, they say, these are remote worst-case outcomes, so we shouldn’t give them much attention. In answer I acknowledge that we can’t know for sure what our future holds— what’s beyond that white wall of fog. But we can still say confidently that we’re sliding toward a planetary emergency; that the risk of major social breakdown in general—the result of something like synchronous failure specifically—is growing.15
And this is precisely the kind of outcome that disaster planners and insurance companies think about all the time: a perhaps low-probability event that would nevertheless exact a colossal toll if it happened.16 We spend enormous amounts of money and time trying to make such outcomes even less likely—for instance, by building dikes and breakwaters along our coastlines to protect against the every-hundred-years storm or by reinforcing our buildings and bridges to withstand the every-hundred-years earthquake. Synchronous failure would be the same kind of disaster, except on a far greater scale, and it’s something we must do our very best to avoid.
The question is, how?
We typically respond to unfolding threats with a two-stage strategy: first denial, then reluctant management. If we can get away with denying or ignoring a problem—like the increasing risk of oil shortages or the international economy’s chronic instability—we do so. We tell ourselves that the challenges aren’t that serious and then simply continue with business as usual. Sometimes, lo and behold, benign neglect is the best strategy, and we muddle through successfully.
But it isn’t the best strategy now because the potential costs if we’re wrong are too high. In fact, we’d hotly criticize any family that ran its affairs the way we’re running ours. If a family—especially a family with children—lived in a dangerous place—say, in a house on a floodplain, while massive storms brewed in nearby hills—and if they ignored the warning signs and continued as if nothing was the matter, we’d consider them irresponsible, the parents in particular. And the same criticism holds for us today if we deny the seriousness of our global situation: fundamentally, we’re shirking our responsibility to our children and grandchildren who’ll live in the world we’re creating today.
When denial no longer works, perhaps because the signs that something’s wrong have become too obvious to ignore, we may do our best to manage the challenge. We’ll analyze the data, forecast the future, and lay out detailed policies to reduce the problem’s seriousness and adapt to its consequences. Today, most experts who take our global problems seriously advocate a management response.
While this is better than simply denying our problems exist, it often doesn’t help much. Any management policies that really address the underlying causes of our hardest problems usually require big changes in the existing economic and political order. After all, that order is often a central reason why our problems are so bad. But big changes always run headlong into staunch opposition from powerful and entrenched interest groups—like companies, unions, government bureaucracies, and associations of financial investors—that benefit from the status quo. So they’re hardly ever carried out.
A good example is the history of the North American electrical system leading up to the 2003 blackout. The blackout wasn’t, of course, the first event of its kind. In 1965, a failure left thirty million powerless from Ontario to New Jersey. Soon after, researchers began to better understand the complex behavior of the electrical grid—the continent-wide network of electricity-generating stations, high-voltage transmission lines, control centers, and substations that supplies Canadian and American consumers with power—and the peril of grid breakdown. In 1982, two of America’s most thoughtful energy experts, Amory and Hunter Lovins, warned that the United States “has gradually built up an energy system prone to sudden, massive failures with catastrophic consequences.”17 Military, government, academic, and industrial experts reviewed the Lovinses’ research, but willful denial, technological obstacles, and obstruction by powerful corporate and political interests blocked fundamental reform of the continent’s electricity system. When asked a year before the 2003 blackout if things had improved over the previous two decades, Amory Lovins said, “I’m surprised the lights are still on.”18
From the point of view of those with a vested interest in the status quo, efforts to manage our problems can actually be a useful diversion: such efforts provide a focus for research, discussion, and countless meetings for academics, politicians, consultants, and NGOs, while in practice nothing really changes. The Kyoto climate-change negotiations kept thousands of scientists and other experts busy for years (ironically generating vast amounts of carbon dioxide as they traveled from meeting to meeting) while providing cover for politicians who wanted to say they were doing something about global warming.
Because it’s hard to challenge the arrangements that benefit vested interests, when we try to manage serious threats to our well-being we usually create new organizations, institutions, and procedures rather than reforming those that already exist. We might, for example, create another office in the government’s bureaucracy to monitor the flow of nuclear materials that could fall into terrorists’ hands, or we might sign a treaty like the Kyoto Protocol that says we’re going to cut carbon dioxide emissions. Too often, though, this strategy simply adds another layer of complexity on top of an already cumbersome and dysfunctional management system. So, over time, our mechanisms for dealing with a more volatile world become more rigid and susceptible to catastrophic failure when exposed to severe stress.
What, then, should we do? We could adopt a more radical response to our converging challenges: while a management approach is sometimes useful, we could also recognize that sometimes it won’t work, and that when it doesn’t work, as time passes, breakdown becomes increasingly likely. When breakdown happens, our challenge will be to keep it from becoming synchronous failure, while at the same time exploiting the opportunities it provides to promote deep reform.
We can help keep future breakdown constrained—that is, not too severe—by making our technological, economic, and social systems more resilient to unexpected shocks. For example, to lessen the risk of cascading failure of our energy system—failure that spreads through the system just the way a row of dominoes falls—we can make much greater use of decentralized, local energy generation and alternative energy sources (like small- and medium-scale solar, wind, and geothermal power) so that individual users are more independent of the grid. We might lose some economic efficiency, and our economy’s total output of wealth might be smaller, but we’d benefit from a more stable and resilient energy system—and that benefit could far outweigh the cost.
I’ll outline later other such resilience-enhancing strategies. If widely adopted, they would profoundly alter the course of our societies. In truth, by shifting us away from a monomaniacal focus on greater economic productivity, efficiency, and growth, they would represent a wholesale challenge to current economic orthodoxy.
We can also get ready in advance to turn to our advantage any breakdown that does occur. Breakdown happens—in our personal lives as well as in our societies. If seldom desirable in itself, it’s nonetheless rarely the end of the world, and much good can come of it. We can boost the chances that it will lead to renewal by being well prepared, nimble, and smart and by learning to recognize its many warning signs.
To help us recognize the signs and prepare for breakdown is a central purpose of this book. In the following pages, I don’t provide a checklist of technical and institutional solutions we might apply to manage the world’s tectonic stresses. Instead my aim here is to begin a conversation about why breakdown of some kind is becoming more likely, how we can keep it from being so severe that it’s debilitating, and what we can do to exploit the opportunities it presents when it happens. If breakdown is to have an upside—and I fervently believe that it can—we have to work together to develop a wide range of scenarios and explore what we can do individually and together in each situation. You can join me in this conversation at www.theupsideofdown.com.
At some time or other in our lives, most of us have been humbled by a professional or personal crisis—say the bankruptcy of a business, the loss of a job, or the death of a loved one. In response we’ve examined our basic assumptions, gathered together our remaining resources, and rebuilt our lives—surprisingly, often in a new and better ways.
Surprisingly too, there’s no term in English for this commonplace occurrence of renewal through breakdown. So I found a label for it. I call it catagenesis, a word that combines the prefix cata, which means “down” in ancient Greek, with the root genesis, which means “birth.” The word is used in some scientific fields—for instance, ecologists use catagenesis to refer to the evolution of a species toward a simpler, less-specialized form.19 In my use of the term here, I retain the idea of a collapse or breakdown to a simpler form, but I especially emphasize the “genesis”—the birth of something new, unexpected, and potentially good. In my view of it, whether the breakdown in question is psychological, technological, economic, political, or ecological—or some combination of these forms—catagenesis is, in essence, the everyday reinvention of our future.
I developed this idea of catagenesis after much study of how some systems adapt very well to changes in their surrounding environments. All systems—whether a windup clock, the Earth’s climate, or a country’s government—are made up of interacting components that stay together, as a set, over time.20 But not all systems adapt well to new challenges or stresses. I learned that that those that do adapt well are generally called “complex adaptive systems,” and they include things like tropical forests, private corporations, human societies, and even individual people. Each one of us is actually a complex adaptive system.
But what, exactly, makes a system complex? Partly it’s the fact that it has lots of bits and pieces—in the case of a society, a lot of people, organizations, machines, and flows of material and energy. But that’s not the only factor. If it were, a complex system would merely be complicated. Complex systems have other characteristics that we’ll discover later.21 At this point let’s just say that they generally have a wider range of potential behaviors than simple systems. So machines like windup clocks or car engines aren’t complex. They may be extremely complicated—they may have thousands of parts—but all their parts work together to produce a system with a relatively narrow and predictable range of behaviors.
Also, we can take machines apart to find out why they behave the way they do. We can, for instance, dismantle a windup clock to discover its various cogwheels, bushings, and springs; and then, by examining each of these parts and how they fit together, we can figure out how the clock works. Its behavior is the direct result of the characteristics of its component parts, and if the clock doesn’t work, or if it does something weird—such as go backward—we can attribute its unfortunate conduct to the failure of particular parts.
Complex systems, on the other hand, have properties and behaviors that can’t be attributed to any particular part but only to the system as a whole. A stock market is a complex system, and its overall behavior— whether it’s a bull market going up or a bear market going down, for example—is the result of the buying and selling of thousands, maybe even millions, of individual investors. A person is a complex system too. Let’s take an average male adult—call him John. There are aspects of John’s physiology, personality, and actions that we can’t understand no matter how well we understand his discrete bits and pieces, like his spleen, his right big toe, or even his brain’s frontal lobes. Like all complex systems, John has emergent properties: he is more than, and different from, the sum of his parts. Once all those parts are linked together and operating in their right places, we get characteristics and behaviors—perhaps his body’s ability to regulate its temperature or his whimsical fascination with butterflies—that we couldn’t have anticipated or understood beforehand, even with complete knowledge of all his separate parts.
Now recent research—which we’ll get to know in later chapters— shows that some kinds of complex systems adapt to their changing environment by going through a four-stage cycle of growth, breakdown, reorganization, and renewal (the last three of these stages are what I call catagenesis).22 There’s an important caveat to this general idea of a four-stage cycle, though: while breakdown is essential to long-run adaptation and renewal, it must not be too severe. In other words, breakdown must be constrained—just as the great San Francisco fire was constrained when it was stopped at Van Ness Avenue—for catagenesis to happen.23
Of course, even constrained breakdown, when it affects our communities, companies, and societies, can hurt many people, sometimes very badly. But it can also shatter the forces standing in the way of change and the deeply entrenched and too-comfortable mindsets that keep people from seeing exciting possibilities for renewal. It can, in short, be a source of immense creativity—a shock that opens up political, social, and psychological space for fresh ideas, actions, institutions, and technologies that weren’t possible before. In capitalist economies, this often happens when companies fail or go bankrupt. There are many examples in history too. The implosion of Soviet power in Eastern Europe in the late 1980s and early 1990s created stunning opportunities (some exploited, some not) for fundamental renewal of the region’s political and economic systems. Longer ago, the profound shock of the Great Depression in the 1930s allowed President Franklin D. Roosevelt to enact vital reforms in the U.S. economy.
But beware. Breakdown can also usher in a period of great danger—of turmoil, confusion, frustration, and anger—a period when demagogues can rush into the breach and turn one group against another with ferocious violence. While the Great Depression gave Roosevelt the impetus and opportunity to reform American capitalism, it also gave Hitler the chance to establish one of history’s most evil regimes.
In times of upheaval, wrote the great Irish poet W. B. Yeats in “The Second Coming,” “the best lack all conviction, while the worst are full of passionate intensity.” When social breakdown happens, as it will in coming years, we can be sure that the worst will be full of passionate intensity. We must be equally sure that the best will have the conviction, the knowledge, and the resources to prevail.
Complex systems have a number of other essential features that affect how they respond to stress and also whether we can predict their future behavior.
Sometimes, for instance, small changes in a complex system produce huge effects, while large changes make little difference at all.24 In other words, cause and effect aren’t proportional to each other. Specialists call this nonlinear behavior, and we encounter it all the time in our daily lives—even in relatively simple systems. A warming of one degree in temperature in our kitchen’s freezer may be imperceptible to touch, but it can thaw all our food. A light switch doesn’t budge with a gentle push, but apply slightly more pressure and it suddenly flips from off to on.
In the case of a complex system, nonlinear behavior can happen as disturbances or changes in the system, each one relatively small by itself, accumulate. Outwardly, everything seems to be normal: the system doesn’t generate any surprises. At some point, though, the behavior of the whole system suddenly shifts to a radically new mode. This kind of behavior is often called a threshold effect, because the shift occurs when a critical threshold—usually unseen and often unexpected—is crossed. (In our everyday conversation, when we say something was “the straw that broke the camel’s back,” we’re saying it caused a threshold effect.)
Threshold effects can be good or bad for us, depending on the circumstances and one’s point of view. The end of apartheid in South Africa and the collapse of the Grand Banks cod fishery are both great examples of threshold effects, but the former was a positive development for many people and the latter wasn’t. The international economy often exhibits threshold effects. The 1997–98 Asian financial crisis was a sobering case. A devaluation of the Thai bhat, a minor currency, launched a financial crisis that ricocheted through the international economy for months, cost trillions of dollars in lost economic output, and threw tens of millions of people out of work. One day the Asian economy was booming; the next it was in a nosedive.
We often see beneficial threshold effects in the evolution of technologies: when just the right confluence of enabling factors occurs, technological progress surges. For instance, once lots of people were using the Internet and once an effective browser had been invented, the World Wide Web spread around the planet like wildfire—with the number of Web servers (the powerful computers that host Web pages on the Internet) soaring from a few thousand in the mid- 1980s to over two million by 1994 and almost 400 million now.25
The behavior of a complex system with these features is highly contingent—how it behaves at any given time, and how it evolves over time, depends on a host of factors, large and small, knowable and unknowable. I’ve come to think of such systems as encountering many junctions as they move through time—just like the junction that Robert Frost’s traveler encounters in his famous poem “The Road Not Taken.”
Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth
Frost’s traveler, like all human beings, is a complex system. The route we take through the woods depends on the number of junctions we encounter, on the number of paths available at each junction, and on countless subtle, imponderable things that influence us to choose one path over another at each junction. We can’t hope to forecast our ultimate route. And the same is true of any other complex system. The further we try to predict into the future, the more bewildering the task of predicting the system’s route becomes.
Once a complex system goes down a particular path, it can’t easily jump from one path to another or retrace its steps to try a different path. Frost seemed to understand this inescapable feature of our world. After having made a choice to follow one path, his traveler laments,
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.
Specialists have a term to describe this characteristic of complex systems: path dependent. Where the system is at any particular time depends on the tortuous, circuitous route by which it got there—“how way leads on to way,” as Frost marvelously puts it. A complex system’s history turns out to be crucially important because it profoundly shapes what the system becomes, and it can’t be rewritten or repealed. Frost finishes,
I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.
Many people focus on the decision made in the poem’s penultimate line, taking it as an affirmation of why it’s important to be different from the crowd. But I believe Frost’s real message is in the last line, and it’s much more disturbing and, in the end, poignant. He is telling us that a choice that appears insignificant can “make all the difference,” and that there may be no going back.
When small things can make a big difference, and when it’s impossible to know which small things matter and which don’t, predicting the future becomes formidably difficult. This is especially true of human affairs.26 Even more than the behavior of other complex systems, human social, economic, and political behavior is often extremely sensitive to serendipity, to fad and the whims of leadership, and to sudden technological, economic, political, and environmental developments. Also, we can’t know exactly when or how any complex system that crucially affects our lives will cross a critical threshold and flip to a new mode of behavior. Thirty years ago, who anticipated the implosion of Soviet communism, the widespread adoption of personal computers, the emergence of AIDS, or the opening-up of a gaping hole in the stratospheric ozone layer over the Antarctic? Or, for that matter, on September 10, 2001, who among us predicted that terrorists would fly planes into the World Trade Center?
Try it. Try to come up with a plausible scenario for what the world will look like in, say, 2025, or even 2015. After even a moment’s reflection, you’ll realize that the range of possibilities is almost infinite and that given the blazing rate of change in today’s world, there’s something profoundly unknowable about the future, even a future that could arrive within a decade or two.27
Because we don’t have anything firm to guide us, when we try to predict what our world will be like, we tend to think that things will continue the way they are going now. If a technology like the computer microchip has steadily improved in one direction—in the microchip’s case, by doubling its power every eighteen months—we tend to assume that the trend will continue in the same direction in the future. We also fall back on our underlying personal temperaments. Our natural optimism or pessimism powerfully affects whether we believe technological, social, and environmental trends will bring us happiness or grief. And in our data-saturated lives, it’s easy to find evidence that confirms our biases.
Few people actually recognize how bad we are at predicting the future. Recently, though, I discovered an exception in an obscure collection of essays written at the time of the 1893 Chicago World Exposition. Various famous Americans were asked to describe what American society would be like a century hence—in 1993. In today’s light, many of their predictions seem downright bizarre, and almost all are infused with the exuberant American optimism of the late nineteenth century—only two decades before the twentieth century’s calamities began to unfold. To be fair, though, envisioning life a hundred years in the future is astonishingly hard, as is thinking free of our culture’s dominant sentiments.
But one comment especially caught my eye. In his short essay, “The Future Is a Fancyland Palace,” James William Sullivan, a prominent newspaper editor and a follower of the American economist and reformer Henry George, offered more insight than all the book’s other prognostications. And in his poetic yet blunt acknowledgment of our inability to see the future, Sullivan was far more sensible than most of our “experts” today:
I find that I am unable to prophesy. The future is a fancyland palace whose portals I cannot enter. Moving toward it from Here, I am charmed with its brilliant façade. What sculptured splendors—porticoes, pillars, statues, windows! What is within? As I advance, however, the airy structure recedes. I cannot push beyond its threshold; its doors never open; on their other side are silence and mystery.28
On the other side may be silence and mystery, but here’s one thing we do know about the future: surprise, instability, and extraordinary change will be regular features of our lives. Some events, such as 9/11, will even transform our outlook forever. They’ll be like massive social earthquakes, rupturing the order of things—the routines and regularities we rely on for a sense of safety and a sense of who we are and where we are going. Our surroundings won’t ever look the same again. The reliable landmarks of life will become strange and distorted—recognizable, yet at the same time weirdly unrecognizable.
If we’re going to choose a good route through this turbulent future, we need to change our conventional ways of thinking and speaking. Too often today we talk about our world as if it’s a machine that we can precisely manipulate. We talk as if we can understand and master everything around us, keeping what we want and discarding what we don’t want. This attitude is deeply dangerous. The surest way for us to crash disastrously is to believe that we know and can master it all, because then we’ll lose our capacity for self-criticism and self-reflection. We’ll no longer see the signals around us that tell us things are going wrong and that we should adjust our course.
We need, instead, to adopt an attitude toward the world, ourselves within it, and our future that’s grounded in the knowledge that constant change and surprise are now inevitable. The new attitude—which involves having a prospective mind—aggressively engages with this new world of uncertainty and risk. A prospective mind recognizes how little we understand, and how we control even less.
There’s no delusional optimism here. The prospective mind knows that severe pressures are building around the planet. But neither is this viewpoint relentlessly pessimistic. The coming decades will be perilous, but we shouldn’t enter them with fear. Human beings are first and foremost problem solvers, and the prospective mind tries to anticipate harmful outcomes in the future by better understanding the pressures affecting our world and how they might act, singly or together, to cause our undoing. It also knows, though, that the future is opaque. We can’t really see beyond the white wall because as prognosticators we come up against two formidable obstacles: the higly nonlinear systems that surround us and the biases of our temperament.
Still, we can create a rough image of the future. It’s not really a prediction. Instead, it’s a bit like a French Impressionist painting that when viewed as a whole is a vivid, cohesive image, meaningful and rich with movement and feeling, but when examined closely consists of discrete brushstrokes and dollops of color. Our image of the future might be crude, but it can still be grounded in sensible judgments about the deep trends and forces affecting us and about the boundary between what’s plausible and what’s wholly unlikely.
The prospective mind then looks for ways to prevent or forestall horrible outcomes, not just through managing things—an approach that’s often ineffective and sometimes even counterproductive—but also by imagining and implementing more radical and far-reaching solutions. It recognizes that we’re unlikely to prevent all forms of breakdown and that sometimes breakdown can open up opportunities for deep and beneficial progress—for catagenesis—if men and women of courage and good sense are prepared to act. Most fundamentally, the prospective mind seeks to make our societies—and each one of us—more resilient to external shock and more supple in response to rapid change. At the end of the day, the western Roman empire wasn’t supple, and if our fate is be different from Rome’s in a world of relentless change and surprise, we must constantly reinvent our societies, ourselves, and our future.
We’re entering a crucial time in our history. In coming decades we’ll come upon one critical junction after another in rapid succession. The choices we make and the paths we choose at each junction will be irreversible. The stakes are as high as they can get. But as we rush forward into the fog, very few of us actually have our hands on the steering wheel. Most of us are just passengers in the front seat. Sometimes we stare—wide-eyed with anxiety—through the windshield, and other times we just sink back into our seat in denial—denial of our speed, of the dangers ahead, and of our lack of control.
It’s time we turned passengers into drivers.