CHAPTER 9
MIRROR, MIRROR
or, Why Yawning Is Contagious
It was a hot summer day in 1991 on the wonderfully medieval campus of Parma University in Italy. In a modern neuroscience laboratory, a monkey sat upright in a special primate chair, waiting for researchers to return from lunch. Electrodes had been implanted into the part of its brain involved in planning and carrying out movements.
Every time the monkey grasped and moved an object, some cells in that brain region would fire, and a monitor, connected via thin wires to the electrodes, would register a sound: brrrrip, brrrrip, brrrrip.
The scientist in charge of the experiments, Giacomo Rizzolatti, was interested in the act of grasping. When you reach out for your morning cup of coffee, which cells plan and guide the movements that culminate in your latching on to the cup? How do your fingers know how to form the correct shape for lifting the cup’s handle? How do you bring the cup to your mouth and not your nose? Rizzolatti hoped to find the cellular circuits behind such actions—reaching out the arm, curling the fingers, grasping the cup—by eavesdropping on neurons in different parts of the premotor cortex.
On this day, a graduate student sauntered into the lab with an ice cream cone in his hand. The monkey stared at him from across the room. The student glanced at the monkey. Nothing out of the ordinary. But when the student raised the cone to his lips to take a lick, something surprising happened. The monitor sounded: brrrrip, brrrrip, brrrrip.
But the monkey had not moved! It had simply observed the student grasping the cone and moving it to his mouth. It seemed like quite a strange thing for a cell in its motor map to be doing.
The same thing happened with peanuts. When the monkey picked up a peanut or when it saw a human or another monkey pick up a peanut, a particular group of cells fired. Soon the researchers found other cells that fired when the monkey broke open a peanut, saw someone else break open a peanut, or heard a peanut being opened. It happened with bananas, raisins, cups, indeed all kinds of objects. Most of the cells in the premotor cortex seemed to have “pure” motor functions, consistent with the traditional understanding of that region. But as soon as the Italians started probing deeper, they discovered that a sizable subset of the neurons in this map also represented the perception of the same actions they encoded.
Rizzolatti, an elegant Italian with a mop of soft silvery hair and a mustache shaped like a smile, immediately saw the implications of what he was witnessing. “We were studying canonical neurons involved in grasping objects of different shapes and then we observed this strange thing,” he recalls. “Of course, we decided to study this in a more formal way.”
Three years and scores of experiments later, Rizzolatti and his team published their first scientific papers on these “mirror neurons.” Mirror neurons comprise a previously unrecognized element of certain body maps. The Italians found them in two areas of monkey brains—the premotor and parietal cortexes—and also discovered that these mirror regions had important links to another region called the STS (shorthand for superior temporal sulcus, located above the ear toward the back of the head), which helps process facial and body movements and hand actions. Other researchers would soon find mirror neurons in three other sectors of the cortex called the insula, the cingulate, and the secondary touch cortex.
The mirror neurons in the premotor cortex are active only while the monkey is acting or perceiving an action. They are silent when the animal looks at its hand alone or an object alone. In other words, they are not attuned to hands or mouths or peanuts or cups as such, but to intentional and purposeful behaviors involving those things. Some cells are tightly coupled to exact movements. Some respond to the general goal of the action.
The Italians also found mirror neurons in the touch and movement maps in the parietal lobe, a region thought previously to deal only with space perception. For example, in one monkey they found 165 parietal neurons that were involved in both the act and the perception of grasping food or putting food into a container. Some fired with the act of grasping, no matter what happened next. Others fired when food came to the mouth but not when it went to the container. Another subset of the neurons fired when food went to the container and not to the mouth.
They also found mirrorlike properties in neurons that track body movements like walking and arm swinging. Located in the STS, these neurons are not interested in the monkey’s own movements. Rather, they are dedicated to detecting biological motion: Is that thing moving in the bushes a creature, or is it just a bobbing branch or shadow? This is pretty important for survival in the jungle or, if you are a human, walking down a dark city street late at night. Is that shape behind the trees a mugger or a mailbox?
Biological motion detection was first described in the 1970s by a Swedish psychophysicist from the University of Uppsala, Gunnar Johansson. Johansson put small lightbulbs on an actor’s head and joints—shoulders, elbows, wrists, hips, knees, and ankles—and turned out the lights. When the actor sat still in a chair, all you could see was a random jumble of lights. But as soon as the actor moved, the form of a person became instantly apparent. The impressive part isn’t simply that you can see how each point corresponds to a part of the actor’s body; it’s how vivid and robust the perception is. Johansson found that it took a minimum of just seven lights to trigger this perception of human biological motion.
Since then, countless such experiments show that you can tell, by the way bodies move in the dark with little lights attached, whether a person is male or female, foreign or familiar, happy or sad, afraid, disgusted, embarrassed, putting out the body language of any strong emotion, or preparing to make a next move. All that, from just seven points of light. Your visual system is exquisitely tuned to biological motion, and neuroscientists have finally figured out how it works. The STS is one of the main inputs to your mirror circuits. It contains body maps for biological motion, operating as a kind of “life detector,” especially when complex behaviors are involved.
Telepathy
As with many big new findings in science, it took a few more years for the research community at large to grasp the significance of Rizzolatti’s findings. But grasp it they did.
In 2001, V. S. Ramachandran, the neurologist who figured out the nature of phantom limbs, declared, “Without a doubt it is one of the most important discoveries ever made about the brain. Mirror neurons will do for psychology what DNA did for biology: They will provide a unifying framework and help explain a host of mental abilities that have hitherto remained mysterious and inaccessible to experiments.”
Using a variety of brain imaging techniques, scientists went on to discover, in humans, many more elaborate mirror circuits that, cognitively speaking, leave monkeys in the dust. You can think of mirror neurons as body maps that run simulations of what others people’s body maps are up to. In this way, they serve to link our body schemas together across the otherwise tremendous gulf that separates one person’s subjective world from another’s. They allow you to grasp the minds of others, not through conceptual reasoning, but by modeling their actions, intentions, and emotions in the matrix of your own body mandala.
For instance, when you watch someone else perform an action—say, using a broom—you automatically simulate the action in your own brain. You understand the sweeper’s action because you have a template for that action in your own motor maps. When you see someone pull back his arm, as if to throw a ball, you have a copy of what he is doing in your brain that helps you understand his goal. You can read his intentions. You know what he is most likely to do next.
“When you see me doing something, you understand because you have a copy of the action in your brain,” says Rizzolatti. “It’s so strange. You become me. When I see you grasping an object, it is as if I, Giacomo, were grasping it.”
The same principle applies to perceiving and understanding other people’s emotions. When you see a friend choke up in emotional distress, your brain automatically simulates that distress. You empathize. Actors, who can make you laugh or cry, are very good at reading the felt states of their own bodies and transmitting those feelings via mirror system communication.
SPEAKING OF DOGS
Your mirror neuron system may possibly even jump species. Think about domestic dogs. Dogs are highly social, intelligent animals. We have been able to integrate these deadly carnivores into our homes because evolution has endowed them with instincts for fitting into a socially stratified yet cohesive and cooperative pack. Now, if you look at one of the prick-eared breeds such as the German shepherd, it is amazing how much emotional expressiveness there is in those fuzz-covered triangular ears. Whether they are erect, relaxed, swiveled forward, tilted out or pulled flat against the skull, they are eloquent advertisers of the dog’s mood and inclination. A dog’s ear posture combines with its other facial and body language—mouth “smiling” or snarling; eyebrow nubs set to convey helplessness, confidence, or innocence; neck high or low; tail wagging, up, flat, or between the haunches—to express an impressive range of moods (even a floppy-eared beagle can tell you what it’s thinking). Remarkably, we are able to read this alien body language with ease. After all, we are primates; our ears are totally immobile and purely ornamental. But thanks to our mirror neurons and homuncular flexibility, we easily become “bilingual,” if you will, in canine body language.
“We are exquisitely social creatures,” says Rizzolatti. “Our survival depends on understanding the actions, intentions, and emotions of others. We simulate these automatically, without logic, thinking, analyzing.”
Luckily, he says, when you observe an action you do not automatically act it out, and when you observe an emotion you do not automatically experience it in full. Your mirror neuron system cordons off the simulations in much the same way it inhibits you from acting out while you scheme or plan an action before you’re ready to execute it.
There may be no such thing as telepathy, but mirror neurons are the next best thing.
Shall We Dance?
How do lowly neurons carry off such a sophisticated feat? How can brain cells, even working together in a circuit, be so incredibly smart? Most sensory neurons are rather pedestrian. They devote themselves to ordinary features of the outside world. For example, some fire when they detect a horizontal line, while others are dedicated to vertical lines. Others detect a single frequency of sound or a direction of movement. Moving to higher levels of the brain, scientists find neurons that detect far more complex features such as specific body parts, or flowers, or letters of the alphabet. As you’ve already seen, you have neurons in your higher motor maps that help your body plan complex movements and postures. For example, some neurons fire when you bring your hand to your mouth from any starting point around your body—that is, they represent the goal of moving hand to mouth.
Mirror neurons make these complex cells look like nincompoops. They seem uncannily smart in the way they link perception, action, and intention. Say you are trying to learn French. You can hear the sounds but you don’t know how to repeat them accurately. Somehow you have to form your mouth into the right shape and right nasal resonance to produce those new sounds. You need to bring two complex properties together: sensory detection and motor planning. This is exactly what mirror neurons do. When you learn French or any new language, they map sounds and, using the same circuitry, produce those sounds.
Now apply this transformation—perception to action and vice versa—to the things you know and do every day.
Are you a NASCAR fan? Seventy-five million Americans are enraptured by the sight of stock cars racing endlessly around in circles on banked speedways. Many a NASCAR widow has wondered just how it could be quite so riveting. Think about each fan’s mirror neurons, how their brain circuits resonate when drivers accelerate out of 90-degree corners, brake with the engine, downshift with both heel and toe, and pass one another at 150 miles per hour. Anyone who has mirror neurons and drives a car can relate to the sport of NASCAR racing.
The same goes for golf, tennis, soccer, and all the rest. Seeing is doing, and vice versa. Go to any sports bar on any day of the week and watch the spectators whoop and howl at the TV set. Their mirror neurons are a big part of why they watch so raptly and why they react so personally to each score, block, and fumble. And increasingly, many athletes hone their skills by playing video games. For example, race car drivers who “practice” screeching turns in a virtual rendition of the Indianapolis 500 track develop miniaturized mental maps of the course. They gain a genuine edge during a real event.
Your mirror neuron system becomes more active the more expert you are at an observed skill. When pianists listen to someone else’s piano performance, the finger areas in their primary and premotor cortex increase above their baseline activity. Their mirror neuron systems are automatically running the performer’s keystroking in emulation. The same thing does not happen in the brains of nonmusicians. While they can certainly appreciate the music deeply, their experience is inevitably shallower than the pianist’s in at least one way, because they are not experiencing what it is like to actually produce it.
The same goes for sports: The better your own skills, the more deeply you understand the skilled performances you witness. For example, when classical ballet dancers and experts at a Brazilian martial art called capoeira watched video clips of each kind of performance, the dancers’ brains showed distinct patterns. The movements in ballet and capoeira are equally athletic and difficult, with similar limb movements. Yet ballet dancers have weaker mirror responses when watching capoeira, and vice versa. Male ballet dancers have a weaker mirror response when they watch videotapes of moves typically made by female dancers, even though both sexes train together. The same goes for ballerinas watching male ballet movements. The actions you mirror most strongly are the ones you know best.
But what if you don’t play an instrument or sport? What if you watch a kid flip over backward on a skateboard and you have never been near a skateboard? No way could you do those moves. Will your mirror neurons flip along with the skateboarder? The answer is yes and no. To the extent that you relate in a basic sense to the act of balancing and moving forward, your mirror neurons will resonate. But your mirror system activity will pale next to that of an expert skateboarder watching the same acrobatics. His understanding of another thrasher’s hotdogging is much deeper than yours.
A recent experiment illustrated the tight link between action and perception. You are blindfolded and taught to move your arms in an unfamiliar pattern—a bit like a sign language version of John Cleese’s silly walks. You practice the moves without the benefit of sight. Later you are shown a biological motion display of various arm movements and are asked to identify the unusual ones you practiced while blindfolded. The better you learned the moves, the better you are at this biological motion test. When you learn a new motor skill, you see the world differently. You understand actions differently.
Thus athletes who make fast movements, as in martial arts or fencing, might come to experience time and space differently from those who play slower-moving sports like surfing or archery. Your body maps the world according to what you have learned how to do with your muscles, which affects how you see the world.
Do you like to watch dance performances? Your mirror neurons make dance appreciation possible. Again, your biological motion detectors, via mirror mapping, are charged up. As you watch dancers move, your mirror neurons make predictions of the trajectory and dynamics of those moves. Movements can be fast, slow, or intertwined, with no clear beginning or end. Limbs are temporarily occluded so that your brain has to interpolate where they are going. At any moment the movement might stop, expand, contract, or continue in another direction. When dance steps are predictable and unimaginative, the performance is boring. But if the movements violate your predictions and keep you guessing, you feel exhilarated.
“Dance is a spatial extension of the body that reaches out and touches other bodies, just as a voice is an aural extension,” says choreographer Ivar Hagendoorn. Watching dance, you have the feeling of movement without actually moving yourself. Indeed, dance demands an agility of perception equal to the agility of the dancer. It requires good mirror neurons. When you watch dance, your brain dances.
Do you like listening to news and feature reports on National Public Radio? Next time you tune in, pay attention to how the reporters capture your interest. When you hear feet crunching on gravel or a doorknob being turned, your auditory mirror neurons kick in and lead to motor and visual imagery of those same actions. A knock at the door produces the same brain response whether you see it, hear it, or do it yourself, which gives insight into why radio sound effects are so evocative.
Do you like art? When you see baroque sculptor Gian Lorenzo Bernini’s hand of divinity grasping marble, you see the hand as if it were grasping flesh. Experiments show that when you read a novel, you memorize positions of objects from the narrator’s point of view. And as you watch the movie The Good, the Bad, and the Ugly, mirror neurons that involve your hand movements start to fire whenever Clint Eastwood grabs a gun.
Parenting
In trying to understand human behavior, evolutionary psychologists suggest that all through the Stone Age, the human brain evolved modules for language and other uniquely human traits. Just as you have eyes for seeing and ears for hearing, the claim goes, you are born with a hardwired set of specialized brain modules for absorbing language, detecting cheaters of the social contract, calculating sexual attractiveness in others, and so on. In other words, the brain is the computational version of a Swiss Army knife.
Mirror neurons provide an alternative explanation for human brain design. Your brain is unique not because it has evolved highly specialized modules, but because it is parasitic with culture, says Ramachandran. Mirror neurons absorb culture the way a sponge sucks up water. “You can learn much more easily how to shoot an arrow or skin a bear by watching your mom and dad [do it] than by listening to them describe it,” he says.
According to Ramachandran and others, mirror neurons are a major factor in the great leap forward in human evolution one to two hundred thousand years ago, answering the question “What made Homo sapiens so darned sapient?” Unique human abilities like protolanguage (in which sounds were mapped to lip and tongue movements), empathy, theory of mind (attributing thoughts and motives to other people), and the ability to adopt another person’s point of view arguably arose at this time. Mirror neurons set the stage for the horizontal transmission of culture. As science writer Matt Ridley says, nature occurs via nurture.
Mirror neurons do not negate the fact that there are special areas for language in the human brain, Ramachandran says. But these regions do not have to be performed at the moment of birth to explain how they develop. An alternative theory holds that language areas are shaped by mirror neurons as a baby learns to speak by miming and understanding the lip and tongue movements of others. Think of a mother saying “mama” to her infant son. Mirror neurons are active when the baby sees and hears someone say “mama” and when he utters those twin syllables himself. They are the same neurons. The same brain structures that produce language participate in comprehending it. In other words, mirror neurons serve as a bridge for decoding and internalizing the meanings of other people’s actions by processing them directly within the child’s own body maps.
Language can often seem abstract and transcendent of the body, the world, and even time itself. But language is more closely tied to your body mandala than you may realize, especially where its acquisition during childhood is concerned. If you read the verb “lick,” your tongue area will light up. If you hear someone say “kick,” it activates your leg areas. Christian Keysers, a mirror neuron researcher at the University Medical Center Groningen in the Netherlands, says that mirror neurons may very well be a key precursor to abstract thought and language. For example, he explains, you use the word “break” as a verb as in “I see you break the peanut, I hear you break the peanut, and I break the peanut.” The constant is the mental simulation of breaking even though the context varies in each case. So your body is the foundational source of meaning—not just of words and actions but even the meanings of things you learn about through your eyes, ears, and bodily experience.
Newborns do not talk, but their mirror neurons kick in within minutes of birth. If you stick out your tongue at a newborn infant, he may stick his tongue back out at you. Scientists take this to mean that newborns have an innate sense of a general body plan, but the only muscle they have much control over is the tongue (it is exercised in utero when the fetus sucks its thumb). Newborns cry more when they hear another newborn crying than when they hear white noise, their own cry, the cry of an older baby, or an adult faking a cry. Two-week-old infants sometimes imitate lip protrusion, mouth opening, tongue protrusion, and finger movement.
As the baby matures, his brain receives sensations of touch, proprioception, balance, and the like to build up a model of the world with itself at the center. By the time they are two, children learn quickly and primarily through imitation, which lets them absorb far more knowledge and skill than could ever possibly be explained to them verbally. They then spend years practicing what they have learned. When you realize that children have a system of neurons that is capable of learning by simply seeing, hearing, touching, then you begin to see that the world itself is the teacher, with you, as the parent, in a starring role. Your child’s mirror neurons resonate with your words, intentions, and moods. How you react to adversity or happiness is absorbed by your children through their mirror neuron system as they watch you from moment to moment.
In fact, it has been shown that the imitation instinct in human children is so strong they tend to “overimitate.” Imagine an experiment in which a scientist shows a simple puzzle box to a young child. She watches with interest as the researcher performs a series of simple steps that result in the box opening and a treat being revealed. Some of these steps are mechanically necessary to get the box open, but a few of them are blatantly inessential. He resets the box and hands it to her. As you might expect, it’s monkey see, monkey do: She repeats his actions as faithfully as she can, including the “filler” steps.
Now imagine that the scientist performs the same experiment with a young chimpanzee who is at a roughly comparable stage of cognitive development. The ape wants the treat. He watches and learns how the box is opened. And when he gets hold of it, he opens it in as efficient a manner as possible, omitting the inessential steps. The human child has the same basic ability to analyze and understand the box as the ape child did, but her human mirror system is a much stronger force behind her actions. It may seem counterproductive for her to be such a slavish imitator, but this is only a temporary phase while her mind is immature. Her highly developed mirror system will serve her well as she gets older. She is the one who will go on to absorb the vast array of complex skills and understandings that human culture affords.
Interestingly, says Dr. Iriki, even though monkeys have mirror neurons, they don’t actually imitate each other. This may come as a shock, because we tend to imagine monkeys as the quintessential copycat mischief-makers. This isn’t to say monkeys are oblivious to each other. Far from it. They watch each other constantly. Newborns imitate lip smacking and tongue protrusion. Older monkeys take cues from each other, follow each other’s examples, exploit each other’s discoveries. If one monkey sees another lift the lid of a box and pull out a banana, she will quickly run over and take a peek inside the box herself.
You could argue that this qualifies as imitation, but that misses the point. True imitation is of the “aping” variety—mimicking specific gestures that can include arbitrary action sequences. Apes and humans can learn detailed action sequences, like opening a puzzle box to extract a goodie, based on just one viewing. Monkeys can be taught complex action sequences too, but it typically takes a period of patient training in a laboratory setting. In the wild, monkeys imitate each other only at the level of the basic primate repertoire of simple grips and gestures: poking, picking, lifting, pulling, and so on. But for apes and humans, these basic actions can serve as building blocks in long, complicated, and arbitrary action sequences.
Consider a young chimpanzee who watches while an elder snaps a twig off a bush, strips it of leaves and twiglets, pokes it into a termite mound, and comes up with a highly nutritious insect kabob. The young chimp runs off into the bushes to find his own twig and attempts to replicate the same feat. That’s true imitation, and monkeys virtually never approach this level.
So if monkeys don’t use their mirror neurons for imitative learning, what do they use them for? Remember, imitation is not the only function of mirror neurons. They still give monkeys insight into each other’s goals and intentions based on action observation. Even if their mirror neurons aren’t developed enough to generate precise imitation, in the soap opera world of primate society, action understanding and intention reading are essential abilities.
Shared Manifolds of Space
Many actions are ambiguous. Someone lifting a key may be about to open a door, hand it to another person, or stuff it in a pocket. Mirror neurons allow you not only to understand the action, but to apprehend the intentions behind it.
In an experiment conducted in 2005, Dr. Marco Iacoboni, a mirror neuron researcher at UCLA, scanned the brains of twenty-three people as they watched video clips of scenes before and after a mock tea party. The hand grasping the cup was the same. But the background in each scene was different—neat versus messy. Mirror neurons in the right premotor cortex registered a difference, Iacoboni says. Mirror cells that respond to hand movements were more active when the scene was neat, which implied that someone was about to drink tea. They were less active when the scene was messy, which implied that the tea party was over. These neurons are interested not only in the motion but also in the motivation behind it, he says. They predict intentions as well as define actions. They not only know what is happening—hand grasps cup—but why it is happening—hand grasps cup in order to drink.
Mirror neurons also create what are called “shared manifolds of space,” similar to the “blended peripersonal space” mentioned earlier. Watch a fast pass in hockey, listen to a piano duet, or watch two people dance the tango. Mirror neurons help people coordinate joint actions swiftly and accurately, providing a kind of “we-centric” space for doing things together.
You engage in joint action all the time. You do it when you dress a child, shake hands with a client, or wash dishes with your spouse. If you are holding up one end of a couch and negotiating your way down a corridor, you adjust your actions to those of the person carrying the other end.
When you engage in any cooperative task, your body maps and mirror neurons help you anticipate the actions of the other person. Subconsciously you begin to mimic the other, synchronizing your movements, postures, and mannerisms. You are in shared peripersonal space with mirror neurons mapping the interaction. Did you ever see a movie with Ginger Rogers and Fred Astaire? She matches all his moves, only she does them backward and in high heels.
Think about an orchestra conductor and the gestural form of communication he has mastered. He raises an eyebrow and the cellos charge in. He crooks his index finger and the trumpets roar. He makes a tiny patting motion and the violins fall silent. Conductors transmit an enormous amount of musical information instantly, without words. Musicians follow each cue, locked by mutual gaze and transmissions of pacing, tempo, energy, and body-map synchrony.
But unless you are schizophrenic, you do not actually lose yourself in group embodiment. When you read a novel or play a video game, you may get engrossed in an imaginary world, but you don’t confuse real with imaginary life. You don’t confuse self and others. You do not hallucinate. When you perceive the actions and emotions of others, you use many of the same neural mechanisms as when you produce those same actions and emotions. This is the bridge between first-person and third-person agency.
Thus, when you perceive events that are the product of your own actions, like hearing or watching yourself play the piano, you recognize yourself via a close match in mirror neuron activity. You can identify the sound of your own hands clapping or the stance you take while throwing darts. To understand others you need to map yourself, your own body.
Persuasion
Mirror neurons are not without a dark side. Nearly all character-centered video games, violent or otherwise, engage mirror neurons with vigor. If violent video games do indeed make chronic players more aggressive, the mirror neuron system is surely one of the main channels for this effect. Noxious celebrities like gangsta rappers who extol murder, rape, and mayhem are engaging the mirror neurons of their fans, who want to emulate them.
Mirror neurons, which operate largely outside consciousness, also play a role in hidden persuasion; you may not be surprised that subliminal influence can be slipped into your mind through them. Marketers, charmers, and con artists intuitively know this. The trick is to subtly mimic someone’s gestures and body language after a small delay. On average it will increase the social influence of the imitator on the imitatee. The imitatee is likely to pay better attention, consider the imitator’s claims and positions more positively, and come away with a better liking for the imitator. It’s a far cry from mind control, perhaps, but unlike many techniques that supposedly exert subliminal influence on people, this one really works.
Dr. Bailenson from Stanford University is also looking into this effect. In virtual reality simulations he can precisely measure and control the extent to which computer-controlled avatars mimic the head movements of volunteers in the simulator. Swayed by their mirror neurons, people are much more receptive to avatars that subliminally mimic them. This confirms the basic effect. With a setup like this, Bailenson explores the phenomenon in more detail than real-world experiments ever could.
How long can the avatar wait to mimic your body language and still have it influence you—half a second, two seconds, ten seconds? Are some aspects of body language more effective than others at beguiling an imitatee? How loose can the imitations get before the subject’s mirror neuron system stops recognizing them as such? Bailenson hopes answers will shed light on, among other things, human gullibility and resistance to common social pressures.
Of course, not all covert influence is malicious. Psychologists and psychotherapists are beginning to exploit mirror neurons in their clinical practice. Therapists can now help clients realize how their beliefs and emotional states came into being and how their mirroring of the world is causing them grief or psychic pain. Clinicians can help people understand how they “know” things without conscious thought. Moreover, mirror neurons provide a neurobiological basis for transference and countertransference—how therapist and patient become deeply attuned to each other in the healing process. Indeed, therapists can use their own mirror system to understand the client’s problems and generate empathy. They can help clients understand that many of their problems stem from what other people say and do.
I Feel Your Pain, I Feel Your Pleasure
In the 1962 film Dr. No, James Bond opens his eyes to find a tarantula in bed with him. As it creeps ever so slowly up his arm, you can just feel the hairy, spidery legs, because your mirror neurons are in overdrive.
You have mirror neurons for emotion reading and empathy in two areas folded deep inside your cortex, called the insula and the anterior cingulate cortex. When you see a look of disgust on someone’s face, mirror neurons in your insula give rise to feelings of disgust in your own body. When you see joy, you feel joy. When you see sadness, you feel sadness. When you see pain, you feel pain. When you see someone’s upper arm being jabbed with a needle, the same muscle in your arm tenses up and you start breathing faster.
Tania Singer, a neuroscientist at University College London, illustrated this phenomenon by recruiting lovers and putting one of them (the woman) into a brain scanner and then zapping each person with painful electric shocks. Each woman in the scanner registered a pain response in her anterior cingulate when she received a shock—and also when she witnessed her beloved being shocked. Women who scored higher on an empathy questionnaire showed greater activity in this brain region. This means that when you empathize with someone’s pain, including a stranger’s, at some level you actually feel it. Just as frontal and parietal mirror neurons represent both the observation and execution of actions, these emotional mirror neurons represent both the witnessing and the experience of certain feelings and emotions. (Women tend to have more active mirror neuron responses and to be more empathetic than men, although the reasons for this are not yet clear. It may be that high levels of testosterone limit empathy in some way. In general, women are stronger empathizers, while men are stronger systematizers.)
AUTISM
Mirror neurons are currently a prime suspect in the hunt for the causes of autism. The cardinal features of autism, a congenital brain disorder, are lack of empathy, imitation, language skills, and an internal model of other people’s mental states—in other words, the very functions that mirror neurons specialize in. Recently, V. S. Ramachandran confirmed that the mirror neuron systems of autistic children are feeble or absent. (They also have scrambled cortical body maps, a fact whose significance isn’t yet understood but is likely related to the mirror neuron deficits in some way. They are also hypersensitive to touch.) Their mental aloneness, lack of play, poor eye contact, and disinterest in the animate world are all consistent with a mirror neuron system that is not properly engaged. When an autistic child tries to mimic a facial expression, he does not get the feeling and meaning of it. He does not connect what it feels like to be sad, angry, disgusted, or surprised with the minds of the people around him. He does not appear to feel the emotional significance of faces or bodies. He cannot learn by seeing and doing.
When someone yawns, you yawn, thanks to mirror activity. When you see someone scratch his chin, you may feel an itch on your own chin. When you see someone afraid, you feel a visceral flutter of fear. This sensation can initiate a fight-or-flight motor preparation in your own body. When danger lurks, fear spreads through the crowd. Everyone gets emotionally aroused and ready to run.
Being touched and seeing someone else touched activates the same neural circuits. For example, Dr. Keysers put people in a brain scanner and brushed their bare legs to see which of their body maps “lit up.” As expected, they showed activity in primary touch areas, especially in the secondary touch map. Then he had them observe an actor being touched in the same spots. Again, the secondary touch map lit up. When he replaced the legs of the actors in a video clip with rolls of paper towel, the circuit lit up weakly. If the brush merely approached the actor’s leg and did not make contact, the touch region was not activated. According to Keysers, touch has a privileged status in our social world, allowing us to confirm that other people are alive. Hence, “Let’s keep in touch.”
And pornography? An estimated nine million people, or about 15 percent of Internet users in the United States, visit one of the top adult websites each month. Think about it. Mirror neurons allow you to put yourself into somebody else’s shoes. In fact, they automatically put you in those shoes; you can’t turn off your mirror neuron system at will. This adds an extra kick to the titillation of pornography. You understand touch on others by virtue of your own experiences of being touched. When you witness touch, you simulate the same kind of touch in your mind’s body.
If you watch sadistic pornography, you will not share any pleasure unless you are a sadist too. It will make you uncomfortable. One study of sadomasochists looking at sexually explicit S&M images revealed that their insulas lit up not from feelings of disgust but from pleasurable sensations in the body.
Also consider homophobia. Undoubtedly hatred or disgust toward gays arises from a number of factors, and mirror neurons may be one of them. When men and women see sexually aroused genitals of the preferred sex (opposite for heterosexuals, same for homosexuals), their mirror neurons and reward centers fire away. Mirror neurons play a key role in sexual response. Thus when a man sees two other men in sexual congress, he can’t help but experience it, even if it’s at a subconscious level, in his mind’s body. In effect he feels the “unnatural” act is being forced upon him. Not being gay, he finds the prospect of sex with other men unappetizing. This may make a “live and let live” attitude just that much harder to adopt.