Bibliography

  1. Boden, M. A. (1991). The creative mind: Myths and mechanisms. New York, NY: Basic Books.
  2. Bojarski, S., & Congdon, C. B. (2010). Realm: A rule-based evolutionary computation agent that learns to play Mario. In Proceedings of the 2010 IEEE Symposium on Computational Intelligence and Games (pp. 83–90). Piscataway, NJ: IEEE.
  3. Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6(1–2), 3–15.
  4. Browne, C., & Maire, F. (2010). Evolutionary game design. IEEE Transactions on Computational Intelligence and AI in Games, 2(1), 1–16.
  5. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., … Colton, S. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.
  6. Butler, E., Smith, A. M., Liu, Y.-E., & Popovic, Z. (2013). A mixed-initiative tool for designing level progressions in games. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (pp. 377–386). New York, NY: ACM.
  7. Campbell, M., Hoane, A. J., & Hsu, F.-H. (2002). Deep Blue. Artificial Intelligence, 134(1–2), 57–83.
  8. Canossa, A., Martinez, J. B., & Togelius, J. (2013). Give me a reason to dig: Minecraft and psychology of motivation. In Proceedings of the 2013 IEEE Conference on Computational Intelligence and Games (pp. 1–8). Piscataway, NJ: IEEE.
  9. Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities: Current evidence supports g and about ten broad factors. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur Jensen (pp. 5–21) Amsterdam, Netherlands: Elsevier.
  10. Chollet, F. (2017). Deep learning with Python. Shelter Island, NY: Manning Publications Company.
  11. Cook, M., & Colton, S. (2011). Multi-faceted evolution of simple arcade games. In Proceedings of the 2011 IEEE Conference on Computational Intelligence and Games (pp. 289–296). Piscataway, NJ: IEEE.
  12. Cook, M., & Colton, S. (2014). Ludus ex machina: Building a 3D game designer that competes alongside humans. Paper presented at the Fifth International Conference on Computational Creativity, Ljubljana, Slovenia, June 10–13.
  13. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper & Row.
  14. Dahlskog, S., & Togelius, J. (2014). Procedural content generation using patterns as objectives. In Proceedings of the European Conference on the Applications of Evolutionary Computation (pp. 325–336). Cham, Switzerland: Springer.
  15. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: Murray.
  16. Drachen, A., Canossa, A., & Yannakakis, G. N. (2009). Player modeling using self-organization in Tomb Raider: Underworld. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games (pp. 1–8). Piscataway, NJ: IEEE.
  17. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Cham, Switzerland: Springer.
  18. Elias, G. S., Garfield, R., & Gutschera, K. R. (2012). Characteristics of games. Cambridge, MA: MIT Press.
  19. Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Overview of the AAAI competition. AI Magazine, 26(2), 62.
  20. Hastings, E. J., Guha, R. K., & Stanley, K. O. (2009). Automatic content generation in the Galactic Arms Race video game. IEEE Transactions on Computational Intelligence and AI in Games, 1(4), 245–263.
  21. Hastings, E. J., & Stanley, K. O. (2010). Interactive genetic engineering of evolved video game content. Paper presented at the 2010 Workshop on Procedural Content Generation in Games, Monterey, CA, June 18.
  22. Hodges, A. (2012). Alan Turing: The enigma. New York, NY: Random House.
  23. Isla, D. (2005). Managing complexity in the Halo 2 AI system. Paper presented at the 2005 Game Developers Conference, San Francisco, CA, March.
  24. Jallov, D., Risi, S., & Togelius, J. (2017). EvoCommander: A novel game based on evolving and switching between artificial brains. IEEE Transactions on Computational Intelligence and AI in Games, 9(2), 181–191.
  25. Karakovskiy, S., & Togelius, J. (2012). The Mario AI benchmark and competitions. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 55–67.
  26. Koster, R. (2005). A theory of fun for game designers. Scottsdale, AZ: Paraglyph Press.
  27. Lantz, F., Isaksen, A., Jaffe, A., Nealen, A., & Togelius, J. (2017). Depth in strategic games. Paper presented at the AAAI Workshop on What’s Next for AI in Games, San Francisco, CA, February 4. http://movingai.com/aigames17/slides/depth.pdf
  28. Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.
  29. Liapis, A., Yannakakis, G. N., & Togelius, J. (2013). Sentient Sketchbook: Computer-aided game level authoring. In Proceedings of the Eighth International Conference on the Foundations of Digital Games (pp. 213–220). Santa Cruz, CA: Society for the Advancement of the Science of Digital Games.
  30. Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., Butz, M. V., … , Quadflieg, J. (2010). The 2009 Simulated Car Racing Championship. IEEE Transactions on Computational Intelligence and AI in Games, 2(2), 131–147.
  31. Machado, T., Nealen, A., & Togelius, J. (2017). CICERO: Computationally Intelligent Collaborative EnviROnment for game and level design. Paper presented at ICCC Computational Creativity & Games Workshop, Atlanta, GA, June 19–23. http://computationalcreativity.net/iccc2017/CCGW/CCGW17_paper_1.pdf
  32. Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., & Yannakakis, G. N. (2010). Predicting player behavior in Tomb Raider: Underworld. In Proceedings of the 2010 IEEE Symposium on Computational Intelligence and Games (pp. 178–185). Piscataway, NJ: IEEE.
  33. Malone, T. (1981). What makes computer games fun? Paper presented at the Joint Conference on Easier and More Productive Use of Computer Systems, Ann Arbor, MI, May 20–22.
  34. Millington, I., & Funge, J. (2009). Artificial intelligence for games. Boca Raton, FL: CRC Press.
  35. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., … , Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
  36. Nielsen, T. S., Barros, G. A., Togelius, J., & Nelson, M. J. (2015). Towards generating arcade game rules with VGDL. In Proceedings of the 2015 IEEE Conference on Computational Intelligence and Games (pp. 185–192). Piscataway, NJ: IEEE.
  37. Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., & Preuss, M. (2013). A survey of real-time strategy game AI research and competition in StarCraft. IEEE Transactions on Computational Intelligence and AI in Games, 5(4), 293–311.
  38. Orkin, J. (2006). Three states and a plan: The AI of F.E.A.R. Presentation given at Game Developers Conference 2006, San Jose, CA, March 20–24.
  39. Pedersen, C., Togelius, J., & Yannakakis, G. N. (2010). Modeling player experience for content creation. IEEE Transactions on Computational Intelligence and AI in Games, 2(1), 54–67.
  40. Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas, S. M., & Schaul, T. (2016). General video game AI: Competition, challenges, and opportunities. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (pp. 4335–4337). Palo Alto, CA: AAAI.
  41. Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S. M., Couëtoux, A., … Thompson, T. (2016). The 2014 General Video Game Playing Competition. IEEE Transactions on Computational Intelligence and AI in Games, 8(3), 229–243.
  42. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). London, UK: Pearson.
  43. Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., … Hadsell, R. (2016). Progressive neural networks. https://arxiv.org/abs/1606.04671
  44. Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. Cambridge, MA: MIT Press.
  45. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.
  46. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., and Sutphen, S. (2007). Checkers is solved. Science, 317(5844), 1518–1522.
  47. Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18(2), 173–187.
  48. Shaker, N., Shaker, M., & Togelius, J. (2013). Evolving playable content for cut the rope through a simulation-based approach. In G. Sukthankar & I. Horswill (Eds.), Proceedings of the 9th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (pp. 72–78). Palo Alto, CA: AAAI.
  49. Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content generation in games. Cham, Switzerland: Springer.
  50. Shaker, N., Yannakakis, G. N., & Togelius, J. (2010). Towards automatic personalized content generation for platform games. In G. M. Youngblood & V. Bulitko (Eds.), Proceedings of the 6th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (pp. 63–68). Palo Alto, CA: AAAI
  51. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., … , Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.
  52. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … , Hassabis, D. (2017). Mastering chess and Shogi by self-play with a general reinforcement learning algorithm. https://arxiv.org/abs/1712.01815
  53. Smith, A. M., & Mateas, M. (2010). Variations forever: Flexibly generating rulesets from a sculptable design space of mini-games. In Proceedings of the 2010 IEEE Symposium on Computational Intelligence and Games (pp. 273–280). Piscataway, NJ: IEEE.
  54. Smith, A. M., & Mateas, M. (2011). Answer set programming for procedural content generation: A design space approach. IEEE Transactions on Computational Intelligence and AI in Games, 3(3), 187–200.
  55. Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra: Reactive planning and constraint solving for mixed-initiative level design. IEEE Transactions on Computational Intelligence and AI in Games, 3(3), 201–215.
  56. Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005). Real-time neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation, 9(6), 653–668.
  57. Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. Computers in Entertainment, 3(3). doi:10.1145/1077246.1077253
  58. Tekofsky, S., Van Den Herik, J., Spronck, P., & Plaat, A. (2013). Psyops: Personality assessment through gaming behavior. Paper presented at the Eighth International Conference on the Foundations of Digital Games, Chania, Crete, Greece, May 14–17.
  59. Tekofsky, S., Spronck, P., Goudbeek, M., Plaat, A., & van den Herik, J. (2015). Past our prime: A study of age and play style development in Battlefield 3. IEEE Transactions on Computational Intelligence and AI in Games, 7(3), 292–303.
  60. Togelius, J., De Nardi, R., & Lucas, S. M. (2007). Towards automatic personalised content creation for racing games. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Games (pp. 252–259). Piscataway, NJ: IEEE.
  61. Togelius, J., Lucas, S., Thang, H. D., Garibaldi, J. M., Nakashima, T., Tan, C. H., … , Burrow, P. (2008). The 2007 IEEE CEC simulated car racing competition. Genetic Programming and Evolvable Machines, 9(4), 295–329.
  62. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G. N., Grappiolo, P. (2013). Controllable procedural map generation via multiobjective evolution. Genetic Programming and Evolvable Machines, 14(2), 245–277.
  63. Togelius, J., & Schmidhuber, J. (2008). An experiment in automatic game design. In Proceedings of the 2008 IEEE Symposium On Computational Intelligence and Games (pp. 111–118). Piscataway, NJ: IEEE.
  64. Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-based procedural content generation: A taxonomy and survey. IEEE Transactions on Computational Intelligence and AI in Games, 3(3), 172–186.
  65. Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G., Cook, M., … , Smith, A. (2015). AI-based game design patterns. Paper presented at the Tenth International Conference on the Foundations of Digital Games, Pacific Grove, CA, June 22–25. http://www.fdg2015.org/papers/fdg2015_paper_23.pdf
  66. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433–460.
  67. Turing, A. M., Bates, M., Bowden, B., and Strachey, C. (1953). Digital computers applied to games. In B. V. Bowden (Ed.), Faster than thought: Symposium on digital computing machines (pp. 286–310). London, UK: Pitman.
  68. Vygotsky, L. (1978). Interaction between learning and development. In M. Gauvain & M. Cole (Eds.), Readings on the development of children (pp. 34–40). New York, NY: Scientific American Books.
  69. Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. IEEE Transactions on Affective Computing, 2(3), 147–161.
  70. Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and games. Cham, Switzerland: Springer. http://gameaibook.org
  71. Yee, N., Ducheneaut, N., Nelson, L., & Likarish, P. (2011). Introverted elves and conscientious gnomes: The expression of personality in World of Warcraft . In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 753–762). New York, NY: ACM.