1. (a) point; (b) line; (c) plane; (d) plane; (e) line; (f) point
2. (a) ,
(b)
,
,
,
(c)
,
,
,
; (d) F
3. (a) AB = 16; (b) AE =
4. (a) 18; (b) 90°; (c) 50°; (d) 130°; (e) 230°
5. (a) ∠CBE; (b) ∠AEB; (c) ∠ABE; (d) ABC, ∠BCD, ∠BED; (e) ∠AED
6. (a) 130°; (b) 120°; (c) 75°; (d) 132°
7. (a) 75°; (b) 40°; (c) or 10 or 10°20′; (d) 9°11′
8. (a) 90°; (b) 120°; (c) 135°; (d) 270°; (e) 180°
9. (a) 90°; (b) 60°; (c) 15°; (d) 165°
10. (a) ⊥
and
⊥
(b) 129°; (c) 102°; (d) 51°; (e) 129°
11. (a) ΔABC, hypotenuse , legs
and
ΔACD, hypotenuse , legs
and
ΔBCD, hypotenuse , legs
and
(b) ΔDAB and ΔABC
(c) ΔAEB, legs and
, base
, vertex angle ∠AEB
ΔCED, legs and
base
vertex angle ∠CED
12. (a) ≐
and ∠PRA ≐ ∠PRB; (b) ∠ABF ≐ ∠CBF; (c) ∠CGA ≐ ∠CGD; (d)
≐
13. (a) vert. ; (b) comp. adj.
; (c) adj.
; (d) supp. adj.
; (e) comp.
; (f) vert.
14. (a) 25°, 65°; (b) 18°, 72°; (c) 60°, 120°; (d) 61°, 119°; (e) 50°, 130°; (f) 56°, 84°; (g) 90°, 90°
15. (a) a + b = 75°, a – b = 21°, a = 48° and b = 27°
(b) a + b = 90°, a = 3b–10°, a = 65° and b = 25°
(c) a + b = 180°, a = 4b + 20°, a = 148° and b = 32°
1. (a) A is H; (b) P is D; (c) R is S; (d) E is K ; (e) A is G ; (f) triangles are geometric figures; (g) a rectangle is a quadrilateral
2. (a) a = c = f; (b) g = 15; (c) f = a; (d) a = f, a = h, c = h; (e) b = g, b = e, d = e
3. (a) 130; (b) 4; (c) yes; (d) x = 8°; (e) y = 15; (f) x = 6; (g) x =±6
4. (a) AC = 12, AE = 11, AF = 15, DF = 9
(b) m∠ADC = 92°, m∠BAE = 68°, m∠FAD = 86°, m∠BAD = 128°
5. (a) AB = DF; (b) AB = AC ; (c) ∠ECA ≐ ∠DCB; (d) ∠BAD ≐ ∠BCD
6. (a) If equals are divided by equals, the quotients are equal.
(b) Doubles of equals are equal.
(c) If equals are multiplied by equals, the products are equal.
(d) Halves of equals are equal.
7. (a) If equals are divided by equals, the quotients are equal.
(b) If equals are multiplied by equals, the products are equal.
(c) Doubles of equals are equal.
(d) Halves of equals are equal.
8. (a) Their new rates of pay per hour will be the same. (Add. Post.)
(b) Those stocks have the same value now. (Mult. Post.)
(c) The classes have the same number of pupils now. (Subt. Post.)
(d) 100°C = 212°F (Trans. Post.)
(e) Their parts will be the same length. (Div. Post.)
(f) He has a total of $10,000 in Banks A, B, and C. (Part. Post.)
(g) Their values are the same. (Trans. Post.)
9. (a) Vertical angles are congruent.
(b) All straight angles are congruent.
(c) Supplements of congruent angles are congruent.
(d) Perpendiculars form right angles and all right angles are congruent.
(e) Complements of congruent angles are congruent.
10. In each answer, (H) indicates the hypothesis and (C) indicates the conclusion.
(a) (H) Stars, (C) twinkle.
(b) (H) Jet planes, (C) are the speediest.
(c) (H) Water, (C) boils at 212° Fahrenheit.
(d) (H) If it is the American flag, (C) its colors are red, white, and blue.
(e) (H) If you fail to do homework in the subject, (C) you cannot learn geometry.
(f) (H) If the umpire calls a fourth ball, (C) a batter goes to first base.
(g) (H) If A is B’s brother and C is B’s daughter, (C) then A is C′s uncle.
(h) (H) An angle bisector, (C) divides the angle into two equal parts.
(i) (H) If it is divided into three equal parts, (C) a segment is trisected.
(j) (H) A pentagon (C) has five sides and five angles.
(k) (H) Some rectangles (C) are squares.
(l) (H) If their sides are made longer, (C) angles do not become larger.
(m) (H) If they are congruent and supplementary, (C) angles are right angles.
(n) (H) If one of its sides is not a straight line segment, (C) the figure cannot be a polygon.
11. (a) An acute angle is half a right angle. Not necessarily true.
(b) A triangle having one obtuse angle is an obtuse triangle. True.
(c) If the batter is out, then the umpire called a third strike. Not necessarily true.
(d) If you are shorter than I, then I am taller than you. True.
(e) If our weights are unequal, then I am heavier than you. Not necessarily true.
1. (a) ΔI ≐ ΔII ≐ ΔIII, SAS; (b) ΔI ≐ ΔIII, ASA; (c) ΔI ≐ ΔII ≐ ΔIII, SSS.
2. (a) ASA; (b) SAS; (c) SSS; (d) SAS; (e) ASA; (f) SAS; (g) SAS; (h) ASA.
3. (a) ≐
(b) ∠ABD = ∠DBC; (c) ∠1 ≐ ∠4; (d)
≐
(e)
≐
; (f) ∠BAD ≐ ∠CDA
4. (a) ∠1 ≐ ∠3, ∠2 ≐ ∠4, ≐
(b)
≐
,
≐
, ∠B ≐ ∠C;
(c) ∠E ≐ ∠C, ∠A ≐ ∠F, ∠EDF ≐ ∠ABC
5. (a) x = 19, y = 8; (b) x = 4, y = 12; (c) x = 48, y = 12
8. (a) ∠b ≐ ∠d, ∠E ≐ ∠G; (b) ∠A ≐ ∠1 ≐ ∠4, ∠2 ≐ ∠C; (c) ∠1 ≐ ∠5, ∠4 ≐ ∠6, ∠EAD ≐ ∠EDA
9. (a) ≐
; (b)
≐
≐
,
≐
(c)
≐
,
≐
,
≐
1. (a) x = 105°, y = 75°; (b) x = 60°, y = 40°; (c) x = 85°, y = 95°; (d) x = 50°, y = 50°;
(e) x = 65°, y = 65°; (f) x = 40°, y = 30°; (g) x = 60°, y = 120°; (h) x = 90°, y = 35°;
(i) x = 30°, y = 40°; (f) x = 80°, y = 10°;(k) x = 30°, y = 150°;(l) x = 85°, y = 95°
2. (a) x = 22°, y = 102°; (b) x = 40°, y = 100°; (c) x = 80°, y = 40°
3. (a) Each angle measures 105°. (b) Each angle measures 70°. (c) Angles measure 72° and 108°.
7. (a) 25; (b) 9; (c) 20; (d) 8
8. (a) 8; (b) 10; (c) 2; (d) 14
10. (a) P is equidistant from B and C. P is on ⊥ bisector of .
Q is equidistant from A and B. Q is on ⊥ bisector of .
R is equidistant from A, C, and D. R is on ⊥ bisectors of and
.
(b) P is equidistant from and and
P is on bisector of ∠A.
Q is equidistant from and
Q is on bisector of ∠B.
R is equidistant from ,
and
R is on the bisectors of ∠C and ∠D.
11. (a) P is equidistant from ,
and
Q is equidistant from
and
and equidistant from A and D. R is equidistant from
and
and equidistant from A and D.
(b) P is equidistant from and
and equidistant from B and C. Q is equidistant from A, B, and C.
R is equidistant from and
and equidistant from A and B.
12. (a) x = 50°, y = 110°; (b) x = 65°, y = 65°; (c) x = 30°, y = 100°; (d) x = 51°, y = 112°;
(e) x = 52°, y = 40°; (f) x = 120°, y = 90°
13. (a) x = 55°, y = 125°; (b) x = 80°, y = 90°; (c) x = 56°, y = 68°; (d) x = 100°, y = 30°;
(e) x = 30°, y = 120°; (f) x = 90°, y = 30°
14. (a) 18°, 54°, 108°; (b) 40°, 50°, 90°; (c) 36°, 36°, 108°; (d) 36°, 72°, 108°, 144°; (e) 50°, 75°; (f) 100°, 60°, and 20°
16. (a) Since x = 45, each angle measures 60°.
(b) Since x = 25, x + 15 = 40 and 3x–35 = 40; that is, two angles each measure 40°.
(c) If 2x, 3x, and 5x represent the angles, x = 18 and 5x = 90; that is, one of the angles measures 95°.
(d) If x and 5x–10 represent the unknown angles, x = 21 and 5x–10 = 95; that is, one of the angles measures 95°.
17. (a) 7 st. , 30 st.
; (b) 1620°, 5400°, 180,000°; (c) 30, 12, 27, 202
18. (a) 20°, 18°, 9°; (b) 160°, 162°, 171°; (c) 3, 9, 20, 180; (d) 3, 12, 36, 72, 360
19. (a) 65°, 90°, 95°, 110°; (b) 140°, 100°, 60°, 60°
20. (a) ΔI ≐ ΔIII by hy-leg; (b) ΔI ≐ ΔIII by SAA.
1. (a) x = 15, y = 25; (b) x = 20, y = 130; (c) x = 20, y = 140
4. (a) EFGH; (b)
ABCD and EBFD; (c)
GHKJ, HILK, GILJ; (d)
ACHB, CEFH
5. (a) Two sides are congruent and ||. (b) Opposite sides are congruent.
(c) Opposite angles are congruent. (d) and
are congruent and parallel (
≐
≐ BC).
6. (a) x = 6, y = 12; (b) x = 5, y = 9; (c) x = 120, y = 30; (d) x = 15, y = 45
7. (a) x = 14, y = 6; (b) x = 18, y = 4 (c) x = 8, y = 5; (d) x = 3, y = 9
10. (a) x = 5, y = 7; (b) x = 10, y = 35; (c) x = 2 y = 17
(d) x = 8, y = 4; (e) x = 25, y = 25;
(f) x = 11, y = 118
13. (a) x = 6, y = 40; (b) x = 3, y = 5 (c) x = 8
, y = 22
14. (a) x = 28, y = 25; (b) x = 12 (since y does not join midpoints, Pr. 3 does not apply);
(c) x = 19, y = 23
15. (a) m = 19; (b) b′= 36; (c) b = 73
16. (a) x = 11, y = 33; (b) x = 32, y = 26; (c) x = 12, y = 36
17. (a) 22; (b) 70
18. (a) 21; (b) 30; (c) 14; (d) 26
5. (a) square; (b) isosceles triangle; (c) trapezoid; (d) right triangle
6. (a) 140°; (b) 60°; (c) 90°; (d) (180–x) °; (e) x°; (f) (90 + x) °
7. (a) 100°; (b) 50°, 80°; (c) 54°, 27°; (d) 45°; (e) 35°; (f) 45°
8. (a) x = 22; (b) y = 6; (c) AB + CD = 22; (d) perimeter = 44; (e) x = 21; (f) r = 14
9. (a) 0; (b) 40; (c) 33; (d) 7
10. (a) tangent externally; (b) tangent internally; (c) the circles are 5 units apart; (d) overlapping
11. (a) concentric; (b) tangent internally; (c) tangent externally; (d) outside each other; (e) the smaller entirely inside the larger; (f) overlapping
13. (a) 40; (b) 90; (c) 170; (d) 180; (e) 2x; (f) 180–x; (g) 2x–2y
14. (a) 20; (b) 45; (c) 85; (d) 90; (e) 130; (f) 174; (g) x; (h) 90–x ; (i) x–y
15. (a) 85; (b) 170; (c) c; (d) 2i; (e) 60; (f) 30
16. (a) 60, 120, 180; (b) 80, 120, 160; (c) 100, 120, 140; (d) 36, 144, 180
17. (a) m∠x = 136°; (b) m = 11° (c) m∠x = 130°; (d) m∠y = 126°; (e) m∠x = 110°; m
= 77°
18. (a) 135°; (b) 90°; (c) (180–x) °; (d) (90 + x) °; (e) 100°; (f) 80°; (g) 55°; (h) 72°
19. (a) 85°; (b) y°; (c) 110°; (d) 95°; (e) 72°; (f) 50°; (g) 145°; (h) 87°
20. (a) 50; (b) 60
21. (a) m = 65°, (b) m
= 90°, m∠y = 55°; (c) m∠x = 37°, m∠y = 50°
22. (a) 19; (b) 45; (c) 69; (d) 90; (e) 125; (f) 167; (g) x ; (h) 180–
x ; (i) x + y
23. (a) 110; (b) 135; (c) 180; (d) 270; (e) 180–2x; (f) 360–2x; (g) 2x–2y; (h) 7x
24. (a) 45°; (b) 60°; (c) 30°; (d) 18°
25. (a) m = 120°, m∠y = 60°; (b) m∠x = 62°, m∠y = 28°; (c) m∠x = 46°, m∠y = 58°
26. (a) 75°; (b) 75°; (c) 115°; (d) 100°; (e) 140°; (f) 230°; (g) 80°; (h) 48°
27. (a) 85°; (b) 103°; (c) 80°; (d) 72°; (e) 90°; (f) 110°; (g) 130°; (h) 110°
28. (a) m = 68°, m∠y = 95°, (b) m∠x = 90°, m∠y = 120°; (c) m∠
= 34°, m∠
= 68°
29. (a) 30°; (b) 37°; (c) 20°; (d) 36°; (e) 120°; (f) 130°; (g) 94°; (h) 25°
30. (a) 45°; (b) 75°; (c) 50°; (d) 36 °; (e) 90°; (f) 140°; (g) 115°; (h) 45°; (i) 80°
31. (a) 20°; (b) 85°; (c) (180–x) °; (d) (90 + x) °; (e) 90°; (f) 25°; (g) 42°; (h) 120°; (i) 72°; (j) 110°;
32. (a) m = 43°, m∠y = 43°, (b) m
= 190°, m∠y = 55°; (c) m
= 140°, m∠y = 40°
33. (a) 120°; (b) 150°; (c) 180°; (d) 50°; (e) 22 (f) 45°
34. (a) m = 150°, m
= 40°; (b) m
= 190°, m
= 70°; (c) m
= 252°, m
= 108°
35. (a) 25°; (b) 39°; (c) 50°; (d) 30°; (e) 40°; (f) 76°; (g) 45°; (h) 95°; (i) 75°; (j) 120°
36. (a) 74°; (b) 90°; (c) 55°; (d) 60°; (e) 40°; (f) 37°; (g) 84°; (h) 110°; (i) 66°; (j) 98°; (k) 75°; (l) 79°
37. (a) m∠x = 120°, m∠y = 60°; (b) m∠x = 45°, m∠y = 67°; (c) m∠x = 36°, m∠y = 72°
38. (a) m = 40°, m∠y = 80°; (b) m
= 45°, m∠y = 67
°; (c) m∠x = 78°, m∠y = 103°
1. (a) 4; (b) (c)
(d)
(e)
(f) 2; (g)
(h)
(i)
(j)
(k) 2; (l)
(m) 20; (n)
(o) 3
2. (a) 6; (b) (c)
(d)
(e) 3; (f)
(g) 2; (n) 250; (i)
(j) 8; (k)
(l)
3. (a) 2: 3: 10; (b) 12: 6: 1; (c) 5: 2: 1; (d) 1: 4: 7; (e) 4: 3: 1; (f) 8: 2: 1; (g) 50: 5: 1; (h) 6: 2: 1; (i) 8: 2: 1
4. (a) (b) 12; (c)
(d)
(e) 6; (f)
(g)
(h)
(i)
(j) 11; (k)
(1) 60; (m) 3; (n)
(o)
(p) 14
5. (a) (b) 3c; (c)
(d)
(e)
(f)
(g)
(h)
(i) 1: 4: 10; (j) 3: 2: 1; (k) x2: x : l; (l) 6: 5: 4: 1
6. (a) 5x and 4x, sum = 9x; (b) 9x and x, sum = lOx ; (c) 2x, 5x, and 11x, sum = 18. x ; (d) x, 2x, 2x, 3x, and 7x, sum = 15x
7. (a) 5 x + 4 x = 45, x = 5, 25°; and 20°; (b) 5x + 4x = 90, x = 10, 50°; and 40°;
(c) 5x + 4x = 180, x = 20, 100°; and 80°; (d) 5x + 4x + x = 180, x = 18, 90°; and 72°;
8. (a) 7x + 6x = 91, x = 7, 49°, 42°; and 35°; (b) 7x + 5x = 180, x = 15, 105°, 90°; and 75°
(c) 7x + 3x = 90, x = 9, 63°, 54°; and 45°; (d) Ix + 6x + 5x = 180, x = 10, 70°, 60°; and 50°;
9. (a) 16; (b) 16; (c) ±6; (d) ± 2 (e) ±5; (f) 2; (g)
(h) ±6y
10. (a) 21; (b) 4 (c) ±6; (d) ±
(e) 8; (f) ±4; (g) 3; (h) ±
11. (a) 15; (b) 3; (c) 6; (d) 2; (e) 3
; (f) 30; (g) 32; (h) 6a
12. (a) 6; (b) 6; (c) 3; (d) 4b; (e) ; (f)
; or 3
; (g)
; (h) a
13. (a) (b)
(c)
(d)
(e)
14. (a) (b)
(C)
(d)
(e)
15. Only (b) is not a proportion since 3(12) ≠ 5(7); that is, 36 ≠ 35.
16. (a) (b)
(c)
(d)
(e)
17. (a) d; (b) 35; (c) 5 (d) 4
18. (a) 21; (b) ; (c) 5
19. (a) 16; (b) 6 (c) 10
20. (a) yes, since ; (b) no, since
; (c) yes, since
21. (a) 12; (b) 8; (c) 60
22. (a) 15; (b) 15; (c) 6
24. (a) 35°; (b) 53°
25. (a) a = 16; (b) b = 15; (c) c = 126
27. (a) ∠ABE ≐ ∠EDC, ∠BAE ≐ ∠DCE (also vert. at E)
(b) ∠BAF ≐ ∠FEC, ∠B ≐ ∠D (also ∠EAD ≐ ∠BFA)
(c) ∠A ≐ ∠EDF, ∠F ≐ ∠BCA
(d) ∠A ≐ ∠A, ∠B ≐ ∠C
(e) ∠C ≐ ∠D, ∠CAB ≐ ∠CAD
(f) ∠A ≐ ∠A, ∠C ≐ ∠DBA
28. (a) ∠D ≐ ∠B, ∠AED ≐ ∠FGB ; (b) ∠ADB ≐ ∠ABC, ∠A ≐ ∠A ; (c) ∠ABC ≐ ∠AED, ∠BAE ≐ ∠EDA
29. (a) ∠C ≐ ∠F, (b) ∠A ≐ ∠A,
(c) ∠B ≐ ∠B,
30. (a) (b)
(c)
32. (a) q = 20; (b) p = 8; (c) b = 7; (d) a = 12; (e) AB = 35; (f) d = 2
33. (a) 8; (b) 6; (c) 26
34. (a) 42 ft; (b) 66ft
37. (a) 8:5; (b) 3:5; (c) halved (in each case)
38. (a) 15; (b) 60; (c) 25, 35, 40; (d) 4; (e) 6, 3
39. (a) 3: 7; (b) 7: 2; (c) quadrupled; (d) 7
43. (a) 5; (b) 14; (c) 6; (d) 5; (e) 12; (f) 13; (g) 48; (h) 2
44. 30, 18
45. (a) 8; (b) 6; (c) 12; (d) 5; (e) 7; (f) 12; (g) 30; (h); 7 (i) 5; (j) 8
46. (a) 8; (b) 13; (c) 21; (d) 6; (e) 9; (f) 14; (g) 3; (h) 8
47. (a) a = 4. h = ; or 2
; (b) c = 9, h =
; or 2
; (c) q = 4 and b =
; or 4
; (d) p = 18, h =
; = 6
48. (a) 25; (b) 39; (c) ; (d) 10; (e) 7
49. (a) b = 16; (b) a = 2; (c) a = 8; (d) b = 2
; (e) b = 5
; b =
50. (a) 9.12; (b) 10.24; (c) 80.150; (d) 2,4
51. (a) 41; (b) 5
52. (a) 12; (b) 10 ; (c) 5
53. All except (h)
54. (a) yes; (b) no, since (2x)2 + (3x)2 ≠ (4x)2
55. (a) 8; (b) 6; (c) ; (d) 5
56. (a) 15; (b) 2 ; (c) 6
57. (a) 16; (b) 30; (c) 4; (d) 10
58. (a) 10; (b) 12; (c) 28; (d) 15
59. (a) 5; (b) 20; (c) 15; (d) 25
60. (a) 12; (b) 24
61. 12
62. 30
63. (a) 10 and 10; (b) 7
; and 14; (c) 5 and 10
64. (a) 11; (b) a
; (c) 48; (d) 16
65. (a) 25 and 25; (b) 35 and 35
66. (a) 28, 8; (b) 17, 14
67. (a) 17 ; (b) a
; (c) 34
; (d) 30
68. (a) 20 ; (b) 40
69. (a) 45, 13 ; (b) 11, 27
; (c) 15
, 55
70. 6, 5
1. (a) 0.4226, 0.7431, 0.8572, 0.9998; (b) 0.9659, 0.6157, 0.2756, 0.0349;
(c) 0.0699, 0.6745, 1.4281, 19.0811; (d) sine and tangent; (e) cosine; (f) tangent
2. (a) x = 20°; (b) A = 29°; (c) B = 71°; (d) A′ = 21°; (e) y = 45°; (f) Q = 69°; (g) W = 19°; (h) B′ = 67°
3. (a) 26°; (b) 47°; (c) 69° (d) 8°; (e) 40°; (f) 74° (g) 7° (h) 27°; (i) 80°; (j) 13° since sin x = 0.2200;
(k) 45° since sin x = 0.707; (l) 59° since cos x = 0.5200; (m) 68° since cos x = 0.3750;
(n) 30° since cos x = 0.866; (o) 16° since tan x = 0.2857; (p) 10° since tan x = 0.1732
4. (a) sin A = , cos A =
, tan A =
, (b) sin A =
, tan A =
5. (a) m∠A = 27°since cos A = 0.8900; (b) m∠A = 58° since sin A = 0.8500;
(c) m∠A = 52° since tan A = 1.2800
6. (a) m∠A = 42°since sin B = 0.6700; (b) m∠B = 74° since cos B 0.2800;
(c) m∠B 68° since tan B = 2.500; (d) m∠B = 30° since tan B = 0.577
8. (a) 23°, 67°; (b) 28°, 62°; (c) 16°, 74°; (d) 10°, 80°
9. (a) x = 188, y = 313; (b) x 174, y = 250; (c) x = 123, y = 182
10. (a) 82 ft; (b) 88 ft
11. 156 ft
12. (a) 2530 ft; (b) 2560 ft
13. (a) 21 in; (b) 79 in
14. 14
15. 16 and 18 in
16. 31 ft
17. 15 yd
18. (a) 1050 ft; (b) 9950 ft
19. 7°
20. 282 ft
21. (a) 81°; (b) 45°
22. (a) 22 ft; (b) 104 ft
23. 754 ft
24. 404 ft
25. (a) 295 ft; (b) 245 ft; (c) 960 ft
26. (a) 234 ft; (b) 343 ft
27. (a) 96 ft; (b) 166 ft
28. 9.1
1. (a) 99 in2; (b) 3 ft2 or 432 in2; (c) 500; (d) 120; (e) 36 ; (f) 100
; (g) 300; (h) 150
2. (a) 48; (b) 432; (c) 25 ; (d) 240
3. (a) 7 and 4; (b) 12 and 6; (c) 9 and 6; (d) 6 and 2; (e) 10 and 7; (f) 20 and 8
4. (a) 1296 in2; (b) 100 square decimeters (100 dm2)
5. (a) 225; (b) 12 (c) 3.24; (d) 64a2; (e) 121; (t) 6
(g) 9 b2; (h) 32; (i) 40
(j) 64
6. (a) 128; (b) 72; (c) 100; (d) 49; (e) 400
7. (a) 1600; (b) 400; (c) 100
8. (a) 9; (b) 36; (c) 9 ; (d) 4
; (e)
;
9. (a) 2 (b) 52; (c) 10; (d) 5
; (e) 6; (f) 4
10. (a) 16 ft2; (b) 6 ft2 or 864 in2; (c) 70; (d) 1.62 m2
11. (a) 3x2; (b) x2 + 3x ; (c) x2–25; (d) 12x2 + 11 x + 2
12. (a) 36; (b) 15; (c) 16
13. (a) 2; (b) 20; (c) 9; (d) 3; (e) 15; (f) 12; (g) 8; (h) 7
14. (a) 11 in2; (b) 3 ft2 (c) 4x–28; (d) 10x2; (e) 2x2 + 18x ; (f) (x2–16) ; (g) x2–9
15. (a) 84; (b) 48; (c) 30; (d) 120; (e) 148; (f) 423; (g) 8 ; (h) 9
16. (a) 24; (b) 2; (c) 4
17. (a) 8; (b) 10; (c) 8; (d) 18; (e) 9 (f) 12
(g) 12; (h) 18
18. (a) 25 ; (b) 36
; (c) 12
; (d) 25
; (e) b2
; (f) 4x2
; (g) 3r2
19. (a) 2 ; (b)
; (c) 24
; (d) 18
20. (a) 24 ; (b) 54
; (c) 150
21. (a) 15; (b) 8; (c) 12; (d) 5
22. (a) 140; (b) 69; (c) 225; (d) 60 ; (e) 94
23. (a) 150; (b) 204; (c) 39; (d) 64 ; (e) 160
24. (a) 4; (b) 7; (c) 18 and 9; (d) 9 and 6; (e) 10 and 5
25. (a) 17 and 9; (b) 23 and 13; (c) 17 and 11; (d) 5; (e) 13
26. (a) 36; (b) 38; (c) 12
; (d) 12x2; (e) 120; (f) 96; (g) 18; (h)
(i) 32
; 98
27. (a) 737; (b) 14; (c) 77
28. (a) 10; (b) 12 and 9; (c) 20 and 10; (d) 5; (e) 2
29. 12
34. (a) 1:49; (b) 49:4; (c) 1:3; (d) 1:25; (e) 81: x2; (f) 9:x; (g) 1:2
35. (a) 49:100; (b) 4:9; (c) 25:36; (d) 1:9; (e) 9:4; (f) 1:2
36. (a) 10:1; (b) 1:7; (c) 20:9; (d) 5:11; (e) 2:y; (f) 3x:1; (g) :2; (h) 1: 22; (i) x:
; (j) 2
:4
37. (a) 6:5; (b) 3:7; (c) :1; (d)
:2; (e)
:3 or 1:
38. (a) 100; (b) 12; (c) 12; (d) 100; (e) 105; (f) 18; (g) 20
39. (a) 12; (b) 63; (c) 48; (d) 2; (e) 45
1. (a) 200; (b) 24.5; (c) 112; (d) 13; (e) 9; (f) 3; (g) 4.5
2. (a) 12; (b) 23.47; (c) 7
; (d) 18.5; (e) 3
3. (a) 24°; (b) 24°; (c) 156°
4. (a) 40°; (b) 9; (c) 140°
5. (a) 15°; (b) 15°; (c) 24
6. (a) 5°; (b) 72°; (c) 175°
7. (a) regular octagon; (b) regular hexagon; (c) equilateral triangle; (d) regular decagon; (e) square; (f) regular dodecagon (12 sides)
9. (a) 9; (b) 30; (c) 6 ; (d) 6; (e) 13
; (f) 6; (g) 20
; (h) 60
10. (a) 18 ; (b) 7
; (c) 40; (d) 8
; (e) 3.4; (f) 28; (g) 5
; (h) 2
11. (a) 30 ; (b) 14; (c) 27; (d) 18; (e) 8
; (f) 4
; (g) 48
; (h) 42; (i) 6; (j) 10; (k)
; (l) 3
12. (a) 817; (b) 3078
13. (a) 54 ; (b) 96
; (c) 600
14. (a) 576; (b) 324; (c) 100
15. (a) 36; (b) 27
; (c)
; (d) 144 3; (e) 3
; (f) 48
16. (a) 10; (b) 10; (c) 5
17. (a) 18; (b) 9 ; (c) 6
; (d) 3
”
18. (a) 1:8; (b) 4:9; (c) 9:10; (d) 8:11; (e) 3:1; (f) 2:5; (g) 4 :3; (h) 5:2
19. (a) 5:2; (b) 1:5; (c) 1:3; (d) 3:4; (e) 5:1
20. (a) 5:1; (b) 4:7; (c) x:2; (d) :1; (e)
:y; (f)
:3
or
x:6
21. (a) 1:4; (b) 1:25; (c) 36:1; (d) 9:100; (e) 49:25
22. (a) 12π; (b) 14π; (c) 10π; (d) 2ππ
23. (a) 9π; (b) 25π; (c) 64π; (d) π, (e) 18π
24. (a) C = 10π, A = 25π; (b) r = 8, A = 64π; (c) r = 4, C = 8π
25. (a) 12π; (b) 4π; (c) 7π; (d) 26π; (e) 8π (f) 3π
26. (a) 98π; (b) I8π; (c) 32π; (d) 25π; (e) 72π; (f) 100π
27. (a) (l) C = 8π, A = 16π; (2) C = 4π, A= 12π
(b) (l) C = 16π, A = 64π; (2) C = 8π, A = 48π
(c) (l) C = 12π, A = 36π; (2) C = 6π, A = 9p
(d) (l) C = 16π, A = 64π; (2) C = 8π, A = 16p
(e) (l) C = 20π, A = 20π; (2) C = 20π A = 100π
(f) (l) C = 6π, A = 18π; (2) C = 6π, A = 9π
28. (a) 10 ft; (b) 17 ft; (c) 3 ft or 6.7 ft
29. (a) 2π; (b) 10π; (c) 8; (d) 11π; (e) 6π; (f) 10π
30. (a) 3π; (b) 12; (C) 5π; (d) 2π; (e) π; (f) 4π
31. (a) 6π; (b) π/6; (c) 25π/6; (d) 25π; (e) 4; (f) 13; (e) 24π; (h) 8π/3
32. (a) 6π; (b) 20; (c) 3π; (d) 16π
33. (a) 120°; (b) 240°; (c) 36°; (d) 180°; (e) 135°; (f) (180/π)° or 57.3° to nearest tenth
34. (a) 72°; (b) 270°; (c) 40°; (d) 150°; (e) 320°
35. (a) 90°; (b) 270°; (c) 45°; (d) 36°
36. (a) 12; (b) 9; (c) 10; (d) 6; (e) 5; (f) 3
37. (a) 4; (b) 10; (c) 10 cm; (d) 9
38. (a) 6π–9 ; (b) 24π–36
; (c)
(d)
(e)
39. (a) 4π–8; (b) 150π–225 ; (c) 24π–36
; (d) 16π–32; (e) 50π–100
40. (a) ; (b) 24π–16
; (c)
41. (a) (b)
(c) 4π–8
42. (a) 12π–9 ; (b)
π (c) 9π–18
43. (a) 200–25π/2; (b) 48 + 26π; (c) 25–25π/2; (d) 100π–96; (e) 128–32π; (f) 300π + 400; (g) 39π; (h) 100
44. (a) 36π; (b) 36 + 18π; (c) 14π
1. The description of each locus is left for the reader.
2. The diagrams are left for the reader.
(a) The line parallel to the banks and midway between them
(b) The perpendicular bisector of the segment joining the two floats
(c) The bisector of the angle between the roads
(d) The pair of bisectors of the angles between the roads
3. The diagrams are left for the reader.
(a) A circle having the sun as its center and the fixed distance as its radius
(b) A circle concentric to the coast, outside it, and at the fixed distance from it
(c) A pair of parallel lines on either side of the row and 20 ft from it
(d) A circle having the center of the clock as its center and the length of the clock hand as its radius.
4. (a) ; (b)
; (c)
; (d)
; (e)
; (f)
; (g)
; (h) a 90° are from A to G with B as center
5. (a) ; (b)
; (c)
; (d)
; (e) E
6. In each case, the letter refers to the circumference of the circle. (a) A; (b) C; (c) B; (d) A; (e) C; (f) A and C; (g) B
7. The description of each locus is left for the reader.
8. (a) ; (b)
(c) line parallel to
and
midway between them; (d)
; (e)
; (f)
9. The explanation is left for the reader.
10. (a) The intersection of two of the angle bisectors
(b) The intersection of two of the bisectors of the sides
(c) The intersection of the bisector of
and the bisector of ∠B
(d) The intersection of the bisector of ∠C and a circle with C as center and 5 as radius
(e) The intersections of two circles, one with B as center and 5 as radius and the other with A as center and 10 as radius
11. (a) 1; (b) 1; (c) 4; (d) 2; (e) 2; (f) 1
1. A(3, 0); B(4, 3); C(3, 4); D(0, 2); E(–2, 4); F(–4, 2); G(–1, 0); H(–3,–2); I(–2,–3); J(0,–4);
3. Perimeter of square formed is 20 units; its area is 25 square units.
4. Area of parallelogram = 30 square units.
Area of ΔBCD = 15 square units.
5. (a) (4, 3); (b) (c) (–4, 6); (d) (7,–5); (e)
(f) (0, 10); (g) (4,–1); (h)
(i) (5, 5); (j) (–3,–10); (k) (5, 6); (l) (0,–3)
6. (a) (4, 0), (0, 3), (4, 3); (b) (–3, 0), (0, 5), (–3, 5); (c) (6,–2), (0,–2), (6, 0); (d) (4, 6), (4, 9), (3, 8); (e) (2,–3), (–2, 2), (0, 5); (f)
7. (a) (0, 2), (1, 7), (4, 5), (3, 0); (b) (–2, 7), (3, 6), (6, 1), (1, 2); (c) (–1, 2), (3, 3), (3,–4) (–1,–5); (d) (–2, 1), (4, 2), (7,–4) (1, 7
)
8. (a) (2, 6), (4, 3); (b) (c) common midpoint, (2, 2)
9. (a) (–2, 3); (b) (–3,–6); (c) (d) (a, b); (e) (2a, 3b); (f) (a, b + c)
10. (a) M (4, 8); (b) A (–1, 0); (c) B (6,–3)
11. (a) B (b) D(3, 3); (c) A(–2, 9)
12. (a) Prove that ABCD is a parallelogram (since opposite sides are congruent) and has a rt. ∠.
(b) The point is the midpoint of each diagonal.
(c) Yes, since the midpoint of each diagonal is their common point.
13. (a) (b) E(0, 2), (3, 1); (c) no, since the midpoint of each median is not a common point
14. (a) 5; (b) 6; (c) 10; (d) 12; (e) 5.4; (f) 7.5; (g) 9; (h) a
15. (a) 3, 3, 6; (b) 4, 14, 18; (c) 1, 3, 4; (d) a, 2a, 3a
16. (a) 13; (b) 5; (c) 15; (d) 5; (e) 10; (f) 15; (g) 3 ; (h) 5
; (i)
; (j) 2
; (k) 4; (l) a
18. (a) ΔABC; (b) ΔDEF; (c) ΔGHJ; (d) ΔKLM is not a rt. Δ
19. (a) 5 ; (b)
; (c)
21. (a) 10; (b) 5; (c) 5; (d) 13; (e) 4; (f) 3
22. (a) on; (b) on; (c) outside; (d) on; (e) inside; (f) inside; (g) on
23. (a) (b)
(c)
(d) 3; (e) 2; (f) 1; (g) 5; (h)–2; (i)–3; (j)
(k)–1; (l) 1
24. (a) 3; (b) 4; (c) (d)–7; (e) 5; (f) 0; (g) 3; (h) 5; (i)–4; (j)
(k)–1; (l)–2; (m) 5; (n) 6; o)–4; (p)–8
25. (a) 72°; (b) 18°; (c) 68°; (d) 22°; (e) 45°; (f) 0°
26. (a) 0.0875; (b) 0.3057; (c) 0.3640; (d) 0.7002; (e) 1; (f) 3.2709; (g) 11.430
27. (a) 0°; (b) 25°; (c) 45°; (d) 55°; (e) 7°; (f) 27°; (g) 37°; (h) 53°; (i) 66°
28. (a) ;
,
,
(b)
,
,
(c)
,
(d)
,
29. (a) 0; (b) no slope; (c) 5; (d)–5; (e) 0.5; (f)–0.0005
30. (a) 0; (b) no slope; (c) no slope; (d) 0; (e) 5; (f)–1; (g) 2
31. (a) (b)
; (c)–1; (d) 6
32. (a)–2; (b)–1; (c) (d)
(e)–10; (f) 1; (g)
; (h)
; (i) no slope; (j) 0
33. (a) 0; (b)–2; (c) 3; (d)–1
34. (a) (b)
(c)
35. (a) (b) 1; (c) 2; (d)–1
36. (a) (b)
(c)
37. (a) and (b)
38. (a) 19;(b) 9;(c) 2
39. (a) x =–5; (b) (c) y = 3 and y =–3; (d) y =–5; (e) x = 4 and x =–4; (f) x = 5 and x =–1; g) y = 4; (h) x = 1; (i) x = 9
40. (a) x = 6; (b) y = 5; (c) x = 6; (d) x = 5; (e) x = 6; (f) y = 3
41. (a) x = y; (b) y = x + 5; (c) x = y–4; (d) y–x = 10; (e) x + y = 12; (f) x–y = 2 or y–x = 2; (g) x = y and x = -y; (h) x + y = 5
42. (a) line having y-intercept 5, slope 2; (b) line passing through (2, 3), slope 4;
(c) line passing through (–2,–3), slope (d) line passing through origin, slope
(e) line having y-intercept 7, slope–1; (f) line passing through origin, slope
43. (a) y = 4x; (b) y =–2x; (c) y = x or 2y = 3x; (d)
(e) y = 0
44. (a) y = 4x + 5; (b) y =–3x + 2; (c) (d) y = 3x + 8; (e) y =–4x–3; (f) y = 2x or y–2x = 0
45. (a) (b)
(c)
(d)
46. (a) y = 4x; (b) (c)
(d)
(e) y = 2x
47. (a) circle with center at origin and radius 7; (b) x+ + y2 = 16; (c) x2 + y2 = 64 and x2 + y2 = 4
48. (a) x2 + y2 = 25; (b) x2 + y2 = 81; (c) x2 + y2 = 4 or x2 + y2 = 144
49. (a) 3; (b) (c) 2; (d)
50. (a) x2 + y2 = 16; (b) x2 + y2 = 121; (c) x2 + y2 = 4 or 9x2 + 9y2 = 4; (d) or 4x2 + 4y2 = 9; (e) x2 + y2 = 5; (f)
or 4x2 + 4y2 = 3
51. (a) 10; (b) 10; (c) 20; (d) 20; (e) 7; (f) 25
52. (a) 16; (b) 12; (c) 20; (d) 24
53. (a) 10; (b) 12; (c) 22
54. (a) 5; (b) 13; (c)
55. (a) 6; (b) 10; (c) 1.2
56. (a) 15; (b) 49; (c) 53
57. (a) 30; (b) 49; (c) 88; (d) 24; (e) 16; (f) 18
1. (a) <; (b) >; (c) >; (d) >; (e) >; (f) <
2. (a) >; (b) >; (c) <; (d) >
3. (a) >; (b) <; (c) <; (d) >
4. (a) more; (b) less
5. (a) >; (b) >; (c) <; (d) > (e) <; (f) <;
6. (c), (d), and (e)
7. (a) 5 to 7; (b) 6 to 10; (c) 4 to 10; (d) 3 to 9; (e) 2 to 8; (f) 1 to 13
8. (a)∠B,∠A,∠C; (b) ,
,
; (c) ∠3, ∠2, ∠1
9. (a) m∠BAC > m∠ACD; (b) AB > BC
10. (a) ,
,
(b) ∠BOC ∠AOB ∠AOC (c)
,
≐
,
(d)
,
,
1. (a) Ornament, jewelry, ring, wedding ring; (b) vehicle, automobile, commercial automobile, taxi; (c) polygon, quadrilateral, parallelogram, rhombus; (d) angle, obtuse angle, obtuse triangle, isosceles obtuse triangle
2. (a) A regular polygon is an equilateral and an equiangular polygon.
(b) An isosceles triangle is a triangle having at least two congruent sides.
(c) A pentagon is a polygon having five sides.
(d) A rectangle is a parallelogram having one right angle.
(e) An inscribed angle is an angle formed by two chords and having its vertex on the circumference of the circle.
(f) A parallelogram is a quadrilateral whose opposite sides are parallel.
(g) An obtuse angle is an angle larger than a right angle and less than a straight angle.
3. (a) x + 2 ≠ 4; (b) 3y = 15; (c) she does not love you; (d) his mark was not more than 65; (e) Joe is not heavier than Dick; (f) a + b = c
4. (a) A nonsquare does not have congruent diagonals. False (for example, when applied to a rectangle or a regular pentagon).
(b) A non-equiangular triangle is not equilateral. True.
(c) A person who is not a bachelor is a married person. This inverse is false when applied to an unmarried female.
(d) A number that is not zero is a positive number. This inverse is false when applied to negative numbers.
5. (a) Converse true, inverse true, contrapositive true
(b) Converse false, inverse false, contrapositive true
(c) Converse true, inverse true, contrapositive true
(d) Converse false, inverse false, contrapositive true
6. (a) Partial converses: interchange (2) and (3) or (1) and (3) Partial inverses: negate (1) and (3) or (2) and (3)
(b) Partial converses: interchange (1) and (4) or (2) and (4) or (3) and (4) Partial inverses: negate (1) and (4) or (2) and (4) or (3) and (4)
7. (a) Necessary and sufficient; (b) necessary but not sufficient; (c) neither necessary nor sufficient; (d) sufficient but not necessary; (e) necessary and sufficient; (f) sufficient but not necessary; (g) necessary but not sufficient
1. (a) 6(72) or 294 yd2; (b) 2(8)(6 ) + 2(8)(14) + 2(6
)(14) or 510 ft2; (c) 4(3.14)302 or 11,304 m2; (d) (3.14)(10)(10 + 41
or 911 yd2
2. (a) 363 or 46,656 in3; (b) 1003 or 1,000,000 cm3
3. (a) 27 in3; (b) 91 in3; (c) 422 in3; (d) 47 in3; (e) 2744 in3
4. (a) 3(8)(8) or 204 in3; (b) 2(9)(9) or 162 ft3; (c)
or 13 6)(6.4) ft3
5. (a) 904 m3; (b) 1130 ft3; (c) 18 ft3
6. (a) V = π r2 (b) V =
s2h; (c) V =
lwh; (d) V =
π r3
7. (a) (b)
(c) 3πr3
1. (a) A′ (9, 2), B′ (2, 4), and C′(5, 7); (b) A′ (–4, 2), B′ (3, 4), and C′ (0, 7); (c) A′ (–5, 1), B′ (2,–1), and C′ (–1,–4); (d) A′ (–2, 14), B′ (–4, 7), and C′ (–7, 10); (e) A′ (12, 4), B′ (–2, 8), and C′ (4, 14); (f) A′ (–14, 6), B′ (7, 12), and C′ (–2, 21); (g) A′ (0,–1), B′ (–2, 6), and C′ (–5, 3)
2. (a) A′ (6,–1), B′ (7, 2), and C′ (8,–1); (b) A′ (1,–5), B′ (2,–2), and C′ (3,–5); (c) A′ (–2, 1), B′ (–1, 4), and C′ (0, 1)
3. (a) translation to the right 5 spaces, P(x, y) P′(x + 5, y); (b) translation down 5 spaces and to the right 3, P(x, y)
P′(x + 3, y–5); (c) translation down 3 spaces and to the left 5, P(x, y)
P′(x–5, y–3)
4. (a) P(x, y) P′(x, y–5); (b) P(x, y)
P′(x + 6, y); (c) P(x, y)
P′(x–7, y + 3); (d) P(x, y)
P′(x + 8, y–2); (e) P(x, y)
P′(x–1, y + 4)
5. (a) A′(–1, 3), B′(–5, 3), C′(–4, 1), and D′(–2, 1); (b) A0(1,–5), B′(5,–5), C″′(4,–3), and D″(2,–3); (c) A-(15, 3), B-(11, 3), C-(12, 1), and D′″(14, 1)
6. (a) reflection across the line x = 2, P(x, y) P′(4–x, y); (b) reflection across y = 3, P(x, y)
P′(x, 6–y); (c) reflection across x–5, P(x, y) A P′″(–10–x, y)
7. (a) P(x, y) P′(x, 10–y); (b) P(x, y)
P′(–4–x, y); (c) P(x, y)
P′(x,–2–y); (d) P(x, y)
P′(5–x, y)
8. (a), (b), (e), and (f)
9. (a) A′(2,–1), B′(2,–4), C′(1,–5), and D′(1,–2); (b) A0(–1,–2), B0(–4,–2), C0(–5,–1), and D″(–2,–1); (c) A″′(–2, 1), B″′(–2, 4), C-(–1, 5), and D-(–1, 2)
10. (a) 180° rotation about the origin, P(x, y) P′(–x,–y); (b) 90° clockwise rotation about the origin, P(x, y)
P′(y,–x); (c) 270° clockwise rotation about the origin (or 90° counter-clockwise), P(x, y) A P″(–x, y)
11. (a) P(x, y) P′(x cos 40° + y sin 40°, y cos 40°–x sin 40°) = P′(0.766x + 0.6428y, 0.766y–0.6428x); (b) P(x, y)
P′(x cos 50° + y sin 50°, y cos 50°–x sin 50°) = P′(0.6428x + 0.766y, 0.6428y–0.766x); (c) P(x, y)
P′(x cos 80° + y sin 80°, y cos 80°–x sin 80°) = P′(0.1736x + 0.9848y, 0.1736y–0.9848x)
12. (a) 120°; (b) 60°; (c) 72°; (d) 360° (no rotational symmetry); (e) 90°; (f) 180°
13. (a) A′(4, 5), B′(5, 4), and C′(5, 7); (b) A′(2,–5), B″(3,–6), and C0(0,–6); (c) A″′(–1,–2), B″′(–2,–3), and C″′(1,–3); (d) A″′(–4, 3), B(–5, 4), and C″(–5, 1)
14. (a) R(x, y) R′(x + 6, y–1); (b) R(x, y)
R′(1–x, y + 2); (c) R(x, y)
R′(y + 3,–x–6); (d) R(x, y)
R′(–y, 4–x); (e) R(x, y)
R′(6–x,–3–y)
15. (a) reflect across the y axis and then move down 2 and to the right 3 spaces, P(x, y) P′(–x + 3, y–2); (b) rotate about the origin counterclockwise 90°, then move to the left 1 space, P(x, y)
P′(–y–1, x); (c) rotate around the origin 90° clockwise, then reflect across the x axis, then move down and to the right 1 space, P(x, y) A P″(y + 1, x–1)
16. (a) P(x, y) P′(x,–y–3); (b) P(x, y)
P′(y + 2,–x); (c) P(x, y)
P′(–x, y–4); (d) P(x, y)
P′(–x, 4 + y); (e) P(x, y)
P′(–7–x, y + 3)
17. A′(–3, 6), B′(3, 6), C′(3, 3), and D′(–3, 3)
18. (a) P(x, y) P′(2x, 2y); (b) P(x, y)
P′(8x, 8y); (c) P(x, y)
P′(
x,
x